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A generalized approach for adaptive finite element analysis of laminated composite structures is pre-
sented in this study. The approach quantifies and controls discretization and modeling error. The goal
of this paper is to present an economical, easily computable and relatively robust error estimator. A patch
recovery based discretization error estimator is used and a goal based one shot adaptive procedure is
implemented to control the discretization error. An explicit indicator, for estimation of modeling error,
has been proposed for the laminated composites. The quality of the discretization and modeling error
estimators is studied through numerical examples. The effectiveness of the proposed approach is also
demonstrated through the analysis of damaged laminates. The key advantage of the proposed approach
is that the desired mesh and models in the laminate are adapted automatically to achieve the user spec-
ified error tolerances in discretization and modeling errors.
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1. Introduction

Let us introduce the terminology for various solutions of the
system of laminated plates as:

u3D the exact (three dimensional) solution to the problem con-
sidered

uM the exact solution for the model considered
uM,h the finite element solution of the model

Then the error between the exact solution and finite element
solution (‘‘total error’’) is given as:

total error ¼ u3D � uM;h ¼ u3D � uM þ uM � uM;h

¼ ðu3D � uMÞ þ ðuM � uM;hÞ ð1Þ

The first bracketed term on the right hand side denotes the er-
ror in the exact solution of the actual problem and exact solution of
the model used; second term denotes the error in the exact solu-
tion of the model and its finite element approximation. The first
term is called the ‘‘modeling error’’ (eM) and second term is the
‘‘discretization error’’ (eM,h). Thus,

total error ¼ eM þ eM;h ð2Þ

Using triangle inequality, the total error (in some norm) is given
as

ktotal errork ¼ ku3D � uM;hk 6 ku3D � uMk þ kuM � uM;hk ð3Þ
ll rights reserved.

: +91 512 2597561/7626.
Thus, Eq. (2) means that a proper analysis would require simul-
taneous control of modeling and discretization error. In this study,
it is assumed that an appropriate (plate) model is chosen. This
plate model is fixed and the discretization error will be measured
with respect to the exact solution of the fixed plate model.

A number of methodologies are available in literature for esti-
mation and control of discretization error (for example, see [1]
and references therein and [2,3]). Smoothening based a-posteriori
error estimators are found to be robust, computationally econom-
ical and easily implementable (see [4,5] for example). Several alter-
native versions of smoothening based discretization error
estimators are proposed by the authors [6–10] for laminated com-
posites. A detailed review on a-posteriori error estimation can also
be found in [11].

The hierarchic modeling approach has become very popular in
recent years (see [12] for example). The idea of hierarchic model
is to connect these models together in some way such that an
appropriate level of sophistication is obtained for a given accuracy.
This concept has led to the, so called, q or model adaptivity. A q
adaptivity method for selecting optimal hierarchical models has
been studied by Vogelius and Babuška [13] and Babuška and
Schwab [14] for two-dimensional scalar field problems. A-priori
modeling error estimator was proposed by Oden and Cho [15] for
hierarchic model for plate and shell like structures. The orthogo-
nality property of modeling and discretization errors was used to
get the error estimate. Stein et al. [16] have developed hd adaptive
modeling scheme for elastic structures. Further, in [17,18] they
have proposed coupled model and solution adaptivity using subdo-
main residual method which uses a-posteriori equilibrium method
for the calculation of the interface tractions.

http://dx.doi.org/10.1016/j.compstruc.2012.08.002
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Oden et al. [19] have extended the concept of hierarchical mod-
eling to heterogeneous materials. Further, goal-oriented adaptive
modeling for heterogeneous solid is proposed in [20,21]. The deri-
vation and analysis of a-posteriori modeling error estimators for
hierarchic models of homogeneous and elastic plates is done by
Schwab [22]. The computable modeling error estimators are de-
rived for monoclinic materials using the residual tractions on the
faces of the plate. Similar approach has been used for heat conduc-
tion problem in plates by Babuška and Schwab [23]. Further, this
approach allows simultaneous use of different model orders in var-
ious subregions (see [24] also). A review on modeling error estima-
tion can be seen due to Oden and Prudhomme [25].

The goal of this paper is to give a methodology for accurate and
economical computation of various quantities of interest, like
stress and displacement at a point in the laminated composite
structures. Families of plate models are studied for their accuracy.
A region-by-region modeling approach [26,27], where any model
can be put in any region of the domain, along with goal based
adaptive method [7] to control the discretization error, is pre-
sented. Further, an explicit modeling error estimator for laminated
plates for adaptive modeling strategy is proposed.

2. Plate models

Several families of plate models have been proposed in the lit-
erature (for example, see [12]) for the analysis of homogeneous
and laminated plates. These families can be broadly categorized
as (a) shear deformable theories, (b) zig-zag theories and (c)
layer-by-layer or three dimensional theories.

The plate models used in this study are based on generalized
forms of the shear deformable theories and layer-by-layer theories.
In general, the models proposed in the literature are for bending
dominated problems. For such problems it can be shown that the
transverse displacement is symmetric (with respect to the depth
coordinate z) while the in-plane displacements are antisymmetric
(see [22]). However, this is true only for symmetric laminates. For
other cases (e.g. anti-symmetric and unsymmetric laminates), the
deformation has both bending and membrane components. This
requires a general representation of the displacement field
(through the thickness). In the following, we outline the two fam-
ilies of generalized plate models which are used in this study.

2.1. Layerwise and equivalent plate models

2.1.1. Layerwise plate model (LM)
This is the most general three-dimensional representation of

the displacement field. The transverse functions MiðzÞ are defined
as the one dimensional basis functions over each lamina. From
Fig. 1(b), it can be seen that the representation of the displacement
field is given by:
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Fig. 1. Transverse approximation for (a) equivalent model: example of 4th order tra
approximation.
uðx; y; zÞ ¼
Xn1

i¼1

uiðx; yÞMiðzÞ

vðx; y; zÞ ¼
Xn2

i¼1

v iðx; yÞMiðzÞ

wðx; y; zÞ ¼
Xn3

i¼1

wiðx; yÞMiðzÞ

ð4Þ

where ui, vi and wi are the in-plane (unknown) functions in x, y and z
directions, respectively. n1 = n2 and n3 are the number of nodes in
the laminate thickness direction and depend on the transverse or-
der of approximation pu

z ¼ pv
z ; pw

z for the displacement components
in x, y and z directions, respectively and the number of laminae (or
layers) nl in the laminate. Hence, here the number of unknowns
grows with the number of laminae. The exact solutions correspond-
ing to this family of models will be given as LMpu

z pv
z pw

z . The corre-
sponding finite element solutions will be represented by
LMpxypu

z pv
z pw

z , where pxy is the order of in-plane approximation.
For example, LM2330 corresponds to the layerwise model with
pxy = 2 and pu

z ; pv
z ¼ 3; pw

z ¼ 0.

2.1.2. Equivalent plate model (EQ)
These are generalized versions of the shear deformable theories.

As compared to shear deformable theories, any higher order repre-
sentation of both the in-plane and transverse displacement compo-
nents can be done, with respect to the z-coordinate.

The transverse functions are shown in Fig. 1(a) as an example.
Generally pu

z ¼ pv
z is chosen. For this model, n1 ¼ pu

z þ 1,n2 ¼
pv

z þ 1 and n3 ¼ pw
z þ 1. Here, n1, n2 and n3 denote the number of

nodes in the laminate thickness direction. The exact solutions cor-
responding to this family of models will be given by EQpu

z pv
z pw

z and
the corresponding finite element solutions will be represented by
EQpxypu

z pv
z pw

z . For example, EQ3110 corresponds to the equivalent
model with pxy = 3 and pu

z ; pv
z ¼ 1; pw

z ¼ 0.
Note that in Fig. 1(a) a quartic transverse approximation over a

laminate is shown whereas in Fig. 1(b) a cubic approximation over
each layer is shown. In the present study up to quartic transverse
approximation for the displacement field is used. In the following,
u will be used to represent the exact three-dimensional solution
u3D, while uM will denote the exact solution of a chosen model.

It should be noted that many of the conventional higher order
shear deformable laminated plate theories can be represented
using this model. Here, we have not considered the zig-zag theo-
ries. This class of models ensures that the computational cost is
independent of the number of layers in the laminate.

An exhaustive work on laminated plates and shells can be seen
in [28]. A detailed review of zig-zag theories can be seen in [29].
More literature on plate models can be seen in references therein.

For the sake of simplicity, the generic plate model will be de-
fined as:
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uMðx; y; zÞ ¼
uMðx; y; zÞ
vMðx; y; zÞ
wMðx; y; zÞ

8><>:
9>=>; ¼ ½/ðzÞ�M UMðx; yÞ ð5Þ

where [/(z)]M corresponds to the z-transverse functions used and
UM(x,y) are the corresponding in-plane (unknown) functions. In
the finite element analysis, the approximate solution uM,h has the
form (5), with UM(x,y) replaced by UM,h(x,y) and given by

UM;h
i ðx; yÞ ¼

Xndi

k¼1

uM
ik Wkðx; yÞ ð6Þ

where Wk(x,y) are the two-dimensional basis functions of given or-
der pxy; uM

ik are the in-plane nodal displacement components and
ndi is the total number of terms in the expansion.

