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In this paper, we consider the fundamental problem of frequency estimation of multiple sinusoidal

signals with stationary errors. We propose genetic algorithm and outlier-insensitive criterion function

based technique for the frequency estimation problem. In the simulation studies and real life data

analysis, it is observed that the proposed genetic algorithm based robust frequency estimators are able

to resolve frequencies of the sinusoidal model with high degree of accuracy. Among the proposed

methods, the genetic algorithm based least squares estimator, in the no-outlier scenario, provides

efficient estimates, in the sense that their mean square errors attain the corresponding Cram�er-Rao

lower bounds. In the presence of outliers, the proposed robust methods perform quite well and seem to

have a fairly high breakdown point with respect to level of outlier contamination. The proposed

methods significantly do not depend on the initial guess values required for other iterative frequency

estimation methods.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Estimating the parameters of multiple sinusoidal signals
model embedded in additive noise is a fundamental problem in
signal processing and in time series analysis. In several applica-
tions in signal processing (Kay, 1988; Stoica, 1993; Quinn and
Hannan, 2001; Stoica and Moses, 2005) and time series analysis
(Brillinger, 1987), the signals dealt with can be described by the
following multiple sinusoidal model:

yðtÞ ¼
XM
k ¼ 1

ðAk cosðoktÞþBk sinðoktÞÞþeðtÞ: ð1Þ

Here y(t)s are observed at the equidistant time points, namely,
t=1,2,y, N. The unknown parameters of the model are the
frequencies (o1,y,oM) and the corresponding amplitudes (A1,
y, AM) and (B1,y, BM). Aks and Bks are arbitrary real numbers and
oks are distinct real numbers lying between (0,p). The real valued
additive white noise sequence {e(t)} is assumed to be stationary
with finite variance s2 and it has the following form:

eðtÞ ¼
XP

i ¼ 1

rieðt � iÞþdðtÞ; ð2Þ

{d(t)} being a sequence of independent and identically distributed
(i.i.d.) normal random variable with mean 0 and variance s2.
ll rights reserved.

: +91512 2597500.
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Furthermore, frig
P
i ¼ 1 are such that the sequence {e(t)} is

stationary. The particular case of ri=0 for all i, corresponds to
the i.i.d. noise case. M, the number of sinusoidal components is
assumed to be known. Given a sample of size N, {y(1),y, y(N)},
the problem is to estimate the unknown frequencies and the
corresponding amplitudes.

The sinusoidal model (1), is used to describe and model many
real life applications where periodic phenomena is present. The
extraction of frequencies of the sinusoidal signals model from
time series data is a classical problem of ongoing interest in the
literature of statistical signal processing (Mackisack et al., 1994;
Kundu and Mitra, 1996; Kundu, 1997; Mitra and Kundu, 1997;
Smyth and Hawkins, 2000; Nandi et al., 2002; Chan and So, 2004;
Trapero et al., 2007; Bonaventura et al., 2007; Coluccio et al.,
2008) and indeed has created interests among scientists, from
various diverse fields. There exists a vast amount of literature
addressing the computational aspect of the frequencies of the
sinusoidal model as well as focusing on theoretical behavior of the
estimators. The most intuitive and natural approach is the least
squares approach. A closely related approach is the approximate
least squares estimators (ALSEs) approach, which is asymptoti-
cally equivalent to the least squares estimators (LSEs). Asymptotic
properties of the ALSE and LSE are studied in detail in Walker
(1971), Hannan (1971), Kundu (1993, 1997) and Kundu and Mitra
(1996). It is well known that, although the LSEs are the most
desired estimators from theoretical point of point of view,
obtaining the LSEs is numerically a very difficult problem (Kahn
et al., 1993). It is observed that the least squares surface has local
based robust frequency estimation of sinusoidal signals with
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minima spaced O(N�1) apart, making the gradient based search
methods of general non-linear optimization ineffective without
excellent starting values. Several methods are available in the
literature to obtain the LSEs efficiently, but unfortunately all the
methods are quite sensitive to the initial value chosen. It is further
observed in Rice and Rosenblatt (1988), that unless the frequen-
cies are resolved at the first step with order O(N�1), the failure
to converge to global minima may give a very poor estimate of
the amplitudes. Thus, fitting these multiple sinusoidal models
can involve daunting computational difficulties. The problem
can be further complicated in case outliers are present in the
dataset.

In this paper, we develop genetic algorithm based frequency
estimation methods optimizing outlier-insensitive criterion func-
tions. The aim here is to find an algorithm, under the assumption
of stationary additive noise random variable, whose performance
significantly does not depend on initial guess values (or intervals),
and also have a high breakdown point with respect to outliers
present in the data. Recently, Smyth and Hawkins (2000)
proposed an algorithm based on elemental sets for robust
frequency estimation, under the assumption of independently
and identically distributed (i.i.d.) normal random variables.
Contrary to the remarks made in Smyth and Hawkins (2000) that
the genetic algorithms does not seem to be a suitable approach for
this problem (under i.i.d. setup), especially with the presence of
outlier, we observe that the proposed genetic algorithm based
methods perform quite satisfactorily even in the dependent noise
structure.

The rest of the paper is organized as follows. In Section 2, we
give the least squares and the L1-norm formulation of the
frequency estimation problem. In Section 3, we will give a brief
review of the outlier-insensitive criterion functions. Section 4
presents the proposed genetic search based iterative algorithms
for robust frequency estimation. The empirical studies, imple-
menting the proposed algorithms, will be presented in Sections 5.
Finally, the conclusions will be discussed in Section 6.
2. Least squares and L1-norm estimators

The least squares estimators of the parameters for the model
(1) are the minimizers of the criterion function:

cðo
�
; A
�
; B
�
Þ ¼

XN

t ¼ 1

yðtÞ �
XM
k ¼ 1

ðAk cosðoktÞþBk sinðok tÞÞ

" #2

; ð3Þ

where o
�
¼ ðo1; . . . ;oMÞ

T is the vector of frequencies and
A
�
¼ ðA1; . . . ;AMÞ

T and B
�
¼ ðB1; . . . ;BMÞ

T are the amplitude vectors.
Here ‘T’, denotes transpose of a vector or of a matrix. The
sinusoidal model parameters estimated through minimization of
(3) has the smallest least squares distance to the observed data. o

�
,

A
�

and B
�

obtained by minimizing (3) are called the non-linear
least squares (NLS) estimators. When the noise e(t) is white
Gaussian, the NLS estimators are same as the maximum like-
lihood estimators.

