Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

Dialectics of Approximation of Semantics of Rough Sets

A. Mani

Deptartment of Pure Mathematics University of Calcutta 9/1B, Jatin Bagchi Road Kolkata-700029, India E-Mail: *a.mani.cms@gmail.com* Web: www.logicamani.in

CLC/SLC 30th Oct' -2nd Nov'2013

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Tone and Focus

- Rough Y Systems: Axiomatic Approach to Granules.
- Correspondences across RYS
- Less Concrete: Relation, Cover Based, Abstract RST.
- Concrete: Variations of Semantics.
- Concrete: PRAX, Tolerances, Sub Reflexive.
- More Concrete: Example Contexts/ Contexts of Problem Origin.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

RBRST Context

- General approximation space: $S = \langle \underline{S}, R \rangle$.
- Rough Semantics μ(S, S) of various types in many Semantic Domains.
- Semantics can be difficult when *R* satisfies weaker forms of transitivity, etc.
- *R* can be approximated by quasi/partial orders and other relations.
- For quasi-orders a semantics for the set {(A^l, A^u); A ⊆ S} as Nelson algebras over an algebraic lattice is known [SJ, JPR'2011].
- How well do the corresponding semantics help?

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

Generalised Transitive Relations

- Weakly Transitive: If whenever Rxy, Ryz and x ≠ y ≠ z holds, then Rxz. ((R ∘ R)\Δ_S ⊆ R)
- Transitive: whenever Rxy & Ryz holds then Rxz $((R \circ R) \subseteq R)$
- Proto-Transitive: Whenever Rxy, Ryz, Ryx, Rzy and $x \neq y \neq z$ holds, then Rxz. Proto-transitivity of R is equivalent to $R \cap R^{-1} = \tau(R)$ being weakly transitive.

An infinite number of weakenings of transitivity is possible, but no systematic approach to handle these is known.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

Definitions

- Proto Approximation Space S: $\langle \underline{S}, R \rangle$. (PRAS)
- Reflexive Proto Approximation Space: PRAX
- Successor nbd: $[x] = \{y; Ryx\}$ Associated Granulations : $\mathscr{G} = \{[x] : x \in S\}$
- Successor nbd: [x]_o = {y; Ryx & Rxy} Associated Granulations : 𝒢_o = {[x] : x ∈ S}
- Upper Proto: $A^u = \bigcup_{[x] \cap A \neq \emptyset} [x].$
- Lower Proto: $A^{l} = \bigcup_{[x] \subseteq A} [x].$

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

Approximations

Symmetrized Upper Proto $A^{uo} = \bigcup_{[x]_o \cap A \neq \emptyset} [x]_o$. Symmetrized Lower Proto $A^{lo} = \bigcup_{[x]_o \subseteq A} [x]_o$. Point-wise Upper $A^{u+} = \{x : [x] \cap A \neq \emptyset\}$. Point-wise Lower $A^{l+} = \{x : [x] \subseteq A\}$. X-Definite Element a subset A satisfying $A^X = A$. $\delta_X(S)$ - Collection Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ ()

Relation Between Approximations |

Theorem

 $(\forall A \in \wp(S)) A^{l+} \subseteq A^{l}, A^{u+} \subseteq A^{u}.$

Theorem

Bi $(\forall A \in \wp(S)) A^{ll} = A^l \& A^u \subseteq A^{uu}$. I-Cup $(\forall A, B \in \wp(S)) A^l \cup B^l \subseteq (A \cup B)^l$. I-Cap $(\forall A, B \in \wp(S)) (A \cap B)^l \subseteq A^l \cap B^l$. u-Cup $(\forall A, B \in \wp(S)) (A \cup B)^u = A^u \cup B^u$ u-Cap $(\forall A, B \in \wp(S)) (A \cap B)^u \subseteq A^u \cap B^u$ Dual $(\forall A \in \wp(S)) A^{lc} \subseteq A^{cu}$.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

Relation Between Approximations II

Theorem

In a PRAX S, all of the following hold:

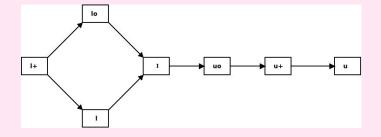
- $(\forall A, B \in \wp(S)) (A \cap B)^{l+} = A^{l+} \cap B^{l+}$
- $(\forall A, B \in \wp(S)) A^{l+} \cup B^{l+} \subseteq (A \cup B)^{l+}$
- $(\forall A \in \wp(S)) (A^{l+})^c = (A^c)^{u+}, \& A^{l+} \subseteq A^{lo} \& A^{uo} \subseteq A^{u+} \& A^{l+} \subseteq A^{lo}.$

Approximate Semantics

A. Mani

Context

Approximation of Relations


Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ ()

Relationship Diagram

Reading Help: the u+- approximation of a set is included in the u-approximation of the same set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

Types of Algebraic Semantics for PRAX

• Semantics of Definite Objects.

- Semantics of Rough Objects
- Mixed Semantics of Rough Objects
- Antichains of Rough Inclusion.
- Dialectical Semantics
- Approximation of Semantics.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

・ロト・西ト・川川・三ト・日下 ひゃぐ

Definitions-1

- R is a binary relation on a set X.
- $R^o \stackrel{\partial}{=} R \cup \Delta_X$.
- Weak transitive closure of R: $R^{\#}$.

• $R^{(i)}$ is the *i*-times composition $\underbrace{R \circ R \dots \circ R}_{i-\text{times}}$, then $R^{\#} = | |R^{(i)}$.

- *R* is *acyclic* if and only if $(\forall x) \neg R^{\#}xx$.
- $R^{\cdot}ab$ if and only if $Rab \& \neg (R^{\#}ab \& R^{\#}ba)$.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ ()

Definitions-2

• $R^{\flat}ab$ if and only if $[b]_{R^{\circ}} \subset [a]_{R^{\circ}} \& [a]_{iR^{\circ}} \subset [b]_{iR^{\circ}}$.

- $R^{cyc}ab$ if and only if $R^{\#}ab$ and $R^{\#}ba$.
- R^hab if and only if R^bab and R^ab .

In case of PRAX, $R^{o} = R$, so the definition of R^{\flat} would involve neighborhoods of the form [a] and $[a]_{i}$ alone. $R^{\flat} \subset R$ and R^{\flat} is a partial order.

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ ()

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

PRAX Case

Theorem

 $R^h = \emptyset.$

Proposition

All of the following hold in a PRAX S:

- $R^{\cdot}ab \leftrightarrow (R \setminus \tau(R))ab.$
- $(\forall a, b) \neg (R^{\cdot}ab \& R^{\cdot}ba).$
- $(\forall a, b, c)(R^{\cdot}ab\& R^{\cdot}bc \longrightarrow \neg R^{\cdot}ac).$

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

Theorem

 $R^{\# \cdot} = R^{\#} \setminus \tau(R).$ $P^{\cdot \#} = (R \setminus \tau(R))^{\#}.$

 $(R \setminus \tau(R))^{\#} \subseteq R^{\#} \setminus \tau(R)$

Possible/Desirable Properties

If < is a strict partial order on S and R is a relation, then consider the conditions :

PO1
$$(\forall a, b)(a < b \longrightarrow R^{\#}ab)$$
.
PO2 $(\forall a, b)(a < b \longrightarrow \neg R^{\#}ba)$.
PO3 $(\forall a, b)(R^{\flat}ab \& R^{\flat}ab \longrightarrow a < b$.
PO4 If $a \equiv_R b$, then $a \equiv_< b$.
PO5 $(\forall a, b)(a < b \longrightarrow Rab)$.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Partial Order Approximation

- partial order approximation POA of *R* iff PO1, PO2, PO3, PO4.
- weak partial order approximation: WPOA PO1, PO3, PO4).
- inner approximation IPOA: PO5.
- R^h , $R^{\cdot \flat}$ are IPOA, while $R^{\cdot \#}$, $R^{\# \cdot}$ are POAs.
- Lean quasi order approximation < of R, we will mean a quasi order satisfying PO1 and PO2.
- The corresponding sets of such approximations of *R* will be denoted by *POA*(*R*), *WPOA*(*R*), *IPOA*(*R*), *IWPOA*(*R*) and *LQO*(*R*)

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

Theorem

Theorem

For any $A, B \in LQO(R)$, we can define the operations $\&, \lor, \top$:

- $(\forall x, y)(A\&B)xy$ if and only if $(\forall x, y)Axy\&Bxy$.
- $(A \lor B) = (A \cup B)^{\#}, \ T = R^{\#}.$

Theorem

In a PRAX, $R^{\cdot \#} \& R^{\# \cdot} xy \leftrightarrow (R \setminus \tau(R))^{\#} xy$.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Granules-1

• $R^{\#\cdot}$: trans ortho-completion of R

- $[x]_{ot} = \{y; R^{\#} yx\}. [x]_{ot}^{i} = \{y; R^{\#} xy\}.$
- $[x]_{ot}^{o} = \{y; R^{\#} yx \& R^{\#} xy\}.$

Theorem

In a PRAX S, $(\forall x \in S)[x]_{ot}^o = \{x\}.$

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

Symmetric Center of R

- Definition: $K_R = \bigcup e_i(\tau(R) \setminus \Delta_S)$.
- K_R can be used to partially categorize subsets of S based on intersection.
- Prop1: $(\forall x)[x] \Delta[x]_{ot} \neq \emptyset$ as
- Prop2: $x \notin K_R \longrightarrow [x] \subset [x]_{ot}$.
- Prop3: $x \in K_R \longrightarrow [x] \nsubseteq [x]_{ot} \& \{x\} \subset [x] \cap [x]_{ot}$.
- Prop4: $(R \setminus \tau(R))^{\#} \cup \tau(R)$ is not necessarily a quasi order.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくべ

Proposition

 $((R \setminus \tau(R))^{\#} \cup \tau(R))^{\#} = R^{\#}.$

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

Relation Between Semantics

- Perspective-1: The definite or rough objects most closely related to the difference of lower approximations and those related to the difference of upper approximations can be expected to be related in a nice way.
- We prove that nice does not have a rough evolution anyway it is a semantics that involves that of [JPR'2011, SJ].
- Perspective-2: Starting from sets of the form $A^* = (A^l \setminus A^{l_{\#}}) \cup (A^{u_{\#}} \setminus A^u)$ and taking their lower $(l_{\#})$ and upper $(u_{\#})$ approximations the resulting structure would be a partial algebra derived from a Nelson algebra over an algebraic lattice ([AM'2012C]).

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

Perspective-1

Proposition

In a PRAX S, (we use # subscripts for neighborhoods, approximation operators and rough equalities of the weak transitive completion):

- Nbd: $(\forall x \in S) [x]_R \subseteq [x]_{R^{\#}}$.
- App: $(\forall A \subseteq S) A^{l} \subseteq A^{l_{\#}} \& A^{u} \subseteq A^{u_{\#}}$.
- *REq*: $(\forall A \subseteq S)(\forall B \in [A]_{\approx})(\forall C \in [A]_{\approx_{\#}}) B' \subseteq C^{I_{\#}} \& B^{u} \subseteq C^{u_{\#}}.$

A more general partial order: \preceq over $\wp(\wp(S))$ via $A \preceq B$ if and only if $(\forall C \in A)(\forall E \in B) C' \subseteq E^{l_{\#}} \& C^{u} \subseteq E^{u_{\#}}$.

Definition

- *I-scedastic approximation*: $A^{\hat{l}} = (A^l \setminus A^{l_{\#}})^l$.
- *u-scedastic approximation*: $A^{\hat{u}} = (A^{u_{\#}} \setminus A^{u})^{u_{\#}}$.
- These are the best possible from closeness to properties of rough approximations.

Approximate Semantics

A. Mani

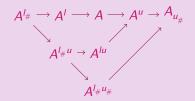
Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References


・ロト・母ト・ヨト・ヨト ヨー もくの

Scedasticity-1

Theorem

For an arbitrary subset $A \subseteq S$ of a PRAX S, the following statements and diagram of inclusion (\rightarrow) hold:

- $A^{I_{\#}I} = A^{I_{\#}} = A^{II_{\#}} = A^{I_{\#}I_{\#}}$
- If $A^u \subset A^{u_\#}$ then $A^{uu_\#} \subseteq A^{u_\#u_\#}$.

・ロト ・ 日 ・ モ ト ・ 日 ・ ・ つ へ ()

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

Scedasticity-2

Theorem

For an arbitrary subset $A \subseteq S$ of a PRAX S,

$$(A^{l} \setminus A^{l_{\#}})^{l} \nsubseteq (A^{u_{\#}} \setminus A^{u})^{u_{\#}} \longrightarrow A^{u_{\#}} = A^{u}.$$
$$A^{u_{\#}} \neq A^{u} \longrightarrow A^{l} \setminus A^{l_{\#}})^{l} \subseteq (A^{u_{\#}} \setminus A^{u})^{u_{\#}}.$$

Theorem

Key properties of the scedastic approximations follow:

$$(\forall B \in \wp(S))(B^{\hat{l}} = B \nleftrightarrow B^{\hat{u}} = B)$$

$$(\forall B \in \wp(S))(B^{\hat{u}} = B \to B^{\hat{l}} = B)$$

$$(\forall B \in \wp(S)) B^{\hat{i}\hat{i}} = B^{\hat{i}}.$$

$$(\forall B \in \wp(S)) B^{\hat{u}\hat{u}} \neq B^{\hat{u}}.$$

● It is possible that $(\exists B \in \wp(S) B^{\hat{u}\hat{u}} \subset B^{\hat{u}})$.

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An interesting problem can be given A for which $A^{u_{\#}} \neq A^{u}$, when does there exist a B such that

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

$$B^{l} = (A^{l} \setminus A^{l_{\#}})^{l} = A^{\hat{l}} \& B^{u} = (A^{u}_{\mathbb{C}^{\#}} \setminus A^{u})^{u_{\#}} = A^{\hat{u}}_{\mathbb{C}^{\#}} \land \mathbb{C}^{u}_{\mathbb{C}^{\#}} \land \mathbb{C}^{u}_{\mathbb{C}^{\#}$$

References |

Mani, A.:

Approximation Dialectics of Proto-Transitive Rough Sets. