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Abstract

The two-parameter generalized exponential distribution was recently introduced by Gupta and
Kundu (Austral. New Zealand J. Statist. 40 (1999) 173). It is observed that the Generalized
Exponential distribution can be used quite e9ectively to analyze skewed data set as an alternative
to the more popular log-normal distribution. In this paper, we use the ratio of the maximized
likelihoods in choosing between the log-normal and generalized exponential distributions. We
obtain asymptotic distributions of the logarithm of the ratio of the maximized likelihoods and
use them to determine the required sample size to discriminate between the two distributions for
a user speci;ed probability of correct selection and tolerance limit.
c© 2003 Published by Elsevier B.V.
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1. Introduction

Recently Gupta and Kundu (1999) introduced the Generalized Exponential (GE)
distribution and studied quite extensively several properties of the GE distribution, see
for example (Gupta and Kundu, 1999, 2001a,b, 2002). The readers may be referred
to some of the related literature on GE distribution by Raqab (2002), Raqab and
Ahsanullah (2001) and Zheng (2002). The two-parameter GE family has the
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Fig. 1. The distribution functions of GE (12.9, 1) and LN (0.3807482, 2.9508672).

distribution function

FGE(x; �; �) = (1 − e−�x)�; x¿ 0: (1)

The corresponding density function is

fGE(x; �; �) = ��(1 − e−�x)�−1e−�x; x¿ 0: (2)

Here �¿ 0 and �¿ 0 are the shape and scale parameters, respectively. When � = 1,
it coincides with the exponential distribution with mean 1=�. When �6 1, the density
function is strictly decreasing and for �¿ 1 it has a unimodal shape. These densities
are illustrated in Gupta and Kundu (2001a). It is clear that the GE density func-
tions are always right skewed and it is observed that GE distributions can be used
quite e9ectively to analyze skewed data sets. Among several other distributions, the
two-parameter log-normal distribution is also used quite e9ectively to analyze skewed
data sets. Log-normal density function is always unimodal in nature. Shapes of the
di9erent log-normal density functions can be found in Johnson et al. (1995). It is
clear that the shapes of these two density functions are quite similar at least for cer-
tain ranges of the parameters. See for example Fig. 1, where the two distribution
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functions are almost identical. Although these two models may provide similar data
;t for moderate sample sizes, it is still desirable to select the correct or more nearly
correct model, since inferences based on the model will often involve tail probabilities,
where the e9ect of the model assumption will be more crucial.

GE has an exponential tail while log-normal has heavier tail than exponential. There-
fore, even if large sample sizes are not available it is still very important to make a
best possible decision based on whatever data are available.

The problem of testing whether some given observations follow one of the two prob-
ability distribution functions is quite old in the statistical literature. Atkinson (1969,
1970), Chen (1980), Chambers and Cox (1967), Cox (1961,1962), Jackson (1968) and
Dyer (1973) considered this problem in general for discriminating between two models.
Between the models, the e9ect of choosing a wrong model was originally discussed
by Cox (1961) in general and recently Wiens (1999) demonstrated it nicely by a
real data example. Due to increasing applications of the lifetime distributions, special
attention is given to the discrimination between the log-normal and Weibull distribu-
tions (Dumonceaux and Antle, 1973; Pereira, 1978; Chen, 1980; Quesenberry and Kent,
1982), the log-normal and gamma distributions (Jackson, 1969; Quesenberry
and Kent, 1982; Wiens, 1999), the gamma and Weibull distributions by Bain
and Englehardt (1980) and Fearn and Nebenzahl (1991), the Weibull and generalized
exponential distributions by Gupta and Kundu (2003a) and the gamma and generalized
exponential distributions by Gupta and Kundu (2003b).

In this paper, we consider the problem of discriminating between the log-normal and
GE distributions. We use the ratio of the maximized likelihood (RML) in discrimi-
nating between the two distribution functions. We obtain the asymptotic distributions
of the logarithm of RML and under each model observe by extensive Monte Carlo
simulations that the asymptotic distributions work quite well in discriminating between
the two distribution functions even when the sample size is not too large. Using these
asymptotic distributions and the distance between the two distribution functions, we
determine the minimum sample size needed to discriminate between the two models at
a user speci;ed protection level. It is observed experimentally that the distance between
the two distribution functions can be quite small for certain ranges of the parameter
values.