For the sinusoidal model (1), the criterion function (3) can
conveniently be concentrated with respect to the conditionally
linear parameters A and B. Introducing the notations:

Y
�
¼ ½yð1Þ; yð2Þ; . . . ; yðNÞ�T ; ð4Þ

Aðo
�
Þ ¼

cosðo1Þ sinðo1Þ � � � cosðoMÞ sinðoMÞ

^ ^ ^

cosðo1NÞ sinðo1NÞ � � � cosðoMNÞ sinðoMNÞ

2
64

3
75; ð5Þ

a
�
¼ ½A1;B1; . . . ;AM ;BM�

T ; ð6Þ
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we can write cðo
�
; A
�
; B
�
Þ as

cðo
�
; A
�
; B
�
Þ ¼ ðY

�
�Aðo

�
Þ a
�
Þ
T
ðY
�
�Aðo

�
Þ a
�
Þ: ð7Þ

With distinct frequencies, if NZ2M the Vandermonde matrix
Aðo
�
Þ is of rank 2M and ðAðo

�
Þ
T Aðo

�
ÞÞ
�1 exists. We thus observe that

the vectors o
�

and a
�

which minimize (3) are given by

ô
� LSE
¼ arg max

o
�

½Y
�

T Aðo
�
ÞðAðo

�
Þ
T Aðo

�
ÞÞ
�1Aðo

�
Þ
T Y
�
�; ð8Þ

â
� LSE
¼ ðAðo

�
Þ
T Aðo

�
ÞÞ
�1Aðo

�
Þ
T Y
�
jo
�
¼ ô
� LSE

: ð9Þ

It is well known that the least square estimators for this
problem are optimal under various considerations on the noise
sequence. It is observed that, under the i.i.d. assumption on the
noise sequence, the estimators are strongly consistent (Kundu and
Mitra, 1996), asymptotically normal with a covariance matrix that
coincides with the Cram�er-Rao bound under the normality
assumption. It is further observed that the LSEs under the
dependent error structure are also strongly consistent and
asymptotic normal (Kundu, 1993).

As an alternate to the above LSE formulation of the problem,
we can use L1-norm formulation, which is often used in the
literature of robust regression. The L1-norm estimates of the
parameters of the multiple sinusoidal model (1) are obtained by
minimizing

fðo;A;BÞ ¼
XN

t ¼ 1

�����yðtÞ �
XM
k ¼ 1

ðAk cosðoktÞþBk sinðoktÞÞ

�����: ð10Þ

The non-linear optimization problem (10) is solved using
standard non-linear optimization routines in order to get the L1-
norm estimates. The L1-norm estimators, also called the least
absolute deviation (LAD) estimators, correspond to the maximum
likelihood estimators under the assumption that noise are i.i.d.
with double exponential distribution. In recent literatures of
signal processing, use of modified simplex algorithm is proposed
for obtaining the L1-norm estimates. The estimates are then
computed using the Barrodale–Roberts modified simplex algo-
rithm (Barrodale and Roberts, 1973, 1974). For a more detailed
review of L1-norm techniques, readers are referred to Bloomfield
and Steiger (1983).
3. Outlier-insensitive criterion functions

The conventional estimates that are found by the least squares
criterion, i.e. minimizing the sum of squares of all the N residuals,
are motivated by the ideas of statistical efficiency. However, the
estimates are inappropriate if some of the observations are
contaminated. The L1-norm estimates are potentially better
options in situations where the dataset contains outliers. Deviat-
ing from the use of usual sum of square errors or sum of absolute
errors criterion functions, literature of robust regression provides
us with alternate criterion functions that are relatively insensitive
to the presence of outliers in the data. The primary aim of these
outlier-insensitive criteria is to protect the estimate from such
outlier contamination.

Among the most widely used specialized outlier-sensitive
criterion functions, are the least trimmed (LT) sum and the least
median (LM) criteria. We now formulate the criteria to be used in
the robust frequency estimation methods proposed in this paper.

3.1. Least trimmed criterion

Let e(1)
2 oe(2)

2 o ,y, oe(N)
2 be N ordered estimated squared

residuals, for an estimated value of A, B, o. The unordered e(i)2s
based robust frequency estimation of sinusoidal signals with
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for the model (1) are given by

eðtÞ2A
�
; B
�
;o
�

¼

�
yðtÞ �

XM
k ¼ 1

ðAk cosðoktÞþBk sinðoktÞÞ
�2
; t¼ 1;2; . . . ;N:

ð11Þ

The least trimmed (sum of) squares (LTS) estimator, proposed
in Rousseeuw (1984), is found by finding the parameters that
satisfy

Min
o
�
; A
�
; B
�

Xh

t ¼ 1

e2
ðtÞ: ð12Þ

It is well known (Rousseeuw, 1984) that the best robustness
property is obtained when h=N/2, approximately. In this case a
breakdown point of 50% is attained. Higher efficiency of the
estimates is obtained with lower trimming proportions. We
consider in the present paper, a 50% trimming.

Alternatively, under L1-norm estimation setup, we can simi-
larly define a least trimmed (sum of) absolute (LTA) deviation
estimator. The LTA deviation estimator is found by finding the
parameters that satisfy

Min
o;A;B

Xh

t ¼ 1

jeðtÞj; ð13Þ

where je(1)jo je(2)jo ,y, o je(N)j be N ordered absolute residuals,
the unordered je(t)js for model (1) are given by

jeðtÞj ¼

�����yðtÞ �
XM
k ¼ 1

ðAk cosðoktÞþBk sinðoktÞÞ

�����; t¼ 1;2; . . . ;N: ð14Þ

Once again we consider a 50% trimming for the LTA based
estimators in the present paper.