2.2. Region-by-region plate model (RR)

The idea of region-by-region modeling approach is to put any
model in any region of the domain. In the vicinity of cut-outs
and outer boundaries of the domain the solution is expected to
be unsmooth, have severe boundary layer effect, and possibly be
three-dimensional in nature. Hence, along with a refinement of
the mesh, enrichment of the model will also be desired in these re-
gions. It was shown in [10,26,27] that layerwise models are very
effective in capturing the three dimensional effects at these struc-
tural details while elsewhere equivalent single layer models with
post-processed transverse stresses, that is the transverse stresses
obtained using the equilibrium equations, can be used. The details
of implementation of region-by-region model can be seen in
[10,26,27].

3. Finite element formulation

The total potential, P, for the structure is given by

PðuÞ¼1
2

Z
V
frðuÞgTfeðuÞgdV�

Z
Rþ[R�

T3u3 ds�
Z

CN

ðT1u1þT2u2Þds

ð7Þ

where V is the volume enclosed by the plate domain; {r(u)} and
{e(u)} are the engineering stress and strain vectors, respectively.
R+ and R� are the top and bottom faces of the plate and T3(x,y) is
the applied transverse load on these faces; C are the lateral faces
with C = CN [ CD and CN = Neumann boundary, CD = Dirichlet
boundary; T1, T2 are the in-plane tractions specified on the lateral
faces. Here, u1, u2 and u3 denotes the three components of the dis-
placement field u. Using any of the model described by (5), the cor-
responding total potential PM(uM) can be defined by substituting u
with uM in (7).

The approximate solution to the problem, uM,h, is the minimizer
of the total potential PM(uM,h) and is obtained from the solution of
the following weak problem:

Find uM;h 2 H0
MðVÞ such that

BðuM;h;vM;hÞ ¼ FðvM;hÞ 8 vM;h H0
MðVÞ ð8Þ

where

BðuM;h;vM;hÞ ¼
Z

V
frðuM;hÞgTfeðvM;hÞg dV ;

FðvM;hÞ ¼ �
Z

Rþ[R�
T3vM;h

3 ds�
Z

CN

T1vM;h
1 þ T2vM;h

2

� �
ds

and H0
MðVÞ ¼ fvMjPMðvMÞ <1 and M vM ¼ 0 on CDg; vM,h is the

test function and has the same form as uM,h given by (5) and (6).
We will further define

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðv;vÞ

p
¼ kvkE as the energy norm. Note
that BðuM;h;uM;hÞ ¼ 2UðuM;hÞ where UðuM;hÞ is the strain energy for
the solution uM,h. Note that in this study Dirichlet means the part
of lateral boundary where geometric constraints are imposed, while
Neumann stands for the parts of the lateral boundary where in-
plane traction is applied. Further, M is a generic representation of
displacement constraints on the Dirichlet boundary edge. For exam-
ple, the boundary conditions can be clamped uM

i ¼ 0; i ¼ 1;2;3
� �

;
soft simple-support uM

n ;u
M
3 ¼ 0

� �
; hard simple-support uM

t ;u
M
3

�
¼ 0Þ, etc. Here, uM

n and uM
t denote in-plane displacement normal

and tangential to an edge, respectively.
Note that in the case of conventional models, integration

through the depth leads to the (z averaged) weak formulation over
the projected mid-plane.

Using direct finite element data it is easy to show that the strain
energy for various plate models, for the same in-plane mesh and in-
plane order of approximation pxy, follows the relationship (when
homogeneous conditions are specified on the Dirichlet boundaries):

UEQ pxy110 6 UEQ pxy112 6 UEQ pxy332 � � � 6 U3D

UEQ pxypu
z pv

z pw
z
6 ULM pxypu

z pv
z pw

z
6 U3D

ULM pxy110 6 ULM pxy112 6 ULM pxy332 � � � 6 U3D

ð9Þ

In (9) UEQ pxy110 stands for the strain energy corresponding to
EQpxy110 model; ULM pxy332 stands for the strain energy correspond-
ing to LMpxy332 model; U3D corresponds to strain energy Uðu3DÞ,
that is, for the exact three-dimensional solution. The other terms
in this equation can be deduced similarly.

4. Discretization error estimation

Many classes of a-posteriori error estimators are available in the
literature (see [1,3]). For the three-dimensional problems, the im-
plicit type residual error estimators would prove to be computa-
tionally expensive. Hence, the more economical recovery (or
projection) based error estimators have been employed in this
study. It was found in [30–32] that the error estimator based on
stress recovery (defined in [5]) was reliable locally for patches at
the boundary of the domain, as well as the interior of the domain.
Several definitions of such projections are possible (see [31,32]).
Here, following [6,10], a simple L2 projection based a-posteriori er-
ror estimator is developed for the displacement field.

4.1. L2 projection based a-posteriori error estimator

Let us consider the three-dimensional mesh obtained by first
meshing the mid-plane (using a two-dimensional mesh) and then
extending the mesh in the thickness direction to give wedge-
shaped elements in each layer. In the proposed implementation,
irrespective of the plate model used, recovery will be done over
the three-dimensional mesh.

For an element s in the lth lamina, let Ps be the patch of ele-
ments in a one-layer neighborhood of s in the lth lamina, as shown
in Fig. 2(a).

Over the patch Ps, define the recovered displacement field uM,⁄

uM;� ¼
u�

v�

w�

8><>:
9>=>; ¼ ½/ðzÞ�M UM;�

where UM;�
i ðx; yÞ ¼

PND OF
j¼1 Aij qjðx; yÞ with NDOF = (pxy + k + 1)

(pxy + k + 2)/2; qj(x,y) are the monomials of order 6pxy + k,k P 1
(see [6] for details).

The coefficients Aij are obtained by minimizing

J2;UM;� ¼ 1
2

Z
VPs

jUM;� � UM;hj2dV ð10Þ
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where VPs is the volume of the patch Ps enclosed by the elements in
Ps. Further, APs is the projected area of the patch.

Remark. This is a generalization of the approach given in [6], such
that for any model of choice (layerwise or equivalent), recovery can
be done using the same recipe.

Following [6], a measure of the error (i.e. the desired ‘‘true er-
ror’’) is given as �eM

h � uM;hðpxyþkÞ � uM;hðpxyÞ, where uM,h(m) is the finite
element solution obtained with elements of order m. In all the
computations, reported in this study, k = 1 is used. Hence, a mea-
sure of the actual error is obtained by solving for another finite ele-
ment solution over the same mesh, with in-plane order
�pxy ¼ pxy þ 1. An approximation of the error is given by
eM;�

h � uM;� � uM;h. Hence, the element error indicator gs is given as

g2
s ¼

Z
v l

s

frðuM;�Þ � rðuM;hÞgTfeðuM;�Þ � eðuM;hÞgdV ð11Þ

where v l
s is the volume enclosed by the sth element in lth layer and

{r(uM,⁄)} and {e(uM,⁄)} are the engineering stress and strain vectors,
respectively obtained from the recovered displacement field uM,⁄.
Now, given the element error indicator gs, the error estimator nx

in a patch x(x # V) is given as

nx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXNEL;x

s¼1

g2
s

vuut ð12Þ

where NEL,x is the number of elements in the patch x. The ‘‘desired’’

error norm will be �eM
h

�� ��
EðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Ux �eM

h

� �q
, which will be used to ob-

tain a measure of the quality of the error estimators, i.e.

jx ¼
nx

�eM
h

�� ��
EðxÞ

ð13Þ

where jx is the effectivity index (the ideal value of jx is 1).

Remark. When there is a material discontinuity or model discon-
tinuity (as in region-by-region models), the averaging is done over
the elements with same material or model (see Fig. 2(b)).
5. Focussed adaptivity

In the analysis of layered media, often the goal is to obtain
stress or strain in the material directions in a lamina or at an inter-
face, in the critical regions. These quantities may be used in a dam-
age initiation [33] or damage growth model (for example see [34]),
to predict onset and propagation of damage. Hence, local quantities
have to be accurately obtained. In order to do this, several goal-
based error estimators [1,9,11], and adaptive procedures have been
proposed in the literature (see [1–3]). Following [1], it can be
shown that error in the quantity of interest can be obtained by
solving an auxiliary problem. Below, the definition of the auxiliary
problem is given for the layered media.
Remark. In this section the ‘error’ refers to ‘discretization error’
and ‘error estimator’ refers to ‘discretization error estimation’.
5.1. The auxiliary problem

Let us consider the domain of Fig. 3(a). Fig. 3(b) shows the glo-
bal and principal material directions for a lamina. Let us further as-
sume that the value of strain component exx in the topmost layer is
the quantity of interest, for all points in the element s (shown
shaded in Fig. 3(a)). In order to accurately obtain the pointwise
information in s, let

eðlÞxx;avg ¼
1
v l

s

Z
v l

s

exxdv

be the quantity of interest. Here, v l
s ¼ Astl is the volume enclosed by

the element s in the lth layer. Hence,

eðlÞxx;avg ¼
1

Astl

Z zl

z¼zl�1

Z
As

ðexx dAÞdz ð14Þ

with tl is the thickness of the lth layer; zl�1 and zl are the lower and
upper z coordinates for the lth layer; As is the area of element s.

Corresponding to eðlÞxx;avg define the following auxiliary problem:
Find GM 2 H0

MðVÞ such that

BðGM;vMÞ ¼ eðlÞxx;avgðvMÞ ¼ FðvMÞ 8vM 2 H0
MðVÞ ð15Þ

Letting GM;h 2 H0
MðVÞ be the finite element solution for GM such that

BðGM;h;vM;hÞ ¼ eðlÞxx;avgðvM;hÞ ¼ FðvM;hÞ 8vM;h 2 H0
MðVÞ ð16Þ

Note that definition (15) is used to regularize the function GM,
ensuring that it lies in H0

MðVÞ. For more details see [1].

5.2. Estimators for error in quantity of interest

From Eqs. (15) and (16) it follows that

BðGM;uM � uM;hÞ ¼ FðuMÞ � FðuM;hÞ ¼ FðuM � uM;hÞ ¼ FðeM;hÞ
ð17Þ

From the orthogonality property of the error (for the self-adjoint
problems) in the finite element solution

jBðGM � GM;h;uM � uM;hÞj ¼ jFðeM;hÞj ð18Þ

or

jFðeM;hÞj ¼ jBðGM � GM;h;uM � uM;hÞj

6

X
s
jBðGM � GM;h;uM � uM;hÞj

6

X
s

eM
u

�� ��
EðsÞ eGM

�� ��
EðsÞ 6 eM

u

�� ��
EðXÞ eGM

�� ��
EðXÞ ð19Þ

where eM
u ¼ eM;h stands for the error in the actual solution and eGM

stands for the error in the auxiliary problem, k � kE(D) stands for en-
ergy norm in the domain D. Thus, it can be seen that the smooth-
ness of both uM and GM affect the measure of error in the
quantity of interest.

Following [7,26] the error estimators for the local quantity of
interest were proposed. However, in the present study following
[7,26] the error estimator used is given briefly.

Replacing eM
u with the estimate eM;�

u and eGM with the estimate
eM;�

G , the following error estimator for the error in the quantity of
interest is defined

jFðeM;�Þj ¼
X

s
B eM;�

u ; eM;�
G

� ���� ��� ð20Þ

It is shown in [7,26] that this error estimator is reliable as compared
to other error estimators defined therein.
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Remark. The error estimator is robust with 0:8 6 jFðeM;�Þj=
jFðeM;hÞj 6 2 as shown in [7].
5.3. One-shot adaptivity for quantity of interest

Letting s be the element of interest and Ps the one-layer ele-
ment neighborhood of s, the total error can be partitioned into
two parts as follows (see [30])

jFðeM;hÞj 6 jF 1ðeM;hÞj þ jF 2ðeM;hÞj

where

F 1ðeM;hÞ ¼
X
s2Ps

B eM;h; eGM

� �
; F 2ðeM;hÞ ¼

X
s2P0
B eM;h; eGM

� �
ð21Þ

Here P0 is the set of elements lying outside Ps. Following [40],
F 1ðeM;hÞ is the local part of the error and F 2ðeM;hÞ is the ‘‘pollution’’
in the quantity of interest (i.e. far-field influence). Following
[7,30,41],

jF 1ðeM;hÞj 6
X
s2Ps

eM
u

�� ��
EðsÞ eGM

�� ��
EðsÞ 6 Chpxy ð22Þ

Beyond Ps, the auxiliary function is well behaved and hence

F 2 eM;h
h

� ���� ��� 6X
s2P0

eM
u

�� ��
EðsÞ eGM

�� ��
EðsÞ 6 Ch2pxy ð23Þ

The goal of the adaptive process is to refine the given mesh
selectively such that the total error is below the specified toler-
ance, i.e.

jFðeM;hÞj 6 HjFðuM;hÞj ð24Þ

where FðuM;hÞ is the computed value of the desired quantity of
interest. Following [42], rs ¼ hd

h is defined as the ratio of the desired
(hd) to the actual mesh size (h) of the element s. The desired mesh
should have the least number of elements, of all possible meshes.
Hence, following [42], the quantityX

s

1
r2
s

is minimized subject to constraints (22) and (23). Thus, the new
objective function (to be minimized) is defined as,

L ¼
X

s

1
r2
s
þ k1

X
s2Ps

v2
d;s � F d;1

 !
þ k2

X
s2P0

v2
d;s � F d;2

 !
ð25Þ

where vd;s ¼ B êM
u ; êGM

� ��� �� is the desired contribution to the total er-
ror from element s; êM

u ; êGM are the desired errors in the element s;
k1 and k2 are Lagrange multipliers; F d;1 ¼ H1jFðuM;hÞj and
F d;2 ¼ H2jFðuM;hÞj are the desired errors in the region Ps and P0,
respectively (here H = H1 + H2). Using (22) and (23) v2
d;s can be gi-

ven in terms of the actual error v2
a;s (where v2

a;s ¼ B eM
u ; eGM

� ��� �� in the
element s), as

For s 2 Ps; v2
d;s ¼ r

pxy
s v2

a;s

For s 2 P0; v2
d;s ¼ r

2pxy
s v2

a;s

Thus, (25) becomes

L ¼
X

s

1
r2
s
þ k1

X
s2Ps

r
pxy
s v2

a;s � F d;1

 !
þ k2

X
s2P0

r
2pxy
s v2

a;s � F d;2

 !
ð26Þ

Minimizing L with respect to rs, k1 and k2 gives the desired mesh
sizes (see [7–9] for details).

For s 2 Ps,

rs ¼
F 1=pxy

d;1P
s2Ps

v4=ðpxyþ2Þ
a;s

� �1=pxy
� v2=ðpxyþ2Þ

a;s

ð27Þ

and for s 2 P0,

rs ¼
F 1=2pxy

d;2P
s2P0v

2=ðpxyþ1Þ
a;s

� �1=pxy
� v1=ðpxyþ1Þ

a;s

ð28Þ
Remark. The partition of the contribution to the error from Ps and
P0 depends on the user. The final mesh depends on the choice of H1

and H2. In order to keep both contributions of the same order, here
H1 = H2 = H/2 is chosen.
Remark. When the error in the energy norm is to be controlled
then there is no need to partition the error in two parts as given
in (21). Finally it leads to the desired mesh size rs as given in
(28). The standard definitions given in the literature (see [1–3])
can be used.
6. Modeling error estimation

In general, the model is fixed in the whole domain. In this study
also, an equivalent model is used, in the whole domain as the start-
ing model. The discretization error is estimated using the patch
recovery based a-posteriori error estimator and controlled by using
either focussed adaptivity in the quantity of interest or global en-
ergy norm, as developed by the authors in [7,8]. Here, it is assumed
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Fig. 4. (a) Mesh showing the collection of all element faces (Ci) and faces of an
element (@si) s; (b) types of elements used in the meshes for asymptotic behavior
analysis of constant Cs.
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that the discretization error has been reduced significantly (with
respect to modeling error). Then the total error with respect to
the fixed model and the new adapted mesh is given by:

ku3D � uM;hk � ku3D � uMk ð29Þ

where k � k represents any desired norm. Eq. (29) assumes that the
dominant part of the remaining error is due to the model. The error
can be estimated using a residual type error estimator. Since a ma-
jor goal of this analysis is to develop a quick but sufficiently robust
estimator for the modeling error, in the following section an explicit
type modeling error indicator is proposed, following Schwab [22].
The proposed modeling error indicator exploits the fact that equi-
librium equations based post-processed transverse stresses are very
accurate. Using these stresses gives a better representation of the
actual three dimensional state of stress. Hence, the error estimator
is developed using the post-processed stress state.

For a given model and its finite element approximation, the
equilibrium equations based post-processed stress state (in an ele-
ment) satisfies

rxx;x þ rxy;y þ r�xz;z ¼ 0

rxy;x þ ryy;y þ r�yz;z ¼ 0

rxz;x þ ryz;y þ r�zz;z ¼ 0

ð30Þ

where r�xz; r�yz and r�zz are obtained by integration (with z) of rxx,x,
rxy,y, rxy,x and ryy,y.