The rest of the paper is organized as follows. The ratio of the maximized likelihoods
is described in Section 2. Asymptotic distributions of the logarithm of RMLs are de-
veloped in Section 3. In Section 4, the asymptotic distributions are used to compute
the minimum sample size required to discriminate two distribution functions at a user
speci;ed probability of correct selection and a tolerance level. Numerical results are
presented in Section 5 and ;nally we conclude the paper in Section 6.

2. Ratio of the maximized likelihoods

Suppose X1; : : : ; Xn are independent and identically distributed (i.i.d.) random vari-
ables from any one of the two distribution functions. The density function of a GE
random variable with shape parameter � and scale parameter � is given in (2). The
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density function of a log-normal random variable with scale parameter �¿ 0 and shape
parameter 
¿ 0 is denoted by

fLN(x; 
; �) =
1√

2�x

e−

(ln (x=�))2

2
2 ; x¿ 0: (3)

A GE distribution with shape parameter � and scale parameter � will be denoted
by GE(�; �). Similarly, a log-normal distribution with shape parameter 
 and scale
parameter � will be denoted by LN(
; �). The likelihood functions assuming that the
data are coming from GE(�; �) or LN(
; �) are

LGE(�; �) =
n∏

i=1

fGE(x; �; �) and LLN(
; �) =
n∏

i=1

fLN(x; 
; �);

respectively. The RML is de;ned as

L =
LGE(�̂; �̂)

LLN(
̂; �̂)
: (4)

Here (�̂; �̂) and (
̂; �̂) are maximum likelihood estimators of (�; �) and (
; �), respec-
tively. The logarithm of RML can be written as

T = n
[
ln (�̂�̂X̃ 
̂) − �̂− 1

�̂
− �̂ MX +

1
2
(1 + ln (2�))

]
; (5)

where MX = 1=n
∑n

i=1 Xi and X̃ =
(∏n

i=1 Xi
)1=n

. Moreover, �̂ and �̂ have the following
relation (Gupta and Kundu, 2001a):

�̂ = − n∑n
i=1 ln (1 − e−�̂Xi)

: (6)

In case of the log-normal distribution, �̂ and 
̂ have the following form:

�̂ = X̃ and 
̂2 =
1
n

n∑
i=1

[
ln
(
Xi

�̂

)]2

: (7)

Now we propose the following discrimination procedure. Choose the GE distribution
if T ¿ 0, otherwise choose the log-normal distribution as the preferred model.

Now consider the case when the data come from the GE(�; �) distribution. In this
case the distribution of �Xi is clearly independent of � and from Bain and Englehardt
(1991) it easily follows that the distribution �̂=� is independent of �. From the expres-
sion of 
̂2, it is immediate that 
̂2 is independent of �. It shows that the distribution
of T is independent of � and depends only on �. Similarly it can be shown that when
the data come from LN(
; �) then the distribution of T depends only on 
 and is
independent of �.
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3. Asymptotic properties of the logarithm of RML

In this section, we obtain the asymptotic distributions of the logarithm of RML for
two di9erent cases. From now on, we denote the almost sure convergence by a.s..
Case 1: The data are coming from GE(�; �). We assume that n data points are from
GE(�; �) and �̂, �̂, �̂ and 
̂ are as de;ned before. We use the following notation. For
any Borel measurable function h(:), EGE(h(U )) and VGE(h(U )) denote the mean and
variance of h(U ) under the assumption that U follows GE(�; �). Similarly, we de;ne
ELN(h(U )) and VLN(h(U )) as the mean and variance of h(U ) under the assumption
that U follows LN(
; �). If g(:) and h(:) are two Borel measurable functions, we de;ne
along the same line that covGE(g(U ); h(U ))=EGE(g(U )h(U ))−EGE(g(U ))EGE(h(U ))
and covLN(g(U ); h(U )) = ELN(g(U )h(U )) − ELN(g(U ))ELN(h(U )), where U follows
GE(�; �) and LN(
; �), respectively. The following lemma is needed to prove the main
result.