3.2. Least median criterion

The least median squares (LMS) estimator is obtained by
finding the model parameters that minimizes the hth-ordered
squared residual, i.e. e(h)

2, where h is usually taken as h=[N/
2]+[(p+1)/2], p denotes the number of parameters in the model.
This estimator was introduced in Rousseeuw (1984) (see also
Rousseeuw, 1988; Rousseeuw and Leroy, 1987).

Similar to the LMS estimator, we can define the least median
absolute (LMA) estimator as the estimator that is obtained by
finding the parameters that minimize the hth-ordered absolute
residual, i.e. je(h)j, with appropriate choice of h.
4. Proposed robust frequency estimation methods

In this section, we present the proposed genetic algorithm
based frequency estimation techniques for the multiple sinusoidal
model.

We propose six different estimators based on genetic algo-
rithm and different criterion functions. These estimators are: (i)
genetic algorithm based least square estimator (GA-LS), (ii)
genetic algorithm based least trimmed square estimator (GA-
LTS), (iii) genetic algorithm based least median square estimator
(GA-LMS), (iv) genetic algorithm based L1-norm estimator (GA-
L1), (v) genetic algorithm based least trimmed absolute deviation
estimator (GA-LTA), (vi) genetic algorithm based least median
absolute deviation estimator (GA-LMA).

We first present the algorithm for the GA-LS estimator. In the
genetic search formulation of the GA-LS estimator of the
parameters of the model (1), we take the objective function (8)
as the fitness function in the genetic search setup and aim to find
the optimum member through repeated applications of the three
genetic operators of selection, crossover and mutation, over the
Please cite this article as: Mitra, A., Kundu, D., Genetic algorithms
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successive generations. The parameter space, Ofreq for the
frequency vector, o

�
¼ ðo1; . . . ;oMÞ

T , for the sinusoidal model
(1) is given by

Ofreq
¼ ð0;1Þ � ð0;1Þ � � � � � ð0;1Þ �RM : ð15Þ

We first obtain the binary chromosomal representation of the
parameter space. We form, for any possible solution belonging to
the original parameter space Ofreq, a binary string of length M� p.
Where, p denotes the length of the binary bit representation of
any component of the parameter vector o

�
, i.e. for each of the

unknown frequencies, we obtain a p-bit coded binary representa-
tion. It is however well known that ordinary binary coding can
result in search process being deceived, i.e. unable to efficiently
locate the global minima, due to large hamming distances in the
representational mapping between adjacent values (Hollstien,
1971). A hamming distance, between two binary strings is defined
as minimum number of bits that must be changed in order to
convert one bit string into another. In order to avoid the above-
mentioned problem, a Gray coding approach of the original binary
strings is adopted. The literature of GA and its applications report
that Gray coding exhibits accelerated convergence rate of the
objective function, and provides better accuracy than the binary
coded GA (Caruana and Schaffer, 1988; Yokose et al., 2000).
Superior performance of a Gray coded GA is mainly attributed to
the fact that Gray codes do not bias the searching direction, as in
the case of ordinary binary coding, having a large hamming
distance between adjacent values. A Gray code represents each
number in the sequence of integers {0,1,y, 2K

�1} as a binary
string of length K in an order such that adjacent integers have
Gray code representations that differ in only one bit position. Use
of Gray code thus allows, going through the integer sequence
requiring flipping just one bit at a time. This is called the
adjacency property of Gray codes. Gray code takes a binary
sequence and shuffles it to form some new sequence with the
adjacency property. We use here a Gray coding derived from the
initial binary coding.

To initialize the genetic search, we populate an initial
population of a pre-determined size. Each member of this initial
population is a randomly chosen parameter vector o

�

0AOfreq;

coded to get the chromosomal string representation of bit length
M� p. The ranking based fitness of each of the members of this
initial population is evaluated according to the criterion (8). For a
detailed discussion on various selection procedures, see for
example Goldberg (1989). Using a stochastic sampling with
replacement approach, we next populate fit parents pool, size of
the pool depending on the generation gap. From the selected
parent pool, we select pairs in order and apply a two-point
crossover (with a pre-assigned crossover probability), exchanging
genetic material of parents to obtain new chromosomes. Cross-
over produces new individuals that have some parts of both the
parent’s genetic material. An example of a multipoint crossover is
illustrated in Fig. 1.

Mutation is applied on the mated chromosome strings with a
low pre-assigned mutation probability. Mutation is considered to
be the genetic operator that ensures that the probability of
searching any given string will never be zero and thus has the
effect of tending to inhibit the possibility of convergence of the GA
to a local optimum. Mutation changes the genetic representation
of the chromosomes according to a probabilistic rule. In the binary
string representation, mutation will cause a single bit to change
its state, i.e. 0)1 or 1)0.

An elitist strategy is used to fill the generation gap. An elitist
strategy (De Jong, 1975; Thierens, 1997) is adopted while
populating a new generation. Elitism encourages the inclusion of
highly fit chromosome strings, from earlier generations, in the
subsequent generations. The fractional difference between the
based robust frequency estimation of sinusoidal signals with
2009), doi:10.1016/j.engappai.2009.07.001
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Fig. 1. Example of a 4-point crossover.
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number of chromosomes in the old population and the number of
new chromosomes produced by selection and recombination is
termed as the generation gap. Under the elitist approach, a
fraction (based on the value of the pre-determined generation
gap) of the most-fit individuals is deterministically allowed to
propagate through successive generations.

Since GA is a stochastic optimization algorithm, the appli-
cation of conventional termination criteria becomes problematic
in GA based optimization procedure. We follow here the most
commonly adopted practice, where the cycles of selection,
crossover and mutation is carried on until a pre-determined
number of generations have been completed or no better solution
is found after a pre-determined number of successive genera-
tions have evolved, whichever is earlier. We walk through
the GA steps repeatedly, until the termination criterion is
reached.