Given this state of stress in an element s, the error satisfies:

rex
xx;xþrex

xy;yþrex
xz;z

� �
� rxx;xþrxy;yþr�xz;z

� �
¼rer

xx;xþrer
xy;yþrer

xz;z¼0

ð31Þ

where the superscript rex
ij are the ‘‘exact’’ three dimensional stress

components; rer
ij ¼ rex

ij � r�ij is the (modeling) error in the stress.
Similarly, the other two equilibrium equations give

rer
xy;x þ rer

yy;y þ rer
yz;z ¼ 0

rer
xz;x þ rer

yz;y þ rer
zz;z ¼ 0

ð32Þ

in the interior of each element, while at the domain boundary, the
error satisfies

~T �~TFE ¼ ~Ter ð33Þ

where~T is the actual applied traction vector and~TFE is the post-pro-
cessed traction vector computed from finite element solution. In the
interior of the domain an element s has the following five
interfaces:

1. Top and bottom interface (2 faces).
2. Lateral interface (3 faces).

At the top and bottom of the element interfaces the transverse
stress components are continuous as the stress components are
computed from equilibrium equations based post-processing.
Thus, for the transverse components (on an internal interface)

Jij@stransverse
¼ rs

i3n3 � rs�
i3 n3 ¼ 0; i ¼ 1;2;3 ð34Þ

where~Jj@stransverse
denotes the jump vector on transverse faces. For the

lateral faces

Jij@slateral
¼ rs

ijnj � rs�
ij nj; i; j ¼ 1;2;3 ð35Þ

where~Jj@slateral
denotes the jumps in the tractions at the lateral inter-

faces and s⁄ denotes the element sharing the corresponding face of
the element s. It is observed that on all lateral faces the jumps are
not zero.

It is assumed that the post-processed stresses lead to ~T �~TFE

¼ 0 in the limit, that is, as the model is refined
P

@sj~JjL2
! 0. The
defined measure of modeling error �eM can be obtained by solving
(the virtual work formulations for the modeling error)

Bð�eM;vÞ ¼
X
s

Z
s
rer

ij eijðvÞdS

¼
X
Ci

Z
Ci

~JCi
� v dAþ

X
Ck

top[C
k
bottom

Z
Ck
ð~T �~T�Þ � vdA ð36Þ

where Ci is the collection of all element faces (including those on
domain boundaries) (see Fig. 4(a)). Note that on the top and bottom
faces of the domain, the known state of transverse stress is used as
the boundary condition for the error problem. Hence, in the ele-
ments whose transverse faces lie on the bottom domain boundary,
~T �~TFE ¼ 0 (as the post-processed stress uses the known value of
traction on this face as the initial value, for integration through
the depth). Thus, the error problem uses the mismatch between
the specified traction and the post-processed traction on the top
face of the laminate only.

Eq. (36) is written as:

Bð�eM;vÞ ¼ FðvÞ; 8v 2 H0ðVÞ ð37Þ

where �eM denotes the estimated modeling error. Hence, from (37),

k�eMkEðXÞ ¼ sup
v2H0

jFðvÞj
kvkEðXÞ

6 sup
v2H0

P
Ci
j~JCi
jL2
jvjL2

kvkEðXÞ

6 sup
v2H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Ci jvj

2
L2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Cij~JCij2L2

q
kvkEðXÞ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Ci

j~JCij2L2

s
sup
v2H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Cijvj

2
L2

q
kvkEðXÞ

6 j~JjL2
sup
v2H0

jvCijL2

kvkEðXÞ
ð38Þ

where subscript k � kE(X) denotes the energy norm in the whole do-
main and L2 denotes the L2 norm.

This global statement can be rewritten in an elementwise form
by partitioning the jumps on common faces into two parts. Several
partitioning possibilities exist, but the simplest form of equal (i.e.
a ¼ 1

2 or half jump is assigned to each of the neighboring elements)
partitioning is employed here to give

k�eMkEðXÞ 6 sup
v2H0

P
s
P

@saj~J@si\Ci
jL2
jv@si\Ci

jL2

� �
kvkEðXÞ

ð39Þ

where @si = faces of element s (see Fig. 4(b)). For brevity @si \ Ci is
denoted by @s in the following expressions.
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k�eMkEðXÞ 6

P
s
P

@saj~J@sjL2
jv@sjL2

kvkEðXÞ

6

P
s
P

@sa2j~J@sj2L2

� �1
2 P

@sjv@sj2L2

� �1
2

kvkEðXÞ
ð40Þ

where a ¼ 1
2 for interior lateral boundaries, a = 1 otherwise. NowX

@s
jv@sj2L2

6 Cskvk2
EðsÞ ð41Þ

where Cs is given as

Cs ¼ sup
v2H0ðsÞ

P
@sjv@sj2L2

kvk2
EðsÞ

� sup
v2H0ðsÞ

fvgT ½A�N�Nfvg
fvgT ½K�N�Nfvg

ð42Þ

Here, v is chosen from a higher finite dimensional space. In this
study the highest layer by layer representation corresponding to
LMpxy444 is used. Eq. (42) leads to a generalized eigenvalue prob-
lem as:

½A�fvg ¼ k½K�fvg ð43Þ

The generalized eigenvalue problem is solved once and the constant
Cs is found as Cs = kmax.

From (40)

k�eMkEðXÞkvkEðXÞ 6
X

s
Cskvk2

EðsÞ

� �1
2
X
@s

a2j~J@sj2L2

 !1
2

6

X
s
ðkvk2

EðsÞÞ
1
2C

1
2
s
X
@s

a2j~J@sj2L2

 !1
2

ð44Þ

that is

k�eMkEðXÞ 6
X

s
Cs
X
@s

a2j~J@sj2L2

 !1
2

ð45Þ

The element (modeling error) indicator is defined as

gM
s ¼ ðCsÞ

1
2
X
@s

a2j~J@sj2L2

 !1
2

ð46Þ

and global estimated modeling error as

k�eMk2
EðXÞ ¼

X
s

gM
s

� �2 ð47Þ

Note that the estimator is an upper estimator, with the global effec-
tivity index given as

jM
x ¼
k�eMkEðXÞ

keMkEðXÞ
ð48Þ

where keMkE(X) is exact modeling error over the whole domain. The
modeling error tolerance achieved is given as

HM ¼
k�eMkEðXÞffiffiffiffiffiffiffiffiffiffiffiffiffi

2UðuÞ
p ð49Þ

where UðuÞ is strain energy for the given plate model.
Note that the eigenvalue problem can be written only in terms

of the v defined on the element’s lateral faces as:

½ASS�fvSg ¼ k½K�fvSg ð50Þ

where ½K� ¼ �½KIS�T ½KII��1½KIS� þ ½KSS�. Here, [ASS] is symmetric posi-
tive definite and ½K� is symmetric positive semi-definite. Here, sub-
script I corresponds to internal degrees of freedom and S
corresponds to surface degrees of freedom of the element.
In the above generalized eigenvalue system the first six modes
correspond to the rigid modes. These can be eliminated to further
reduce the size of the matrices. The first non zero eigenvalue gives
the constant Cs. The details of this can be seen in [10,22].

Remark. The calculation of exact stresses is not required in the
proposed approach. The inter-element jumps in the stresses across
the element faces are calculated for the model that is used in the
analysis. The equilibrium equations based post-processing is used
to obtain the transverse stresses. These stresses are taken as exact
stresses. These stresses are used to calculate the inter-element
jumps across the element faces.
Remark. For calculating the global effectivity index, as in (48), one
needs to have the exact solution. However, this is not possible for
all the problems. Hence, in general, a sufficiently refined mesh
(with element size of the order of lamina thickness) and enriched
model (in the present case LM4444) is used as the ‘‘exact solution’’.
Using this exact solution, keMkE(X) is calculated in (48). This is done
only for benchmarking problems to show the reliability of the pro-
posed modeling error indicator.
7. Modeling error control

Modeling error is controlled by locally using higher models in
regions of high modeling error. The initial model used for the anal-
ysis is an equivalent model EQpxypz

upz
vpz

w, written as EQ for brevity.
The steps followed in the modeling error control methodology are
given as follows.

Step 1: The element indicator gM
s , for each element s is computed

as given in (46).
Step 2: Maximum value of element indicator from all elements

gM
smax

� �
is found.

Step 3: All the element modeling error indicators are normalized
as:
As ¼
gM

s
gM

smax
Step 4: As a rule of thumb, the set of 3D elements (here denoted as
s) with As P 0.5 is found. The set of projection of these ele-
ments on the planar mesh (denoted by As2D ) is then found.

The strategy for adapting the models is explained as follows.
In the regions with 2D elements s2D # As2D corresponding

LMpxypz
upz

vpz
w, written as LM for brevity, model is adopted. The

problem is solved again with these new regionwise models in
the domain and the modeling error tolerance achieved is checked
for. If the tolerance achieved is below the specified tolerance then
steps 1–4 are repeated. Then new set As2D is found. If the new set
As2D has elements other than those in the old set then the region
corresponding to these elements are made layerwise. If the same
3D element is again in the set with As P 0.5, then the layer corre-
sponding to this element is subdivided into two layers (sublayers)
locally. This process is continued till the specified modeling error
tolerance is achieved.

Remark. In the design of aerospace laminated structural compo-
nents the effects of boundary layer, edge and loading constraints,
local delaminations, free edges, damage fronts, re-entrant corners,
cut-outs, etc. are very important from design point of view. The
quantities like stress state, stress concentrations, displacement
components, etc. are the critical quantities for such design
considerations. If the errors in the discretization and modeling



Table 2
Global quality (jx) of discretization error estimator for EQ2332 model, M55J/M18
material.

Laminate S BC jx

[0/90] 50 SSSS 1.0594
CCCC 1.1725

100 SSSS 1.1337
CCCC 1.2858
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are not controlled with the use of proper mesh and model, then it
can lead to erroneous results in these critical quantities. However,
in the present approach selection of proper mesh and model is
done automatically ensuring that the discretization and modeling
error are within acceptable limits leading to accurate computation
of critical quantities. Thus, mesh and model sensitivity is
automatically accounted for, leading to higher reliability of
computations.
[45/�45] 50 SSSS 1.1379
CCCC 1.2283

100 SSSS 1.2173
CCCC 1.3396

Table 3
Global quality (jx) of discretization error estimator for LM2332 model, M55J/M18
material.

Laminate S BC jx

[0/90] 50 SSSS 1.0635
CCCC 1.1792

100 SSSS 1.1427
CCCC 1.3021

[45/�45] 50 SSSS 1.1428
CCCC 1.2368

100 SSSS 1.2311
CCCC 1.3585
8. Numerical results

We now present detailed results. The numerical results demon-
strate the accuracy of various plate models and quality of the dis-
cretization and modeling error estimators. Examples with mesh
and model adaptivity are also given.

8.1. Global quality of a-posteriori discretization error estimator

The global quality of a-posteriori error estimator is tested for
two different plate to thickness ratios of S ¼ a

t (a is length and t is
thickness of laminate) 50, 100; and boundary conditions of all
edges clamped (CCCC) and hard simple supported (HSSSS). The
material is M55J/M18 and its properties are given in Table 1. The
laminates considered are [0/90] and [45/�45] under uniform
transverse load of 1 N/mm2. Here, EQ2332 and LM2332 models
are considered. The global effectivity index for the laminates con-
sidered are given in Tables 2 and 3 for EQ2332 and LM2332 models,
respectively. The mesh used for this study is shown in Fig. 5(a).
From these tables it is seen that the estimator is reliable for all
the laminates considered (1.06 6 jx 6 1.35).

Note that in the global behavior the effect of boundary condi-
tions and plate length to thickness ratio is minimal. However, from
[6], it can be seen that the local quality can be different for bound-
ary patches, as compared to internal ones.

8.2. Comparison of plate models

In this subsection, EQ, LM and RR plate models are compared for
stress state and displacement at a point. A nine layered [0/90/0/90/
0/90/0/90/0] laminate, with all edges hard simple supported and
with material properties given in Table 4 (see [43]), is considered.
The thickness of each 0� layer is 1 in; thickness of each 90� layer is
1.25 in. The laminate has dimensions of a = b = 100 in. The lami-
nate is subjected to sinusoidal loading of the form
T3ðx; yÞ ¼ q0 sin px

a sin py
b where q0 is the intensity of sinusoidal load-

ing. The stress components are normalized as �rxx ¼ 1
q0S2 rxx and

�sxz ¼ 1
q0S sxz, displacement component u is normalized as �u ¼ E22u

q0S3.

The objective is to obtain the values of �rxx at a
2 ;

b
2 ;�z

� �
; �sxz at

0; b
2 ;�z

� �
, as shown in Fig. 6(a) and (b), accurately. For this purpose,

the LM3332 and EQ3332 models have been used. Further, region-
by-region modeling scheme is also used with model distribution
as shown in Fig. 7(a) and (b). For the region-by-region modeling
scheme, in the shaded region (which is a neighborhood of the point
of interest) LM3332 model is used, while in the remaining regions
EQ3332 model is used. The region-by-region modeling scheme
used for stress components �rxx is denoted by RR I � 3332 and for
�sxz by RR II � 3332. The variation of �sxz at 0; b

2 ;�z
� �

, obtained by
Table 1
Material properties for M55J/M18 and T300/5208 Graphite/Epoxy composite.

Property E11 (GPa) E22 = E33 (GPa)

M55J/M18 280 6.0
T300/5208 132.5 10.8
using the equilibrium equations based post-processing, is given
in Fig. 6(c). The respective stress components in Fig. 6(a)–(c) are
compared with exact three dimensional elasticity solution ob-
tained by Pagano et al. in [43] and is denoted by ‘‘Pagano’’ in these
figures. The pointwise value of displacement component �u at
0; b

2 ;�z
� �

is given in Fig. 8. This figure also shows the displacement
component obtained by exact three dimensional elasticity solution
obtained by Pagano et al. [43] and is denoted by ‘‘Pagano’’ in this
figure. The number of unknowns and strain energy for these mod-
eling schemes is given in Table 5.

From the figures and table it is seen that:

1. The discretization error, for the given mesh and for all the mod-
els, is below the specified tolerance (here,
H ¼ jFðeM;�Þj=jFðeM;hÞj ¼ 2% is specified). Here, the discretiza-
tion error in the energy norm is controlled.

2. The in-plane stress component �rxx is accurately computed by all
the models.

3. The transverse stress component directly computed from finite
element data is very accurate for LM3332 and RR II � 3332
model (it almost overlaps the exact one) while for EQ3332
model it is very far both qualitatively and quantitatively.

4. The equilibrium equations based post-processing approach is
accurate for all models. The accuracy of the post-processed
stress components depends upon the accuracy of in-plane stres-
ses used.

5. The cost of computation for LM3332 model is very high while
for the EQ3332 model the cost is low. Notably, the cost of com-
putation for RR I � 3332 and RR II � 3332 models is close to that
for the EQ3332 model and is significantly lower than the
LM3332 model.

6. Note that the value of strain energy obtained by using the given
models varies as UEQ3332 < URRI�3332 < URRII�3332 < ULM3332.
G12 = G13 = G23 (GPa) m12 = m13 = m23 ti (mm)

4.8 0.3 0.1
5.7 0.24 0.127
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Fig. 5. Mesh used for the (a) study of global quality of a-posteriori discretization error estimator and (b) study of global quality of modeling error estimator.

Table 4
Material properties for Graphite/Epoxy composite [43].

Property E11 E22 = E33 G12 = G13 = G23 m12 = m13 = m23

Value 25 � 106 psi 106 psi 0.5 � 106 psi 0.3
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The current example also illustrates a few very important is-
sues. These are:

(a) Even though the RRI – 3332 and RRII – 3332 models give very
accurate values of the local stress and displacements, in the
region of interest, the overall accuracy (with respect to global
strain energy) is low. This is because outside the region of
interest, a low order equivalent model has been used.

(b) Often (especially for thin, symmetric laminates) the equiva-
lent models are very effective, provided the equilibrium
equations based post-processing is used to obtain the trans-
verse stresses. This makes the equivalent models, which are
easier to implement, attractive.

8.3. Global quality of the modeling error estimator

The global error estimator, as defined by (48), requires compu-
tation of the constant Cs. The constant depends on the geometry of
the elements and the mesh size. Since the modeling error estimate
is obtained for the mesh for which the discretization error is neg-
ligible, the corresponding converged mesh will have sufficiently
small elements. Hence, it is necessary to obtain the value of Cs
for such a mesh. Below, we investigate the behavior of this con-
stant, with respect to mesh-size and element geometry.

Remark. In all the numerical examples for the modeling error
estimator, all the energy quantities are computed using equilibrium
equations based post-processed transverse stresses. Thus, the strain
energy computed becomes the complementary strain energy.
(c)

−z

−
xz(0,b/2,z)

−τ

−0.6

−0.4
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3.052.02.01.050.00  0.15

Fig. 6. Comparison of through thickness variation of stresses in [0/90/0/90/0/90/0/
90/0] laminate; S = 10; under sinusoidal loading with all edges hard supported. (a)
In-plane stress �rxx

a
2 ;

b
2 ;�z

� �� �
; (b) direct transverse shear stress �sxz 0; b

2 ;�z
� �� �

; (c) post-
processed transverse shear stress �sxz 0; b

2 ;�z
� �� �

.

8.3.1. Asymptotic behavior of constant Cs
The asymptotic behavior of constant Cs is studied for M55J/M18

and T300/5208 Graphite/Epoxy materials. The starting model used
is EQ3333 and the highest model used is LM3444. The two types of
element geometries used in this study are given in Fig. 4(b). The
size of the element is taken as a multiple of the layer thickness,
and is given by h = at. Here, a is a scalar variable. The variation of
Cs with a is shown in Fig. 9(a) and (b). The effect of mesh topology
is also depicted in these figures. From these figures it is seen that:

1. The value of Cs converges to that for a = 1, i.e. h ? ti.
2. For the geometry of Element 1, the variation of Cs with mesh

size is significant, while the change for Element 2 is small.



(a) x

y

(b) x

y

Fig. 7. Region-by-region schemes used for the computation of stress components
�rxx

a
2 ;

b
2 ;�z

� �
and �sxz 0; b

2 ;�z
� �

for [0/90/0/90/0/90/0/90/0] laminate; S = 10; under
sinusoidal loading with all edges hard supported. Shaded region shows LM3332
model and rest uses EQ3332 model. (a) RRI – 3332 model and (b) RRII – 3332 model.
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Fig. 8. Through thickness variation of in-plane displacement �u for [0/90/0/90/0/90/
0/90/0] laminate; S = 10; under sinusoidal loading with all edges hard supported.