Lemma 1. Under the assumption that the data are from GE(�; �) we have
as n → ∞,

(i) �̂ → � a.s., �̂ → � a.s., where

EGE[ln (fGE(X ; �; �))] = max
M�; M�

EGE[ln (fGE(X ; M�; M�))]:

(ii) �̂ → �̃ a.s., 
̂ → 
̃ a.s., where

EGE[ln (fLN(X ; 
̃; �̃))] = max

;�

EGE[ln (fLN(X ; 
; �))]:

It may be noted that �̃ and 
̃ may depend on � and � but we do not make it explicit
for brevity. Let us denote

T ∗ = ln
(

LGE(�; �)

LLN(
̃; �̃)

)
:

(iii) n−1=2[T − EGE(T )] is asymptotically equivalent to n−1=2[T ∗ − EGE(T ∗)]

Proof. The proof follows a similar argument as in White (1982, Theorem 1) and is
therefore omitted.

Now we can state the main result:

Theorem 1. Under the assumption that the data are from GE(�; �), T is asymptoti-
cally normally distributed with mean EGE(T ) and variance VGE(T ∗) = VGE(T ).

Proof. Using the central limit theorem and part (ii) of Lemma 1, it follows that
n−1=2[T ∗−EGE(T ∗)] is asymptotically normally distributed with mean zero and variance
VGE(T ∗). Therefore using part (iii) of Lemma 1, the result immediately follows.
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Now we discuss how to obtain �̃ and 
̃. Let us de;ne

g(
; �) = EGE[ln (fLN(X ; 
; �))]

=− 1
2

ln 2�− ln 
 − E(ln (Z)) + ln �− 1
2
2 E(ln (Z))2

− 1
2
2 (ln �)2 − 1

2
2 (ln �)2 +
ln �E(ln Z)


2 +
ln �E(ln Z)


2

− ln � ln �

2 ; (8)

where Z follows GE(�; 1). Therefore, �̃ and 
̃ can be obtained as

�̃ =
1
�

eE(ln Z); (9)


̃2 = E(ln Z)2 + (ln (��̃))2 − 2E(ln Z) ln (��̃)

= E(ln (Z))2 − (E(ln Z))2: (10)

From (9) and (10) it is clear that ��̃ and 
̃ are functions of � only. Note that
E(ln Z)2 and (E(ln Z))2 can be easily obtained using the results of Gupta and Kundu
(1999). Now we provide the expressions for EGE(T ) and VGE(T ). Observe that limn→∞
EGE(T )=n and limn→∞ VGE(T )=n exist and we denote them as AMGE(�) and AVGE(�),
respectively. Therefore, for large n

EGE(T )
n

≈ AMGE(�) = EGE[ln (fGE(�; �)) − ln (fLN(
̃; �̃))]

=
1
2

ln 2� + EGE(ln Z)

(
1 − ln �̃


̃2

)
+ ln 
̃ +

(ln �̃)2

2
̃2 +
(EGE(ln Z))2

2
̃2

=
1
2

ln 2� + EGE(ln Z) + ln 
̃ +
1
2
: (11)

Also,

VGE(T )
n

≈ AVGE(�) = VGE[ln (fGE(�; �)) − ln (fLN(
̃; �̃))]

=VGE

[
(�− 1) ln (1 − e−Z) − Z + ln Z +

1
2
̃2 (ln Z)2 − 1


̃2 ln Z ln (��̃)
]

=
(�− 1)2

�2 + ( ′(1) −  ′(� + 1)) +

(
1 − ln ��̃


̃2

)2

VGE(ln Z) +
1

4
̃4 VGE(ln Z)2

−2(�−1)covGE(ln (1−e−Z); Z)+2(�−1)

(
1− ln��̃


̃2

)
covGE(lnZ; ln (1−eZ))
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+
(�− 1)


̃2 covGE((ln Z)2; ln (1 − eZ)) − 2

(
1 − ln ��̃


̃2

)
covGE(Z; ln Z)

− 1

̃2 covGE(Z; (ln Z)2) +

1

̃2

(
1 − ln ��̃


̃2

)
covGE(ln Z; (ln Z)2) (12)

Case 2: The data are coming from a log-normal LN(
; �).

Lemma 2. Under the assumption that the data are from LN(
; �), we have
as n → ∞,

(i) �̂ → � a.s., 
̂ → 
 a.s., where

ELN[ln (fLN(X ; 
; �))] = max
M
; M�

ELN[ln (fLN(X ; M
; M�))]:

(ii) �̂ → �̃ a.s., �̂ → �̃ a.s., where

ELN[ln (fGE(X ; �̃; �̃))] = max
�;�

ELN[ln (fGE(X ; �; �))]:

Here, �̃ and �̃ also depend on � and 
 but for brevity we do not make it explicit.
Let us denote

T∗ = ln

(
LGE(�̃; �̃)
LLN(
; �)

)
:

(iii) n−1=2[T − ELN(T )] is asymptotically equivalent to n−1=2[T∗ − ELN(T∗)].