After completion of each generation, we preserve the informa-
tion regarding the most fit, i.e. the parameter vector that is the
best solution for the optimization of (3) ((8) for frequency
estimation), in that generation. The GA based least square (GA-

LS) solution of o
�

, say ô
� GA-LSE

, is the most-fit individual evolving

among all the generations, at the point when termination

criterion is reached. Once we obtain ô
� GA-LSE

, the estimates of the

conditionally linear parameters, the amplitudes, a
�

, may be

obtained using (9).
The algorithmic steps for the proposed procedure are given

below:
P
s

Step 1: Randomly initialize initial population generation (of a
pre-determined size) of chromosomes of Gray coded binary
strings of length M� p, each of these chromosomes is the
coded binary representation of a possible solution for the least
square frequency estimation problem.
Step 2: Decode the Gray coded binary strings using a linear
scaling.
Step 3: Evaluate the objective function (8) for each of the
decoded strings and obtain their fitness values using a ranking
based approach. Preserve the information about the string
with highest fitness value.
Step 4: Using a stochastic sampling with replacement
approach, populate fit parents pool, size of the pool depending
on the generation gap.
Step 5: From the selected parents pool, we select pairs in order
and apply a two-point crossover (with a pre-assigned crossover
probability), exchanging genetic material of parents to obtain
new chromosomes.
Step 6: Apply mutation on the mated chromosome strings with
small pre-assigned mutation probability.
lease cite this article as: Mitra, A., Kundu, D., Genetic algorithms
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Step 7: Use elitist strategy to fill the generation gap.
Step 8: Repeat the steps 2–7 till maximum number of
generations is reached or no better solution is found after the
pre-determined maximum number of generations is reached.

Step 9: ô
� GA-LSE

is the most-fit decoded string found among all

the generations.
Step 10: Calculate the estimates of the conditionally linear
parameters a

�
through (9).

For the GA-LTS estimator, we consider the 3M dimensional
model parameter vector as Z

�

¼ ðA1;B1;o1; . . . ;AM ;BM ;oMÞ and
consider the objective function as

Min
o
�
; A
�
; B
�

X½N=2�

t ¼ 1

e2
ðtÞ: ð16Þ

where e2
ð1Þoe2

ð2Þo � � �oe2
ð½N=2�Þ are [N/2] smallest squared resi-

duals, the unordered squared residuals, e(t)2s, are given by (11).
The parameter space, O for the present setup for the model (1) is
given by

O¼ ð�1;1Þ � ð�1;1Þ � ð0;1Þ � � � ð�1;1Þ � ð�1;1Þ � ð0;1Þ �R3M :

ð17Þ

Similar to the GA-LS method, we first obtain the binary
chromosomal representation of the parameter space O. We form,
for any possible solution belonging to the original parameter space
O, a binary string of length 3Mp. p denotes the length of the binary
bit representation of any component of the parameter vector Z

�

.

The algorithmic steps for obtaining the GA-LTS estimator is
similar to the steps followed to obtain the GA-LS estimates with
the difference that in Step 1 we initialize the initial population
now with binary strings of length 3Mp and in Step 9 we obtain the
GA-LTS estimates of the entire parameter vector.

For the GA-LMS estimator, the objective function in the GA-LTS
setup is replaced by

Min
o
�
; A
�
; B
�

e2
ð½N=2�þ ½ðpþ1Þ=2�Þ: ð18Þ

The parameter space and the algorithmic steps remain same as
that of GA-LTS estimator. For the L1-norm based estimators,
namely the GA-L1 estimator, the GA-LTA estimator and the GA-
LMA estimator, the parmeter space remains (17). The objective
function for the GA-L1 estimator is given by

Min
A
�
; B
�
;x
�

XN

t ¼ 1

yðtÞ �
XM
k ¼ 1

ðAk cosðok tÞþBk sinðok tÞÞ

�����:
����� ð19Þ

The algorithmic steps remain the same as the steps for
obtaining GA-LTS estimator. The objective function for the
based robust frequency estimation of sinusoidal signals with
2009), doi:10.1016/j.engappai.2009.07.001
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Table 1
Choice of genetic parameters for the simulations for model (22).

Genetic parameter Values

Number of chromosomes in one population 200

Bits of precision 80

Coding Gray coding

Scaling Linear

Range of parameters for initial population oA[0, p]

Crossover probability 0.70

Crossover method 2-point

Mutation probability 0.01

Elitism Top 10%

Maximum number of generation 200

Table 2
Simulation results for one cosine signal model (22).

Method No outlier 30% outlier

Average St. Dev. RMSE Average St. Dev. RMSE

GA-LS 0.5001 0.00099 0.00099 1.4750 0.79855 1.26025

GA-LTS 0.5001 0.00104 0.00105 0.5004 0.00116 0.00126

GA-LMS 0.5002 0.00127 0.00128 0.5008 0.00153 0.00172

GA-L1 0.5002 0.00101 0.00102 0.5004 0.00153 0.00158

GA-LTA (50) 0.5004 0.00121 0.00124 0.5004 0.00134 0.00141

GA-LTA (80) 0.5002 0.00103 0.00104 0.5002 0.00119 0.00120

GA-LMA 0.5004 0.00105 0.00109 0.5004 0.00112 0.00118

A. Mitra, D. Kundu / Engineering Applications of Artificial Intelligence ] (]]]]) ]]]–]]] 5
GA-LTA estimator is given by

Min
o
�
; A
�
; B
�

X½N=2�

t ¼ 1

jeðtÞj: ð20Þ

where jeð1Þjo jeð2Þjo � � �o jeð½N=2�Þj are [N/2] smallest absolute
deviations, the unordered je(t)js for model (1) are given by (14).
Finally, for the GA-LMA estimator, the objective function for the
GA procedure is given by

Min
o
�
; A
�
; B
�

jeð½N=2�þ ½ðpþ1Þ=2�Þj: ð21Þ

5. Simulation studies and real life data analysis

In this section, we will apply the proposed procedures of GA
based frequency estimation techniques for frequency estimation
of various simulated sinusoidal models. We will also perform
extensive simulation studies to investigate the possible effect of
outliers present in the data. In the simulation studies, we consider
both dependent error as well as independent error structures. We
report here the performance of the following estimators: (i)
genetic algorithm based least square estimator (GA-LS), (ii)
genetic algorithm based least trimmed square estimator (GA-
LTS), (iii) genetic algorithm based least median square estimator
(GA-LMS), (iv) genetic algorithm based L1-norm estimator (GA-
L1), (v) genetic algorithm based least trimmed absolute deviation
estimator (GA-LTA), (vi) genetic algorithm based least median
absolute deviation estimator (GA-LMA). Real life data analysis
using the proposed methods will also be presented.

5.1. Simulation results for independent error structure

In this subsection, we present the empirical studies for 1-
component and 2-component simulated sinusoidal models with
independent error structure. For the purpose of comparing the
performance of the proposed robust methods with the elemental
set based robust frequency estimates of Smyth and Hawkins
(2000), we consider the same models as reported therein. We
report the average estimates, the root mean square errors (RMSE)
and the standard deviations (St. Dev.) over 100 simulation runs.
The random numbers are generated using MATLAB random
number generator.

5.1.1. One sinusoid

We consider the following one-component sinusoidal model

yðtÞ ¼ cosðotþfÞþeðtÞ; t¼ 1;2; . . . ;N: ð22Þ

The true value of the frequency of the simulation model is
o=0.5 and that of f is 0.1. e(t) is taken as i.i.d. normal noise
sequence, with mean zero and standard deviation s=0.2. The
sample size is taken as 100. The Cram�er-Rao bound, which is same
as the asymptotic variance of the LSE (Kundu and Mitra, 1996), for
the frequency parameter is 9.6E�07. For each of the simulated
datasets, we estimated the frequency using the methods de-
scribed in Section 4. The particular choice of the genetic
parameters for the genetic formulation setup for the simulation
model is given in Table 1.

The trimmed proportions for GA-LTS are taken as 50% and 80%
and for the GA-LTA it is taken as 50%. The root mean square errors
(RMSE), the average estimates and the standard deviation over
100 simulations for the frequency is computed for all the
proposed methods. We also report, for comparison, the corre-
sponding result of the best performing robust frequency estimate
of Smyth and Hawkins (2000). We also investigate the perfor-
mance of the proposed estimators when data contains 30%
Please cite this article as: Mitra, A., Kundu, D., Genetic algorithms
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outliers. Outliers were generated to have standard deviations
100 times that of the good observations. The outliers were
associated to a randomly selected subset of 30 observations. The
results for the no outlier and the outlier scenarios are presented in
Table 2.

From the results for the non-outlier case, we observe that the
proposed estimators perform quite well, even for the trimmed
cases. Among the proposed estimators, GA-LS and GA-L1 performs
the best. The performance of the GA-LS is almost fully efficient
(98%) and better than the best performing estimators ELS-LS, LTS-
LI1-MM and LMS-LI1-MM (efficiency 94%) reported in Smyth and
Hawkins (2000). We further observe that the best performing
method in the non-outlier case, the GA-LS method fails com-
pletely in the presence of outliers. The performance of the GA-L1
method is still quite promising. However, much better results are
obtained with genetic algorithm based trimmed and least median
criterion functions. The best results are obtained for the GA-LMA
method. The performance of the GA-LTS with 50% trimming and
the GA-LTA (80%) method is also quite encouraging. For the outlier
scenario, the performances of the proposed GA-LMA and GA-LTA
(80%) are better than the best performing method LTS-L1-MM
(with St. Dev. and RMSE 0.00127) of Smyth and Hawkins (2000).
5.1.2. Two sinusoids

We consider the following two-component sinusoidal model

yðtÞ ¼ cosðo1tþf1Þþcosðo2tþf2ÞþeðtÞ; t¼ 1;2; . . .N; ð23Þ

where we take the true values of the frequencies of the simulation
model as o1=0.3 and o2=0.7 and that of f1 as 0.2 and f2 as 0.1.
e(t) is taken as i.i.d. normal noise sequence, with mean zero and
standard deviation s=0.2. The sample size is taken as 100. The
Cram�er-Rao bounds for the frequency parameters are same and
equal to 9.6E�07. For each of the simulated dataset, we estimated
the frequencies using the methods described in Section 3. The
choice of the genetic parameters for the two-component sinusoi-
dal model is similar to the ones mentioned for the one-component
model (Table 1). However, to accommodate for higher-dimensional
based robust frequency estimation of sinusoidal signals with
2009), doi:10.1016/j.engappai.2009.07.001
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Table 3
Simulation results for the two cosine signals model (23).

Frequency Method No outlier 30% outlier

Average St. Dev. RMSE Average St. Dev. RMSE

o¼ 0:7 GA-LS 0.6999 0.00075 0.00075 1.9237 0.77294 1.44734

GA-LTS 0.6998 0.00123 0.00124 0.7000 0.00137 0.00137

GA-LMS 0.6999 0.00108 0.00108 0.7000 0.00121 0.00121

GA-L1 0.7001 0.00092 0.00092 0.6999 0.00151 0.00151

GA-LTA 0.6999 0.00127 0.00127 0.6998 0.00138 0.00139

GA-LMA 0.7001 0.00116 0.00116 0.6999 0.00128 0.00128

o¼ 0:3 GA-LS 0.3002 0.00067 0.00069 0.9250 0.70135 0.93941

GA-LTS 0.3004 0.00103 0.00106 0.3005 0.00113 0.00125

GA-LMS 0.3006 0.00102 0.00107 0.3009 0.00114 0.00147

GA-L1 0.3002 0.00081 0.00097 0.3008 0.00124 0.00148

GA-LTA 0.3004 0.00123 0.00127 0.3008 0.00146 0.00169

GA-LMA 0.3007 0.00110 0.00117 0.3009 0.00124 0.00153

Fig. 2. A representative dataset of one-component dependent error (s=0.01)

sinusoidal model containing 30% outlier and the corresponding GA-L1fit for model

(24).
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parameter space, we form a larger chromosome pool (350) for
each population. The root mean square errors (RMSE), the average
estimates and the standard deviations over 100 simulations for all
the frequencies are computed for all the proposed methods. Once
again we also report, for comparison, the corresponding results of
the best performing robust frequency estimate of Smyth and
Hawkins (2000). Similar to the one-component model, we also
investigate the performance of the proposed estimators when data
contains 30% outliers. Once again outliers were generated to have
standard deviations 100 times that of the good observations. The
outliers were associated to a randomly selected subset of 30
observations. The results for the outlier as well as the non-outlier
cases are presented in Table 3.

From the results of the two-component model, we observe that
for the no-outlier scenario, GA-LS and GA-L1 methods perform the
best. These estimators give super efficient estimates in the sense
that their MSEs are lower than the corresponding Cram�er-Rao
bounds. The performances of GA-LS (efficiency of 131% for the
higher frequency and 124% for the lower frequency) and GA-L1
(efficiency 113% for the higher frequency and 102% for the lower
frequency) are much better than Smyth and Hawkins (2000)
elemental set based methods (the reported maximum efficiency
of 109% is reported for the higher frequency and 104% for the
lower frequency). The performances of the genetic algorithm
based trimmed criterion function estimators are also reasonably
good. The results for the two-component sinusoidal model with
30% outliers are qualitatively same as the results of the one
sinusoid. The results once again indicate satisfactory performance
of the proposed robust estimators.

5.2. Simulation results for dependent error structure

In this subsection, we present the simulation studies for
sinusoidal models with dependent error structure.

5.2.1. One sinusoid

We consider the following one-component sinusoidal model

yðtÞ ¼ 5:0 cosð0:4tÞþ4:0 sinð0:4tÞþeðtÞ; t¼ 1;2; . . . ;N: ð24Þ

The error structure of e(t) is taken as

eðtÞ ¼ 0:3eðt � 1ÞþdðtÞ; ð25Þ

where d(t)s are i.i.d. normal noise sequence, with mean zero and
standard deviation s. We consider two different values of s, 0.01
and 0.05. The sample size is taken as 100. For each of the
simulated datasets, we estimated the frequency using the
Please cite this article as: Mitra, A., Kundu, D., Genetic algorithms
stationary errors. Engineering Applications of Artificial Intelligence (
methods described in Section 4. The choices of the genetic
parameters for the genetic formulation setup for the simulation
model are as in Table 1. The trimming proportions for GA-LTS and
GA-LTA are taken as 80%. The root mean square errors (RMSE), the
average frequency estimates and the associated standard devia-
tions over 100 simulations are computed for all the proposed
methods. The theoretical asymptotic standard deviation of the
least squares estimator for s=0.01 is 1.044E�5 and that for
s=0.05 is 5.218E�5. We next investigate the performance of the
proposed estimators when data contains 30% outliers, under the
correlated error structure. Outliers were generated to have
standard deviations 100 times that of the good observations and
associated to a randomly selected subset of 30 observations. Two
representative plots of 30% outlier dataset in the dependent error
setup and the corresponding GA-L1 fit of the data are given in
Figs. 2 and 3. The results for the non-outlier as well as the outlier
scenarios are presented in Table 4.

We observe that the proposed methods are able to resolve the
unknown frequency with high level of accuracy for dependent
error structure as well. For the non-outlier scenario, GA-LS
performs the best closely followed by GA-L1. Even the perfor-
mances of the least trimmed and least median based approaches
provide fairly accurate estimates. From the simulations of the
outlier study, we observe that the proposed robust frequency
estimation methods perform quite well. While the performance of
based robust frequency estimation of sinusoidal signals with
2009), doi:10.1016/j.engappai.2009.07.001
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the GA-LS deteriorates significantly as compared to non-outlier
case, the performance of GA-L1 and the least trimmed and least
median approaches remain fairly stable even with 30% outlier
contamination in the data. We had observed similar pattern for
independent errors also. The GA-L1 estimator performs the best in
this situation. A further investigation reveals that for sZ0.1, the
GA-LS totally breaks down, the robust frequency estimators still
continue to give reasonably good results.
Table 4
Simulation results for one sinusoid dependent error model (24).

s Method No outlier

Average St. Dev.

0.01 GA-LS 0.4000 1.009E�5

GA-LTS 0.4000 4.363E�5

GA-LMS 0.4000 5.433E�5

GA-L1 0.4000 1.336E�5

GA-LTA 0.4000 6.937E�5

GA-LMA 0.4000 7.444E�5

0.05 GA-LS 0.4000 5.174E�5

GA-LTS 0.4000 1.179E�4

GA-LMS 0.4000 1.330E�4

GA-L1 0.4000 5.543E�5

GA-LTA 0.4000 1.086E�4

GA-LMA 0.4000 1.219E�4

Table 5
Simulation results for the lower of the two sinusoids for model (26).

s Method No outlier

Average St. Dev.

0.01 GA-LS 0.3000 7.082E�5

GA-LTS 0.3000 1.890E�4

GA-LMS 0.2999 6.064E�4

GA-L1 0.3000 9.723E�5

GA-LTA 0.3000 2.703E�4

GA-LMA 0.3000 6.398E�4

0.1 GA-LS 0.3000 6.021E�4

GA-LTS 0.3000 6.930E�4

GA-LMS 0.2999 8.027E�4

GA-L1 0.3000 6.151E�4

GA-LTA 0.3001 6.703E�4

GA-LMA 0.3000 8.834E�4

Fig. 3. A representative dataset of one-component dependent error (s=0.05)

sinusoidal model containing 30% outlier and the corresponding GA-L1fit for model

(24).

Please cite this article as: Mitra, A., Kundu, D., Genetic algorithms
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5.2.2. Two sinusoids

We consider the following two-component sinusoidal model

yðtÞ ¼ 1:0 cosð0:3tÞþ1:5 sinð0:3tÞþ2:5 cosð0:8tÞ

þ2:0 sinð0:8tÞþeðtÞ; t¼ 1;2; . . . ;n: ð26Þ

The error structure of e(t) is taken as e(t)=0.3e(t�1)+d(t),
where d(t)s are i.i.d. normal random variables, with mean zero
and standard deviation s. The sample size is taken as 75. We have
considered two different values of s, 0.01 and 0.1. Performances of
the proposed estimators with 30% outlier contamination are also
investigated. As in the previous cases, outliers were generated to
have standard deviations 100 times that of the good observations
and are associated to a randomly selected subset. For each of the
simulated datasets, we estimated the frequencies using the
methods described in Section 4. The choice of the parameters
for the genetic formulation setup for the two-component
dependent error simulation model is similar to that of the two-
component independent error model. The results for the lower of
the two sinusoids are presented in Table 5 and the results for the
higher of the two sinusoids are presented in Table 6. A
representative plot of 30% outlier dataset in the two-component
dependent error setup is given in Fig. 4 and the data along with
the fit corresponding to GA-L1 solution is given in Fig. 5.

For the two-component model non-outlier cases, we observe
that the GA-LS performs the best closely followed by GA-L1. The
theoretical asymptotic standard deviation of the LSE of o=0.8 at
s=0.01 is 9.738E�6 and that for s=0.1 is 9.738E�5 and the
asymptotic standard deviation of the LSE of o=0.3 at s=0.01 is
30% outlier

RMSE Average St. Dev. RMSE

1.011E�5 0.4000 3.218E�4 3.227E�4

4.364E�5 0.4000 4.828E�5 4.842E�5

5.455E�5 0.4000 6.705E�5 6.709E�5

1.339E�5 0.4000 1.849E�5 1.875E�5

6.999E�5 0.4000 7.003E�5 7.011E�5

7.447E�5 0.4000 7.460E�5 7.476E�5

5.282E�5 0.4000 1.355E�3 1.356E�3

1.179E�4 0.4000 1.556E�4 1.557E�5

1.331E�4 0.4000 1.432E�4 1.464E�4

5.735E�5 0.4000 9.303E�5 9.309E�5

1.094E�4 0.4000 1.105E�4 1.112E�4

1.229E�5 0.4000 1.237E�4 1.249E�4

30% outlier

RMSE Average St. Dev. RMSE

7.117E�5 0.3000 1.296E�3 1.296E�3

1.918E�4 0.3000 4.922E�4 4.930E�4

6.161E�4 0.3000 7.171E�4 7.183E�4

9.753E�5 0.3000 1.265E�4 1.290E�4

2.717E�4 0.3000 2.989E�4 2.997E�4

6.398E�4 0.3000 6.652E�4 6.658E�4

6.036E�4 0.3366 1.057E�1 1.119E�1

6.934E�4 0.3000 8.987E�4 8.987E�4

8.030E�4 0.3000 8.991E�4 8.996E�4

6.157E�4 0.3000 7.816E�4 7.832E�4

6.800E�4 0.3001 7.870E�4 7.884E�4

8.365E�4 0.3000 8.966E�4 8.969E�4

based robust frequency estimation of sinusoidal signals with
2009), doi:10.1016/j.engappai.2009.07.001
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Table 6
Simulation results for the higher of the two sinusoids for model (26).

s Method No Outlier 30% Outlier

Average St. Dev. RMSE Average St. Dev. RMSE

0.01 GA-LS 0.8000 3.650E�5 3.678E�5 0.8001 8.241E�4 8.312E�4

GA-LTS 0.8000 9.397E�5 9.416E�5 0.8000 2.040E�4 2.044E�4

GA-LMS 0.8001 2.153E�4 2.346E�4 0.8000 3.454E�4 3.485E�4

GA-L1 0.8000 4.911E�5 4.911E�5 0.8000 6.465E�5 6.558E�5

GA-LTA 0.8000 9.362E�5 9.363E�5 0.8000 9.448E�5 9.450E�5

GA-LMA 0.8000 2.230E�4 2.236E�4 0.8000 3.909E�4 3.931E�4

0.1 GA-LS 0.8000 2.962E�4 2.963E�4 0.7992 1.256E�2 1.262E�2

GA-LTS 0.8000 3.561E�4 3.571E�4 0.7999 5.707E�4 5.743E�4

GA-LMS 0.8000 5.257E�4 5.265E�4 0.8001 6.121E�4 6.151E�4

GA-L1 0.8000 3.440E�4 3.450E�4 0.8000 4.283E�4 4.298E�4

GA-LTA 0.8000 3.710E�4 3.710E�4 0.8000 4.737E�4 4.738E�4

GA-LMA 0.8000 5.117E�4 5.121E�4 0.8000 5.516E�4 5.519E�4

Fig. 4. A representative dataset of two-component, dependent error sinusoidal

model (26) containing 30% outlier.

Fig. 5. A representative dataset of two-component dependent error sinusoidal

model containing 30% outlier and the corresponding GA-L1fit for model (26).
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1.228E�5 and that for s=0.1 is 1.228E�4. The GA-LS almost
attains these above-mentioned asymptotic values for the respec-
tive frequencies. The GA estimators based on least trimmed
(GA-LTS and GA-LTA) approaches also provide reasonably accurate
Please cite this article as: Mitra, A., Kundu, D., Genetic algorithms
stationary errors. Engineering Applications of Artificial Intelligence (
estimates. For the outlier contaminated data, the performance of
the GA-LS deteriorates significantly, especially for the higher s
value. The GA-L1 and the GA trimmed and median based
approaches appear to be fairly robust with respect to outliers in
the data. Among the robust methods GA-L1 performs the best.

5.3. Real life data analysis

In this subsection, we present the real life data analysis results.
Two different datasets, the ‘Circadian Rhythms’ data and the
‘Variable Star’ data, are considered for analysis.

5.3.1. Fitting Circadian Rhythms data

We consider the ‘Circadian Rhythm’ dataset. The data was
collected at the Princeton University in the late 1960s under the
direction of Dr. C.S. Pittendrich. In order to observe the
periodicities in the behavior of Perognathus formosus (also called
long-tail pocket mouse), a nocturnal mammal, the animal was
given 8 days of 12 hours light and 12 hours darkness as an
adjustment period, which was followed by about 73 days of
constant darkness (Andrews and Herzberg, 1985). The data are
temperature recordings made at 2-min intervals over 3 months. It
is known that problems occurred during the experiment asso-
ciated with transient failures of the monitoring equipment and
with imperfections in the data logging process. As a result of
which the data contains a good proportion of outliers. The data
have been downloaded from http://www.statsci.org/data/general/
pformosu.html.

For the analysis of the Circadian Rhythms dataset, we analyze
20-min averages of the temperatures. We fit a one-component
sinusoid model of the form

yðtÞ ¼ KþA cosðotÞþB sinðotÞ

to the Circadian data using GA-LTA (50% trimming) approach. The
parameter initialization for genetic search is made in the
following ranges:
based robust
2009), doi:10
Parameter
 Initialization range
K
 [Median(y(1)yy(n))�50, Median(y(1)yy(n))+50]

A
 [�100, 100]

B
 [�100, 100]

o
 [0, p]
The final fitted model, for the first 8 days data, arrived after 13
GA generations is given below:

yðtÞ ¼ 370:49þ20:69 cosð0:08672tÞþ12:12 sinð0:08672tÞ:
frequency estimation of sinusoidal signals with
.1016/j.engappai.2009.07.001

http://www.statsci.org/data/general/pformosu.html
http://www.statsci.org/data/general/pformosu.html
dx.doi.org/10.1016/j.engappai.2009.07.001
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Fig. 6. Circadian data fitting using GA-LTA.

Fig. 7. Circadian data fitting using GA-LMA.

Fig. 8. Variable star (blue band) data fitting using GA-LTA.
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The plot of the fitted and the observed data with outliers is
given in Fig. 6.

It is obvious from the data plot that the dataset contains a large
number of outliers, but the fitted curve successfully ignores them
and follows nicely the periodic pattern. The less obvious outliers,
closer to the fitted curve, also do not distort the data fit. We get
similar results using other proposed outlier-insensitive robust
frequency estimation techniques. Fig. 7 gives fit of the data using
GA-LMA estimator. The fitted model under this approach is

yðtÞ ¼ 369:84þ19:01 cosð0:08711tÞþ12:51 sinð0:0:08711 tÞ:

Similar fits are observed for other methods, except the GA-LS
method, which fails completely. Considering the same dataset, it
is reported in Smyth and Hawkins (2000) that the fitted frequency
for the first 8 days to be 0.87273, which is very close to our
frequency estimates.

5.3.2. Fitting Variable Star data

The variable star dataset is another important and very
frequently used data. The determination of the periodicities of a
variable star and the shape of its light curve is important in
studies of stellar structure and evolution. The relationship
between the period and magnitude is used to determine distances
on a cosmic scale, for example. The data in this example gives
observations on the magnitude of a variable star, made from the
Mount Stromlo Observatory near Canberra in Australia over a
period of about 250 days (Reimenn, 1994). Magnitudes were
Please cite this article as: Mitra, A., Kundu, D., Genetic algorithms
stationary errors. Engineering Applications of Artificial Intelligence (
recorded separately for the blue and red bands. Observation times
were irregularly spaced depending on the conditions of sky and
the observation schedule. We consider here the analysis of blue
band measurements. A number of observations were considered
to be unreliable due to observation conditions. The data have been
downloaded from http://www.statsci.org/data/oz/ceph2.html.

We fit a two-component sinusoid model of the form

yðtÞ ¼ KþA1 cosðo1tÞþB1 sinðo1tÞþA2 cosðo2tÞþB2 sinðo2tÞ

using GA-LTA (50% trimming) approach. The initial population is
populated from the following ranges of the respective parameters:
based robus
2009), doi:10
Parameter
 Initialization range
K
 [Median(y(1)yy(n))�0.5,
Median(y(1)yy(n))+0.5]
A1, A2
 [�0.5, 0.5]

B1, B2
 [�0.5, 0.5]

o1,o2
 [0, p]
The final fitted model is

yðtÞ ¼ 0:01992� 0:0128 cosð0:1247tÞþ0:2032 sinð0:1247tÞ

þ0:4613 cosð0:2467tÞ � 0:0532 sinð0:2467tÞ:

The plot of the observed data and the fitted model is given in
Fig. 8. We observe from the plot that the fit ignores the outliers
and is able to trace the correct sinusoidal pattern.

Smyth and Hawkins (2000) considered the same dataset for
testing the usefulness of their robust frequency estimation
technique. For implementation of their method, which requires
time points to be equidistant, the data was first interpolated
linearly onto an equally spaced grid of time points of the same
length, no such preprocessing of the data is required for
implementation of our methods. The estimated frequencies
reported in Smyth and Hawkins (2000) are 0.126 and 0.253,
which once again are close to our frequency estimates.

The GA-LTA estimates of the frequencies 0.1247 and 0.2461
correspond to periods of 50 and 25 days. The star is therefore
determined to be periodic with period of about 50 days.
6. Conclusion

In this paper, we propose genetic algorithm based robust
frequency estimation techniques for multiple sinusoidal models
with correlated error structures. The proposed methods use
genetic search technique for optimizing various outlier-insensitive
t frequency estimation of sinusoidal signals with
.1016/j.engappai.2009.07.001

http://www.statsci.org/data/oz/ceph2.html
dx.doi.org/10.1016/j.engappai.2009.07.001
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criterion functions. The methods do not require the data points to
be equidistant or the noise sequence to be independent Gaussian
structure, which is otherwise required in other robust frequency
estimation techniques for this model (see for example Smyth and
Hawkins, 2000). Furthermore, the GA based robust frequency
estimation techniques search a population of possible optimal
solutions in parallel and do not require derivative information or
other auxiliary information, only the levels of fitness influence the
direction of search. Another advantage of using the proposed
methods is that since they are based on genetic algorithms they
use probabilistic transition rules and have potentially high chance
of converging to the optimal solution.

In the simulation studies and real life data analysis, it is
observed that the proposed genetic algorithm based robust
frequency estimators, optimizing outlier-insensitive criteria are
able to resolve frequencies of the sinusoidal model with high
degree of accuracy and provides reasonably high breakdown point
robust estimates.
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