A New Three-Valued Paraconsistent Logic Sourav Tarafder 1 and Mihir Kr. $\rm Chakraborty^2$ ¹Department of Pure Mathematics, University of Calcutta ²Jadavpur University and Indian Statistical Institute, Kolkata Paraconsistent logic and three-valued semantics: The term Paraconsistent was first used by the Peruvian philosopher Francisco Miró Quesada in the Third Latin America Conference on Mathematical Logic in 1976. A logic is called paraconsistent if there are formulas ϕ and ψ such that $\{\phi, \neg \phi\} \not\vdash \psi$. Besides other semantics, the three-valued semantics of (paraconsistent) logics have always received special attentions from logicians like J. Łukasiewicz, S. C. Kleene and others and paraconsistentists like S. Jaśkowski, N.C.A. da Costa, G. Priest, R. Brady, C. Mortensen, D'Ottaviano, W. A. Carnielli, João Marcos etc. Parainconsistency axioms have been introduced in [5] in a way similar to classical two-valued logic. Introduction of the three-valued matrix PS_3 : Here we shall introduce a new three-valued matrix, $PS_3 := \langle \{1, \frac{1}{2}, 0\}, \wedge, \vee, \Rightarrow, * \rangle$ where $\langle \{1, \frac{1}{2}, 0\}, \wedge, \vee \rangle$ is a distributive lattice and the *designated set* of PS_3 has been fixed as, $\{1, \frac{1}{2}\}$. From the truth tables of PS_3 it can easily be verified that $(\frac{1}{2}) \wedge (\frac{1}{2})^* \Rightarrow 0 = 0$ and hence PS_3 might be a three-valued semantics of some paraconsistent logic. **Proof theory for** PS₃: The main part of this work is to develop a propositional logic LPS₃ so that PS₃ becomes the three-valued semantics of it. We have proved that LPS₃ is sound and complete with respect to PS₃. It will then be discussed how does LPS₃ satisfy Jaskowski's criterion (cf. [6]) of being a paraconsistent logic. Comparison with other existing three-valued paraconsistent logics: A comparison between LPS₃ and some other paraconsistent logics having three-valued semantics, such as LP (*Priest's Logic of Paradox*) [8], LFI1 (*Logic of Formal Inconsistency 1*) and LFI2 (*Logic of Formal Inconsistency*) 2) [3], J_3 (D'Ottaviano's logic) [4], RM_3 [2], P1 (Sette's three-valued logic) [9], $C_{0,2}$ (Mortensen's paraconsistent logic) [7] will be made. Particularly PS_3 has close connections with the three-valued models of the paraconsistent logics P1 (or $C_{0,1}$) and $C_{0,2}$. It is worthwhile to show, how do these logics differ pair wise. It is proved that LPS_3 is maximal relative to the classical propositional logic. Paraconsistent set theory: The motivation of finding the algebra PS₃ is to build a model of some paraconsistent set theory. The paraconsistent logic LPS₃ can be used in some algebra-valued set theory construction similar to the Boolean-valued construction (cf. [1]) to obtain a model of a (weak) paraconsistent set theory. ## References - [1] Bell, J. L., "Boolean-valued models and independence proofs in set theory", Oxford University Press, New York, (1985). - [2] Brady, R., "Completeness proofs for the systems RM3 and BN4", Logique et Analyse 25 (1982), 51 61. - [3] Carnielli, W. A.; Marcos, J. and Amo, S., "Formal Inconsistency and Evolutionary Databases", Logic and Logical Philosophy 8 (2000), 115 152. - [4] D'Ottaviano, I. M. L. and da Costa, N. C. A., "Sur un problme de Jaśkowski", Comptes Rendus Acad. Sci. 270A (1970), 1343 1349. - [5] Dutta, S. and Chakraborty, M. K., "Negation and Paraconsistent Logics", Logica Universalis 5 (2011), 165 - 176. - [6] Karpenko, A. S., "Jaśkowsi's Criterion and Three-Valued Paraconsistent Logics", Logic and Logical Philosophy 7 (1999), 81 86. - [7] Mortensen, C., "Paraconsistency and C₁", in: Paraconsistent Logic: Essays on the inconsistent (eds. G. Priest, R. Routley, J. Norman). Philosophia Verlag, München, (1989), 289 305. - [8] Priest, G., "Logic of paradox", Journal of Philosophical Logic 8 (1979), 219 - 241. - [9] Sette, A.M., "On propositional calculus P1", Mathematica Japonica 16 (1973), 173 180.