The proof of Lemma 2 is omitted.

Theorem 2. Under the assumption that the data are from LN(
; �), the distribution
of T is asymptotically normal with mean ELN(T ) and variance VLN(T∗) = VLN(T ).

The proof of Theorem 2 follows along the same line as of Theorem 1.
Now we discuss how to obtain �̃, �̃, ELN(T ) and VLN(T ). We de;ne,

h(�; �) = ELN[ln (fGE(X ; �; �))]

= ELN[ln � + ln �− �X + (�− 1) ln (1 − e−�X )]

= ln � + ln �− ��e

2=2 + (�− 1)u(
; ��);

where

u(x; y) =
1√
2�x

∫ ∞

0

1
z

ln (1 − e−yz)e−(ln z)2=2x2
dz:

Therefore, �̃ and �̃ can be obtained as solutions of
1
�̃

+ u(
; �̃�) = 0 (13)
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and
1

�̃
− �e


2=2 + (�̃− 1)�u2(
; �̃�) = 0: (14)

Here u2(x; y) is the derivative of u(x; y) with respect to y, i.e.,

u2(x; y) =
1√
2�x

∫ ∞

0

e−yz

(1 − e−yz)
e−(ln z)2=2x2

dz: (15)

From (13) it is clear that (�̃�) is a function of �̃ and 
 only. From (14) it follows
that �̃ is a function of 
 only, therefore, (�̃�) is a function of 
 only.

Now we provide the expressions for ELN(T ) and VLN(T ). Since limn→∞ ELN(T )=n
and limn→∞ VLN(T )=n exist, we denote them as AMLN(
) and AVLN(
), respectively.
Therefore, for large n,

ELN(T )
n

≈ AMLN(
) = ELN[ln (fGE(�̃; �̃)) − ln (fLN(
; �))]

= ELN

[
ln (�̃�̃) − �̃�Y + (�̃− 1) ln (1 − e−�̃�Y ) +

1
2

ln (2�
2)

+ln (�Y ) +
1

2
2 (ln Y )2

]

= ln (�̃�̃�) − �̃�e

2=2 + (�̃− 1)ELN[ln (1 − e−�̃�Y )]

+
1
2

ln (2�
2) +
1
2
: (16)

Also,

VLN(T )
n

≈ AVLN(
) = VLN[ln (fGE(�̃; �̃)) − ln (fLN(
; �))]

= VLN

[
−�̃�Y + (�̃− 1) ln (1 − e−�̃�Y ) + ln Y +

1
2
2 (ln Y )2

]

= � 2�̃2e

2
(e


2 − 1) + (�̃− 1)2VLN(ln (1 − e−�̃�Y )) + 
2 +
1
2

+2(�̃− 1) covLN(ln (1 − e−�̃�Y ); ln Y ) − 2�̃� covLN(Y; ln Y )

− ��̃

2 covLN(Y; (ln Y )2) +

�̃− 1

2 covLN(ln (1 − e−�̃�Y ); (ln Y )2)

−2�̃�(�̃− 1) covLN(Y; ln (1 − e−�̃�Y )) +
1

2 covLN(ln Y; (ln Y )2): (17)

Note that �̃, �̃, AMLN(
), AVLN(
), �̃, 
̃, AMGE(�) and AVGE(�) are quite diQcult
to compute numerically. We present �̃, �̃, �̃, 
̃, AMLN(
), AVLN(
), AMGE(�) and
AVGE(�) in Tables 1 and 2 for convenience.
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Table 1
Di9erent values of AMGE(�), AVGE(�), 
̃ and �̃ for di9erent �

� → 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
AMGE 0.1100 0.0814 0.0625 0.0494 0.0399 0.0327 0.0272 0.0228
AVGE 0.2599 0.1877 0.1407 0.1087 0.0862 0.0697 0.0572 0.0476

̃ 1.592 1.287 1.106 0.985 0.898 0.832 0.780 0.738
�̃ 0.369 0.554 0.720 0.867 0.998 1.115 1.221 1.318

Table 2
Di9erent values of AMLN(
), AVLN(
), �̃ and �̃ for di9erent 



 → 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20
AMLN −0:0054 −0:0142 −0:0258 −0:0393 −0:0542 −0:0701 −0:0867 −0:1036
AVLN 0.0090 0.0281 0.0579 0.0986 0.1507 0.2147 0.2905 0.3779
�̃ 6.181 3.850 2.664 1.976 1.537 1.239 1.026 0.868
�̃ 6.023 4.743 3.774 3. .018 2.416 1.932 1.541 1.225

4. Determination of sample size

We propose a method to determine the minimum sample size required to discriminate
between the log-normal and GE distributions, for a given user speci;ed probability of
correct selection (PCS). It is very important to know the closeness between the two
distribution functions before discriminating between them. There are several ways to
measure the closeness or the distance between two distribution functions, but the most
important one is the Kolmogorov–Smirnov (K–S) distance. If the distance between
the two distributions is small, then a very large sample size is needed to discriminate
between them for a given PCS and if the distance between two distribution functions
is large one may not need very large sample size to discriminate between them. This
is also true that if the distance between two distribution functions is small, one may
not need to distinguish the two distributions from any practical point of view. This
is expected that the user will specify before hand the PCS and also the tolerance
limit in terms of the distance between two distribution functions. The tolerance limit
simply indicates that the user does not want to make the distinction between two
distribution functions if their distance is less than the tolerance limit. The tolerance
limit and PCS are equivalent to type I error and power in the corresponding testing
of hypotheses problem. Based on the probability of correct selection and the tolerance
limit, the required minimum sample size can be determined. Here, we use the K–S
distance to discriminate between two distribution functions but similar methodology
can be developed using the Hellinger distance also, which is not pursued here.

In Section 3 it was observed that the logarithm of the RML statistic follows ap-
proximately a normal distribution for large n. It can be used to determine the required
sample size n such that the PCS achieves a certain protection level p∗ for a given
tolerance level D∗. This can be explained assuming case 1. Case 2 follows exactly
along the same line.
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Table 3
The minimum sample size n = z2

0:70AVGE(�)=(AMGE(�))2, using (4.5), for p∗ = 0:7 and when the null
distribution is GE is presented.

� → 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
n → 6 8 10 13 15 18 22 26
K–S 0.311 0.117 0.096 0.081 0.070 0.062 0.055 0.049
Di9 8.65 5.24 3.71 2.83 2.27 1.87 1.57 1.35
Ratio 0.333 0.468 0.565 0.639 0.695 0.739 0.775 0.804

The K–S distance, the di9erence and ratio of the 99th percentile points of GE (�; 1) and LN(
̃; �̃) for
di9erent values of � are reported.

Since T is asymptotically normally distributed with mean EGE(T ) and variance
VGE(T ), therefore PCS is

PCS(�) = P[T ¿ 0 | �] ≈ 1 − #

(
−EGE(T )√

VGE(T )

)
= 1 − #

(
−n× AMGE(�)√

n× AVGE(�)

)
:

(18)

Here, # is the distribution function of the standard normal random variable. Now to
determine the sample size needed to achieve at least a p∗ protection level, equate

#

(
−n× AMGE(�)√

n× AVGE(�)

)
= 1 − p∗; (19)

and solve for n. It provides

n =
z2
p∗AVGE(�)

(AMGE(�))2 : (20)

Here zp∗ is the 100p∗ percentile point of a standard normal distribution. For p∗ = 0:7
and for di9erent �, the values of n are reported in Table 3. Similarly for case 2, we
need

n =
z2
p∗AVLN(
)

(AMLN(
))2 : (21)

We report n for di9erent values of 
 when p∗ = 0:7 in Table 4. From Table 3, it is
clear that as � increases the required sample size increases. Moreover, from Table 4, it
is immediate that as 
 increases the required sample size decreases. It is clear that if
one knows the ranges of the shape parameters of the two distribution functions, then
the minimum sample size can be obtained using (20) or (21) and using the fact that
n is a monotone function of the shape parameters in both cases. But, unfortunately,
in practice it may be completely unknown. Therefore, to have some idea of the shape
parameter of the null distribution we make the following assumptions. It is assumed
that the experimenter would like to choose the minimum sample size needed for a
given protection level when the distance between two distribution functions is greater
than a pre-speci;ed tolerance level. The distance between two distribution functions is
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Table 4
The minimum sample size n = z2

0:70AVLN(
)=(AMLN(
))2, using (4.6), for p∗ = 0:7 and when the null
distribution is log-normal is presented.