Table 5
Comparison of plate models on the basis of displacement and stress components for
[0/90/0/90/0/90/0/90/0] square laminate; S = 10 with all edges hard simple supported
under sinusoidal loading. The number of unknowns and strain energy are given.

Model Unknowns 2U

LM3332 102,675 0.8161
RR I � 3332 22,803 0.7640
RR II � 3332 24,851 0.7732
EQ3332 15,059 0.7628
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Fig. 9. Asymptotic behavior of constant Cs with respect to mesh size (t is thickness
of the element s) for material (a) M55J/M18; (b) T300/5208.
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3. For both element types, the converged value of Cs is the
same. For M55J/M18 material this value is 115.38 � 10�6.

The effect of ply orientation, on the converged value of Cs, was
also studied by authors [10]. It was observed that the variation was
not significant. Hence, the value obtained for ply orientation of
h = 0� has been used in all studies.

Remark. For a given material the converged value of Cs, corre-
sponding to h = ti, is used for all mesh sizes. Hence, when the
material is different for different laminae in a laminate or within a
lamina (as in case of damaged lamina) the value of Cs is computed
for individual material regions.
Remark. For the computations, asymptotic value of the constant
Cs is used. In order to determine Cs, the eigenvalue problem is first
solved over a unit triangular element with length and thickness
taken as one (as shown in Fig. 4(b)). Let the value of constant
obtained be bC . The value of Cs for an element with edges of size
h = ti (where ti is the thickness) is obtained as Cs ¼ bCti.
8.3.2. Quality of the modeling error estimator
The global quality of the proposed modeling error estimator is

obtained by computing the effectivity index for two values of
length to thickness ratios, S. The effectivity index for length to
thickness ratios of 50, 100 and two boundary conditions either
all edges clamped or hard simple supported are computed for
M55J/M18 Graphite/Epoxy material. The laminate is subjected to
uniform transverse load of intensity T3(x,y) = 0.025 N/mm2. The
mesh used for this study is given in Fig. 5(b). This mesh corre-
sponds to small discretization error in energy norm (H < 1%). The
model considered for this study is EQ3222. The highest model con-
sidered is LM3222. Note that the solution for LM4444 is used as the
‘‘exact’’ solution, in all the computations of modeling error.

The global effectivity indices for [0/90] and [45/�45] laminates
are given in Tables 6 and 7, respectively. Further, the values of the
estimated and (representative) ‘‘exact’’ modeling error, along
with the energy of the finite element solution (kuEQ,hkE(X) and
kuLM,hkE(X)) are also reported. From these tables it is seen that:

1. The proposed modeling error estimator is an upper estima-
tor, as has been proven in (45).

2. For both the cross-ply and angle-ply laminates, the estima-
tor is good for the HSSSS boundary conditions, while for the
CCCC boundary condition, the overestimation can be high
(jM

x � 5).
3. As the mesh size approaches the thickness of a lamina

(ti = 0.1 mm) the quality of estimator improves (approaches
the value of 1). This can be seen from the values of effectiv-
ity index for S = 50, 100. For S = 50 the mesh size is
h = 0.33 mm while for S = 100, h = 0.66 mm.

4. The relative (estimated) modeling error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�eMk2

EðXÞ

kuEQ ;hk2
EðXÞ

r	 

is

small in most cases (66%) except for [45/�45] laminate
with S = 50 and all edges hard simple supported (25.5%).

This example brings out the important issue of plate boundary
conditions for polygonal domains. This issue is elucidated with



Table 6
Global quality jM

x

� �
of modeling error estimator; [0/90] laminate under uniform transverse load of intensity T3(x, y) = 0.025 N/mm2 for M55J/M18 material. Norms are computed

using post-processed stresses. Mesh is shown in Fig. 5(b).

BC S k�eMk2
EðXÞ keMk2

EðXÞ kuEQ ;hk2
EðXÞ kuLM;hk2

EðXÞ jM
X

� �
H%

CCCC 50 1.74 � 10�5 3.83 � 10�6 5.05 � 10�3 5.05 � 10�3 2.13 0.010
100 6.34 � 10�4 2.95 � 10�5 3.13 � 10�1 3.13 � 10�1 4.63 0.013

HSSSS 50 3.24 � 10�7 2.61 � 10�7 2.92 � 10�2 2.92 � 10�2 1.12 8.35 � 10�6

100 1.67 � 10�5 1.59 � 10�5 1.86 1.86 1.03 2.54 � 10�5

Table 7
Global quality jM

x

� �
of modeling error estimator; [45/�45] laminate under uniform transverse load of intensity T3(x,y) = 0.025 N/mm2 for M55J/M18 material. Norms are

computed using post-processed stresses. Mesh is shown in Fig. 5(b).

BC S k�eMk2
EðXÞ keMk2

EðXÞ kuEQ ;hk2
EðXÞ kuLM;hk2

EðXÞ jM
X

� �
H%

CCCC 50 1.68 � 10�5 2.57 � 10�6 5.62 � 10�3 5.62 � 10�3 2.55 0.013
100 4.66 � 10�4 1.84 � 10�5 3.47 � 10�1 3.47 � 10�1 5.03 0.014

HSSSS 50 9.76 � 10�4 9.12 � 10�5 1.08 � 10�2 1.09 � 10�2 3.27 0.105
100 2.91 � 10�2 1.55 � 10�3 6.75 � 10�1 6.75 � 10�1 4.33 0.105
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following example. For thick plate ([45/�45] laminate with S = 5),
behavior of effectivity index with mesh size for clamped and hard
supported boundary conditions is shown in Table 8. The meshes
used are shown in Fig. 10. As the mesh size approaches the lamina
thickness the effectivity index tends to the value of 1. However,
this is not observed for the case of hard simple supported laminate.
This is because for hard simple support, the plate paradox plays a
dominant role in the three dimensional models, along with the Kir-
chhoff model (see [44] for more details) and hierarchic plate mod-
els (see [45] for more details). It is shown, [45], that in a
paradoxical behavior of the hard simple support the difference be-
tween hard and soft support need not necessarily be constrained to
a small neighborhood of the boundary, but can influence the solu-
tion in the entire domain (see [44]). A detailed study on this behav-
ior of homogeneous square plates under uniform load can be seen
in [46]. In case of angle-ply laminates, this behavior can be signif-
icant. This can be seen through the distribution of the norm of the
interelement jumps shown for each lamina in Fig. 11(a) and (b) for
all edges hard simple supported and in Fig. 11(c) and (d) for all
edges clamped for Mesh 4 used in this study. The norms are scaled
by the maximum value of the norm (which is 6.94 � 10�5 for all
edges hard supported and 8.18 � 10�7 for all edges clamped). It
is to be noted that value of the norm is more at the corners of
�45� lamina. Also note that the ratio of the highest value of the er-
ror for these two boundary conditions is approximately 100. This
points to the effect of the plate paradox situation, as well as
unsmoothness of solution in the corners for hard simple support
case. At other places the value of the norm is very low compared
Table 8
Global quality jM

x

� �
of modeling error estimator; [45/�45] laminate under uniform transver

meshes used in this study.

BC Mesh k�eMk2
EðXÞ keMk2

EðXÞ

CCCC Mesh 1 3.31 � 10�8 7.84 � 10�10

Mesh 2 1.14 � 10�8 1.37 � 10�9

Mesh 3 4.93 � 10�9 1.66 � 10�9

Mesh 4 2.72 � 10�9 1.81 � 10�9

HSSSS Mesh 1 4.64 � 10�8 1.22 � 10�9

Mesh 2 4.69 � 10�8 1.46 � 10�9

Mesh 3 6.59 � 10�8 1.67 � 10�9

Mesh 4 9.58 � 10�8 1.84 � 10�9

Mesh 4⁄ 4.10 � 10�9 1.84 � 10�9

Mesh 5 2.01 � 10�7 2.77 � 10�8
to the value at the corners. For Mesh 4 the norm of the jumps
are recomputed with one layer of elements on all the boundaries
excluded and referred to as Mesh 4⁄ in Table 8. It can be seen that
the estimated norm of the modeling error is reduced and effectivity
index is improved to 1.49. The maximum value of the norm for this
case is 6.04 � 10�7. In this example if the elements at the corners of
�45� lamina are excluded, the norm of the jump will reduce, lead-
ing to improved effectivity index.

The value of the norm of the jumps depends upon the constant
Cs and the interelement jumps. The value of the constant at
constrained boundaries is different from the other elements and
is lower. However, in this analysis this aspect is not implemented
and all the elements have same constant Cs. This makes the value
of the norm higher at the constraint boundaries than they are.
Also, the interelement jumps do not reduce even with mesh
refinements in the case of hard support. These two factors
increase the norm of the jump leading to increased effectivity
index. A graded mesh refinement in the plate corners will lead
to reduction in jump values. This is motivated by the work done
by Babuška and Scapolla [47] on performance evaluation for a
rhombic plate bending problem. The size of the elements in the
corner, for which the jumps are very high, is reduced. This leads
to a smaller values of jumps in the corner. This is shown in
Table 8 for the Mesh 5 (mesh given in Fig. 10). The graded refine-
ment along all the boundaries would also have given similar
results.