 → 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20
n → 85 39 24 18 15 13 11 10
K–S 0.022 0.045 0.072 0.105 0.144 0.191 0.244 0.304
Di9 1.99 2.57 3.30 4.23 5.40 6.86 8.70 10.99
Ratio 0.345 0.327 0.309 0.293 0.279 0.267 0.257 0.249

The K–S distance, the di9erence and ratio of the 99th percentile points of LN (
; 0:368) and GE (�̃; �̃)
for di9erent values of 
 are reported.

de;ned by the K–S distance. The K–S distance between two distribution functions, say
F(x) and G(x) is de;ned as

sup
x

|F(x) − G(x)|: (22)

We report the K–S distance between the GE(�; 1) and LN(
̃; �̃) for di9erent values of
� in Table 3. Here 
̃ and �̃ are as de;ned in Lemma 1 and are in Table 1. Similarly,
the K–S distance between the LN(
; 0:368) (note that ln 0:368 = −1 and we have
taken the scale parameter of the log normal distribution as 0.368 for convenience) and
GE(�̃; �̃) for di9erent values of 
 is reported in Table 4. Here �̃ and �̃ are as de;ned
in Lemma 2 and are reported in Table 2. From Tables 3 and 4 it is observed that
as the distance between the two distribution functions decreases the minimum sample
size increases. The ;ndings are quite intuitive in the sense that large sample sizes are
needed to discriminate between the two distribution functions if they are very close
and vice verse.

Now we discuss how we can determine the required sample size to discriminate
between the log-normal and GE distribution functions for a user speci;ed protection
level and tolerance level. Suppose the protection level is p∗=0:7 and the tolerance level
is given in terms of K–S distance as D∗ = 0:07. Here tolerance level D∗ = 0:07 means
that the practitioner wants to discriminate between a log-normal and GE distribution
functions only when their K–S distance is more than 0.07. From Table 3, it is observed
that the K–S distance will be more than 0.07 if �6 1:75. Similarly from Table 4, it
is clear that the K–S distance will be more than 0.07 if 
¿ 0:70. Therefore, if the
data come from a GE distribution, then for the tolerance level D∗ =0:07, one needs at
least n=15 to meet the PCS, p∗ =0:7. Similarly if the data come from the log-normal
distribution then one needs at least n= 24 to meet the above protection level p∗ = 0:7
for the same tolerance level D∗=0:07. Therefore, for the given tolerance level 0.07 one
needs at least max(15; 24) = 24 to meet the protection level p∗ = 0:7 simultaneously
for both cases.

Note that, two small tables are provided for the protection level 0.70 but for the
other protection level the tables can be easily used as follows. For example if we need
the protection level p∗=0:9, then all the entries corresponding to the row of n, will be
multiplied by z2

0:9=z
2
0:7, because of (20) and (21). Therefore, Tables 3 and 4 can be used

for any given protection level. Two of the referees pointed out that the K–S distance
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may not be a good measure of distances between the two distribution functions. The
better choice might be the di9erence or ratio of the upper percentile points of the two
distribution functions. We report the di9erence and ratio of the 99th percentile points
of the two distribution functions along with the K–S distances in Tables 3 and 4. They
also can be used as the distance measure between the two distribution functions. They
also provide similar results.

5. Numerical experiments

In this section, we perform some numerical experiments to observe how these asymp-
totic results derived in Section 3 work for ;nite sample sizes. All computations have
been performed at the Indian Institute of Technology Kanpur, on a Pentium-IV proces-
sor and all the programs written in C, can be obtained from the authors on request. We
use the random deviate generator of Press et al. (1993). We compute the probability
of correct selections based on simulations and on the asymptotic results derived in

Table 5
The probability of correct selection based on Monte Carlo Simulations and also based on asymptotic results
when the null distribution is GE

� ↓ n →
20 40 60 80 100

0.75 0.84 0.92 0.93 0.95 0.97
(0.83) (0.91) (0.95) (0.97) (0.98)

1.00 0.80 0.89 0.92 0.93 0.94
(0.80) (0.88) (0.93) (0.95) (0.96)

1.25 0.76 0.86 0.91 0.92 0.94
(0.77) (0.85) (0.90) (0.93) (0.95)

1.50 0.74 0.84 0.89 0.91 0.92
(0.75) (0.83) (0.88) (0.91) (0.93)

1.75 0.71 0.81 0.87 0.89 0.91
(0.73) (0.81) (0.85) (0.89) (0.91)

2.00 0.68 0.78 0.85 0.89 0.90
(0.71) (0.78) (0.83) (0.87) (0.89)

2.25 0.66 0.76 0.82 0.86 0.87
(0.69) (0.76) (0.81) (0.85) (0.87)

2.50 0.63 0.74 0.80 0.82 0.85
(0.68) (0.75) (0.79) (0.82) (0.85)

The element in the ;rst row in each box represents the results based on Monte Carlo Simulations (10,000
replications) and the number in bracket immediately below represents the result obtained by using asymptotic
results.
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Table 6
The probability of correct selection based on Monte Carlo Simulations and also based on asymptotic results
when the null distribution is log-normal


 ↓ n →
20 40 60 80 100

0.50 0.62 0.65 0.68 0.70 0.72
(0.60) (0.64) (0.67) (0.70) (0.72)

0.60 0.65 0.70 0.75 0.77 0.81
(0.65) (0.71) (0.75) (0.78) (0.80)

0.70 0.68 0.75 0.80 0.84 0.86
(0.68) (0.75) (0.80) (0.83) (0.86)

0.80 0.70 0.79 0.85 0.88 0.90
(0.71) (0.79) (0.84) (0.87) (0.89)

0.90 0.72 0.82 0.88 0.91 0.92
(0.73) (0.81) (0.86) (0.89) (0.92)

1.00 0.75 0.85 0.90 0.92 0.93
(0.75) (0.83) (0.88) (0.91) (0.93)

1.10 0.76 0.87 0.90 0.94 0.95
(0.76) (0.85) (0.89) (0.93) (0.95)

1.20 0.78 0.88 0.90 0.93 0.98
(0.77) (0.86) (0.90) (0.90) (0.95)

The element in the ;rst row in each box represents the results based on Monte Carlo Simulations (10,000
replications) and the number in bracket immediately below represents the result obtained by using asymptotic
results.

Section 3. We consider di9erent sample sizes and also di9erent shape parameters, as
explained below.

First we consider the case when the data are coming from a GE distribution. In
this case, we consider n = 20; 40; 60; 80; 100 and � = 0:75, 1.00, 1.25, 1.50, 1.75, 2.00,
2.25 and 2.50. For a ;xed � and n we generate a random sample of size n from
GE(�; 1), compute T as de;ned in (6) and check whether T is positive or negative.
We replicate the process 10,000 times and obtain an estimate of the PCS. We also
compute the PCSs by using the asymptotic results as given in (18). The results are
reported in Table 5. Similarly, we obtain the results when the data are generated from
a log-normal distribution, for the same set of n and 
=0:5; 0:6; 0:7; 0:8; 0:9; 1:0; 1:1; 1:2.
The results are reported in Table 6. In each box the ;rst row represents the results
obtained by using Monte Carlo simulations and the second row represents the results
obtained by using the asymptotic theory.

As sample size increases the PCS increases in both cases. It is also clear that when
the shape parameter increases for the GE distribution the PCS decreases and when
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the shape parameter increases for the log-normal distribution the PCS increases. Even
when the sample size is 20, asymptotic results work quite well for both the cases for
all possible parameter ranges.

6. Conclusions

In this paper, we consider the problem of discriminating between two families of
distribution functions, the log-normal and GE families. We consider the statistic based
on the logarithm of the ratio of the maximized likelihoods and obtain asymptotic
distributions of the test statistics under null hypotheses. We compare the probability
of correct selection using Monte Carlo simulations with the asymptotic results and it
is observed that even when the sample size is very small the asymptotic results work
quite well for a wide range of the parameter space. Therefore, the asymptotic results
can be used to estimate the probability of correct selection. We use these asymptotic
results to calculate the minimum sample size required for a user speci;ed probability of
correct selection. We use the concept of tolerance level based on the distance between
the two distribution functions. For a particular D∗ tolerance level the minimum sample
size is obtained for a given user speci;ed protection level.

Acknowledgements

The authors thank the referees for their valuable comments. Part of the work was
supported by a grant from the Natural Sciences and Engineering Research Council.

References

Atkinson, A., 1969. A test for discriminating between models. Biometrika 56, 337–347.
Atkinson, A., 1970. A method for discriminating between models (with discussions). J. Roy. Statist. Soc.

Ser. B 32, 323–353.
Bain, L.J., Englehardt, M., 1980. Probability of correct selection of Weibull versus gamma based on likelihood

ratio. Comm. Statist. Ser. A 9, 375–381.
Bain, L.J., Englehardt, M., 1991. Statistical Analysis of Reliability and Lifetime Model, 2nd Edition. Marcel

Dekker, New York.
Chambers, E.A., Cox, D.R., 1967. Discriminating between alternative binary response models. Biometrika

54, 573–578.
Chen, W.W., 1980. On the tests of separate families of hypotheses with small sample size. J. Statist. Comput.

Simulations 2, 183–187.
Cox, D.R., 1961. Tests of separate families of hypotheses. Proceedings of the Fourth Berkeley Symposium

in Mathematical Statistics and Probability, Berkeley, University of California Press, Berkley, CA,
pp.105–123.

Cox, D.R., 1962. Further results on tests of separate families of hypotheses. J. Roy. Statist. Soc. Ser. B 24,
406–424.

Dyer, A.R., 1973. Discrimination procedure for separate families of hypotheses. J. Amer. Statist. Assoc. 68,
970–974.

Dumonceaux, R., Antle, C.E., 1973. Discriminating between the log-normal and Weibull distribution.
Technometrics 15 (4), 923–926.



ARTICLE IN PRESS
D. Kundu et al. / Journal of Statistical Planning and Inference ( ) – 15

Fearn, D.H., Nebenzahl, E., 1991. On the maximum likelihood ratio method of deciding between the Weibull
and Gamma distribution. Comm. Statist. Theory Methods 20 (2), 579–593.

Gupta, R.D., Kundu, D., 1999. Generalized exponential distributions. Austral. NZ J. Statist. 41 (2),
173–188.

Gupta, R.D., Kundu, D., 2001a. Exponentiated exponential distribution: an alternative to gamma and Weibull
distributions. Biometrical J. 43 (1), 117–130.

Gupta, R.D., Kundu, D., 2001b. Generalized exponential distributions: di9erent methods of estimations.
J. Statist. Comput. Simulation 69 (4), 315–338.

Gupta, R.D., Kundu, D., 2002. Generalized exponential distributions: statistical inferences. J. Statist. Theory
Appl. 1, 101–118.

Gupta, R.D., Kundu, D., 2003a. Discriminating between the Weibull and generalized exponential distributions.
Comput. Statist. Data Anal. 43, 179–196.

Gupta, R.D., Kundu, D., 2003b. Discriminating between the gamma and generalized exponential distributions.
J. Statist. Comput. Simulation, to appear.

Jackson, O.A.Y., 1968. Some results on tests of separate families of hypotheses. Biometrika 55, 355–363.
Jackson, O.A.Y., 1969. Fitting a gamma or log-normal distribution to ;ber-diameter measurements on wool

tops. Appl. Statist. 18, 70–75.
Johnson, N., Kotz, S., Balakrishnan, N., 1995. Continuous Univariate Distribution, Vol. 1. Wiley, New York.
Pereira, B. de, 1978. Empirical comparison of some tests of separate families of hypotheses. Metrika 25,

219–234.
Press et al., 1993. Numerical Recipes in C. Cambridge University Press, Cambridge.
Quesenberry, C.P., Kent, J., 1982. Selecting among probability distributions used in reliability. Technometrics

24 (1), 59–65.
Raqab, M.Z., 2002. Inference for generalized exponential distribution based on record statistics. J. Statist.

Plann. Inference 104 (2), 339–350.
Raqab, M.Z., Ahsanullah, M., 2001. Estimation of the location and scale parameters of the generalized

exponential distribution based on order statistics. J. Statist. Comput. Simulation 69 (2), 109–124.
White, H., 1982. Regularity conditions for Cox’s test of non-nested hypotheses. J. Econometrics 19,

301–318.
Wiens, B.L., 1999. When log-normal and gamma models give di9erent results: a case study. Amer. Statist.

53 (2), 89–93.
Zheng, G., 2002. On the Fisher information matrix in type-II censored data from the exponentiated

exponential family. Biometrical J. 44 (3), 353–357.


	Discriminating between the log-normal and generalized exponential distributions
	Introduction
	Ratio of the maximized likelihoods
	Asymptotic properties of the logarithm of RML
	Determination of sample size
	Numerical experiments
	Conclusions
	Acknowledgements
	References