Hence, the proposed modeling error estimator accurately cap-
tures the plate paradox for hard simple support.
se load of intensity T3(x,y) = 0.025 N/mm2 for M55J/M18 material; S = 5. See Fig. 10 for

kuEQ ;hk2
EðXÞ kuLM;hk2

EðXÞ jM
X

� �
H%

2.63 � 10�8 2.56 � 10�8 6.49 9.178
2.66 � 10�8 2.57 � 10�8 2.89 0.677
2.64 � 10�8 2.54 � 10�8 1.72 0.163
2.63 � 10�8 2.52 � 10�8 1.22 0.064

3.21 � 10�8 3.25 � 10�8 6.17 10.52
3.37 � 10�8 3.38 � 10�8 5.66 1.32
3.46 � 10�8 3.43 � 10�8 6.28 0.06
3.55 � 10�8 3.49 � 10�8 7.21 0.05
3.55 � 10�8 3.49 � 10�8 1.49 0.05
3.48 � 10�8 3.48 � 10�8 2.69 0.01
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Fig. 10. Meshes used for the study of behavior of modeling error effectivity index.

(a) x

y

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

(

(c) x

y

(

Fig. 11. Distribution of the norm of the interelement jumps in lamina for (a) 45�; (b) �4
boundary conditions for Mesh 4 in Fig. 10.
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8.4. Domain with static damage

In this section two numerical examples with modeling error
estimation and control are presented.

Here, the laminate stacking sequence, geometry, boundary con-
ditions and material properties are same as given in Section 8.2.
However, the load is uniformly distributed over the top surface
with T3(x,y) = 1 lb/in.2. The initial model used is EQ3332 in the
whole domain. The specified tolerance for discretization error is
1%. The initial mesh used is shown in Fig. 12(a). In this example,
three types of static damages, of fixed size of 16.67 � 16.67 in.,
are considered. The planar location of these damages in the domain
are shown in Fig. 12(b).

The damage in a lamina is incorporated using ‘‘damage meso-
model’’ as proposed by Ladev�eze et al. in [34]. This is a continuum
based damage model. The effect of the damage is manifested by
degradation of material properties through damage indicators or
parameters. The key feature of this model is that it has a separate
indicator for each damage mechanisms in ply and interface. Fur-
ther, it clearly differentiates the behavior under ‘‘tensile’’ and
‘‘compressive’’ stress states. For transversely isotropic laminae
the effect of damage is modeled as follows.

The effect of damage in normal modes is modeled as

Ed
1 ¼

E1ð1� d1Þ if r11 P 0

0 if r11 < 0

(
and Ed

2 ¼
E2ð1� d2Þ if r22 P 0

0 if r22 < 0

(
ð51Þ

and in shear modes as

Gd
12 ¼ G12ð1� d3Þ and Gd

23 ¼ G23ð1� d4Þ ð52Þ

with
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5� lamina with hard simple support and for (c) 45�; (d) �45� lamina with clamped
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Fig. 12. Discretization and modeling error control in domain with static damage in
[0/90/0/90/0/90/0/90/0] laminate; S = 10; under uniform transverse loading of
intensity T3(x,y) = 1 N/mm2. (a) Initial mesh; (b) location and size of static damage.
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Fig. 13. Distribution of scaled modeling error energy for matrix cracking damage.

Table 9
Material properties for Epoxy.

Property E11 = E22 = E33 m12 = m13 = m23

Value 0.67 � 106 psi 0.38
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md
ij

Ed
ij

¼ mij

Eij
ð53Þ

where the superscript d stands for ‘‘damaged’’, d1, d2, d3 and d4 are
the damage indicators for fiber-break, matrix normal crack, inter-
face shear crack damage modes, respectively. The other quantities
have their standard meanings as in laminated composites. For inter-
face, the effect of damage on the interface material is given as

Ed ¼ Eð1� d5Þ ð54Þ

where E is Young’s modulus of the interface material and d5 is the
delamination damage indicator. It is assumed that the intensity of
damage is same in all three modes of delamination. For more details
of this model for ply damage mechanisms refer to [35,36] and ref-
erences therein. For interface damage (delamination) model refer
to [37–39] and references therein.

In the following examples, only static damage cases are imple-
mented and no attempt has been made to study the propagation of
damage. For more details on this see the work done by authors in
[10].

8.4.1. Matrix cracking damage (d2 > 0)
The bottom-most 90� layer has a matrix cracking damage. In

this example it is assumed that the matrix damage causes the deg-
radation of E2 by 80% in the region shown in Fig. 12(b). Thus, in this
region Ed

2 ¼ 0:2E2 is taken. The discretization error for the initial
mesh with EQ3332 model and modeling error are very low. The er-
ror indicators predict that there is no need for mesh and model
adaptivity. The scaled modeling error energy density distribution
in this layer is shown in Fig. 13. This is expected, as matrix cracking
has a weak influence on overall response.

8.4.2. Delamination (d5 > 0)
The fifth interface between 0� and 90� layers from the top of the

laminate has delamination. This interface has been assumed as a
thin layer of epoxy material (see Table 9 for properties). Here,
Young’s modulus of epoxy material is degraded by 80% in the del-
aminated area. The predicted discretization and modeling error are
very low for this mesh and EQ3332 model. Hence, mesh and model
adaptivity is not needed. The scaled modeling error energy density
distribution in this layer is shown in Fig. 14.

8.4.3. Fiber damage (d1 > 0)
The top-most 90� layer has broken fibers in the damaged region.

In this region, Ed
1 ¼ 0:2E1 is taken. The discretization error for this

mesh with initial model EQ3332 is within a specified tolerance of
1%. This mesh is then fixed and model adaptivity is carried out.
The scaled modeling error energy distributions is shown in
Fig. 15 while the model distribution in the domain are shown in
Figs. 16 and 17. The modeling error for the initial mesh and
EQ3332 model is 64.58%. The scaled error energy density distribu-
tion in this layer is shown in Fig. 15(a). In the second step, LM3332
model is adapted in the shaded region as shown in Fig. 16(a). The
modeling error for this model is 33.93%. The scaled error energy
density distribution in this layer is shown in Fig. 15(b). In the third
step, more region is made as layerwise as shown by shaded region
in Fig. 16(b). The layers 7 and 8 are further divided into two sublay-
ers each (see Fig. 17(a)). The modeling error for this model is
25.04%. The scaled error energy density distribution in the sublay-
ers of layer 8 is shown in Fig. 15 (c) and (d). Finally, all the bottom
six original layers are divided into two sublayers each and sublay-
ers of original eighth layer are further divided into two sublayers
each (see Fig. 17(b)). Thus, there are 19 layers (including sublayers)
in this model with layerwise region shown in the Fig. 16(c). The
scaled error energy density distribution for the top-most sublayer
of the original eighth layer is shown in Fig. 15(e), while for other
layers the scaled density of energy of the error is very low. The
modeling error for this model is 17.82%.

From this study it can be observed that:

1. The discretization error for EQ3332 model with initial mesh
for all damage cases is achieved within specified tolerance
with discretization error control in energy. For matrix
cracking and delamination damage the discretization error
is very low compared to that with fiber breakage damage.

2. The effect of matrix cracking and delamination damage do
not have significant effect on modeling error. The EQ3332
model with discretization error controlled is sufficient for
modeling error to be within acceptable limit.

3. Fiber breakage damage has significant effect on modeling
error. The modeling error is maximum at the damage front
in the fiber direction.

4. The use of sublayers in the fiber damaged layers is very
effective in controlling the modeling error.

5. The values of strain energy, given in Table 10, using equilib-
rium equations based post-processed transverse stresses.
These values show convergence from above as this energy
is complementary to strain energy.
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8.4.4. Comparison with Abaqus/Standard
In this study a [0/90/0] laminate of a = b = 30 mm with each

layer of thickness 0.1 mm and material properties for M55J/M18
as given in Table 1 with fiber damage of size 7.5 mm � 7.5 mm
in 90� ply at the center of the plate, as shown in Fig. 18(a) is con-
sidered. The Young’s modulus of the damaged region is given by
Ed

1 ¼ 0:2E1, where E1 is the modulus for healthy region. The initial
mesh used for the analysis is shown in Fig. 18(a). The laminate is
soft simple supported on all edges and subjected to transverse uni-
form load of 1 N/mm2 on top face. Initially EQ2222 model is used
everywhere in the domain. The discretization error for this mesh
and model is 6.67%. The discretization error is controlled to
0.55%. This value is below the specified discretization error toler-
ance of 1%. The final mesh (along with the fiber damage zone) is
shown in Fig. 18(b). With this mesh and laminate model EQ2222,
the modeling error tolerance achieved is 5.3%. This indicates that
the model EQ2222 is not sufficient to achieve the specified model-
ing error tolerance of 5%. The modeling error control methodology
predicts need of LM2222 model in the dark shaded region as shown
y
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Fig. 17. Schematic representation of modeling adaptivity with sublayers in the laminate [0/90/0/90/0/90/0/90/0] with fiber damage in top-most 90� layer under uniform
transverse load (see Fig. 15).

Table 10
Study of discretization and modeling error estimation and control under matrix cracking; delamination and fiber breakage static damage. The models adapted are shown in
Figs. 16 and 17.

Damage Steps Model H % HM % 2U

Matrix cracking 1 EQ3332 everywhere 2.19 � 10�3 5.37 4.40
Delamination 1 EQ3332 everywhere 1.95 � 10�3 2.43 4.54

1 EQ3332 everywhere 0.02 64.58 4.53
2 EQ3332 + LM3332 Fig. 16(a) 33.93 4.53

Fiber breakage 3 EQ3332 + LM3332 with 11 layers
(layers 7, 8 divided into two sublayers)
Figs. 16(b) and 17(a)

25.04 4.52

4 EQ3332 + LM3332 with 19 layers
(except layer 9, all layers into sublayers.
Layer 8 divided into four sublayers) Figs. 16(c) and 17(b)

17.82 4.52
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in Fig. 18(c). The distribution of scaled modeling error in 90� layer
for the laminate model EQ2222 in all the domain and mesh in
Fig. 18(b) is shown in Fig. 18(d). It is clear from Fig. 18(c) that al-
most all the domain needs a layerwise model. The modeling error
tolerance achieved with this mesh and laminate model is 3.78%
and the new distribution of scaled modeling error in 90� layer is
shown in Fig. 18(e). The modeling error in top and bottom layers
is very low. Hence, it is not shown here. The model in Fig. 18(c)
is then used to find the through thickness state of stress at
(19.6875,14.0625) in the domain. It should be noted that this point
is very close to the damage front.

The same has been implemented in commercial finite element
software Abaqus/Standard, that is, Abaqus Implicit (see [48]). In
the damaged region of the layer a different material property has
been used with Ed

1 ¼ 0:2E1. The other properties are same. The
mesh used in this analysis is equivalent to the mesh obtained in
Fig. 18(b). Here, a hexahedral mesh with quadratic solid elements
(in Abaqus it is termed as C3D20) are used in each layer for the
whole domain. Note that C3D20 uses reduced integration. The
number of unknowns in our model used (20073) are close to the
unknowns in the model implemented using Abaqus (17835). Thus,
the two analyses are equivalent. The through thickness state of
stress at (19.6875, 14.0625) in the domain, obtained by both anal-
yses is reported in Fig. 19. It should be noted that in case of Abaqus
analysis the pointwise stress data is available only at specified
points, like centroid of the element, integration points and unique
nodal values. Here, the values at the centroid of the element (and
center of the ply thickness) are used. Fig. 19(a) shows the through
thickness variation of rxx. The variation of transverse normal (rzz)
and shear (syz,sxz) stresses are shown in Fig. 19(b)–(d), respec-
tively. The transverse stress components are obtained by using
equilibrium equations based post-processing in the adaptive anal-
ysis. From this study it can be observed that:

1. The proposed algorithm gives a detailed map of distribu-
tion of discretization and modeling errors and adapts the
mesh and model according to desired error tolerances. This
feature is not found in commercial codes.

2. The proposed approach allows automatic refinement of
analysis in critical region.
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Fig. 18. Meshes used and distribution of scaled modeling error for [0/90/0] laminate with fiber breaking damage in 90� layer. (a) Initial mesh used (discretization error
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3. The pointwise stresses, as reported in Fig. 19, show that the
adopted analysis and Abaqus results are close for the
inplane stress component (rxx). However, for the transverse
normal and shear stress components Abaqus results show
significant difference for the stress values in the damaged
90� layer. The value of the stress component rzz computed
from the adaptive analysis on the top surface of the
laminate (0.85 N/mm2), where the load is applied, is close
to the value of the load applied, that is 1 N/mm2, whereas
the value obtained from Abaqus is very far. Further, for
transverse shear stress components obtained by adaptive
analysis the variation in thickness direction is consistent.
Note that the point where these stresses are obtained is very
close to the damage front and thus the through thickness
variation of these stresses is expected to be significantly
influenced by the damage. The Abaqus analysis seems to
degrade due to this effect. The example clearly illustrates
the advantage of given adaptive analysis strategy.
Remark. In the present Abaqus implementation the mesh used is
given by the adaptive analysis. Further, the adaptive analysis pre-
dicted layerwise model almost everywhere in the domain. Hence,
in the Abaqus the 3D model is used in the whole domain. Thus,
the mesh and model chosen in Abaqus analysis is driven by the
present adaptive analysis with the idea that both analyses are
equivalent.

The goal of this study is to show that the present approach is
computationally economical and accurate. The advantage of our
approach is that a non-expert user can start the analysis with a
crude mesh and a model, that is, an equivalent single layer model.
The present approach will choose the mesh after selective refine-
ments to achieve the user defined tolerance in the discretization
error and then the proper models are adapted in different regions
of the plate, if needed. To the authors knowledge, the capability
of adaptive selection of models in different regions of the lami-
nated plate is not available in any commercial finite element
software.
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Fig. 19. Comparison of through thickness variation of stress components by adaptive analysis and Abaqus/Standard at point (19.6875,14.0625) in [0/90/0] laminate with fiber
breaking damage in 90� layer. The transverse normal and shear stress components shown for the adaptive analysis are obtained by using equilibrium equations based post-
processing. (a) rxx; (b) rzz; (c) syz; (d) sxz.

P.M. Mohite, C.S. Upadhyay / Computers and Structures 112-113 (2012) 217–234 233
Remark. Here, we have not compared the computational time
taken by each approach as the current computational implemen-
tation is not optimized from an algorithmic and hardware resource
usage point of view.
9. Conclusions

In the present study a generalized finite element analysis of
laminated composite plates has been presented. An attempt has
been made to estimate and control both discretization and
modeling error. The equivalent single layer, layerwise and
region-by-region plate models developed by authors earlier for
laminated composites have been used. Further, the recovery based
discretization error estimators developed earlier for the error in
the quantity of interest or energy norm and one shot adaptivity
are used to estimate and control the discretization error. An
explicit modeling error indicator is proposed and implemented
successfully. The proposed modeling error indicator uses the
equilibrium equations based post-processed transverse stresses.
Further, a systematic methodology is proposed for modeling error
control. The quality of the proposed modeling error estimator is
demonstrated for two values of plate length to thickness ratios,
boundary conditions and lamina stacking sequences of laminate
under uniform transverse load. The efficacy of the proposed
approach in estimating and controlling the modeling error is also
demonstrated for a cross ply symmetric laminate with different
static damage modes. The results are also compared with
Abaqus/Standard for accuracy and consistency. The main advan-
tage of the proposed approach is that a non-expert user can get
the desired mesh and models in the laminate automatically by
the present approach to achieve the user specified error tolerances
in discretization and modeling errors. Further, the present
approach ensures the accurate computation of critical quantities in
region of interest in one single analysis thus saving the cost and
time associated with the (mesh and model) sensitivity analyses.
The main features of this study are summarized as follows:

1. The in-plane stress components are accurately computed by
all models. The layerwise model accurately computes both
in-plane and transverse stress components. The equilibrium
equations based post-processing approach used to extract
transverse stresses is effective for all models.

2. The region-by-region modeling approach is as accurate as
layerwise model and computationally very economical. For
the examples studied the saving in computational cost over
the layerwise (or 3D) model can be up to 75–80%.

3. The global quality of the discretization error indicator is
demonstrated for cross-ply and angle ply laminates with
two different boundary conditions of clamped and soft sim-
ple support. The study is carried out for equivalent single
layer and layerwise models. The estimator is found to be
reliable with global effectivity index varying between 1.06
and 1.35.

4. The global quality of modeling error indicator is tested for
cross-ply and angle ply anti-symmetric laminates for
clamped and soft simple supported boundary conditions.
The estimator is found to be good for soft simple supported
conditions and can overestimate in case of clamped bound-
ary conditions. Further, with mesh size approaching the
thickness of the lamina the indicator showed improvement
in quality. Overall, the indicator is found to be robust.

5. The indicator is efficient in predicting the modeling error.
The modeling error indicator gives smaller errors as it uses
the equilibrium equations based post-processed stress for
the computation of error.

6. The proposed modeling error estimator accurately captures
the plate paradox for hard simple support boundary
condition.

7. The fiber damage has significant effect over matrix cracking
and delamination damage for discretization and modeling
error. For the problems studied the given mesh and model
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were sufficient for matrix cracking and delamination dam-
age case to have discretization and modeling error within
user specified tolerance, whereas for fiber damage case the
given model is not sufficient to control the specified model-
ing error tolerance. It required enrichment of model locally
and division of layers into sublayers near the damage. This
is an example of automatic adaptivity in the thickness direc-
tion. This feature is a significant contribution of this study.

8. The concept of sublayers is very effective in controlling the
modeling error. For the problems studied, it reduced the
modeling error by 50% in two sublayer enrichments.

9. The proposed modeling error control methodology is found
to be efficient in controlling the error.

10. A non-expert user can use this approach for reliable analysis
of laminates for any engineering quantity of interest. This
feature will allow an analyst to obtain reliable values of all
desired response quantities, hence improving confidence in
computational results.
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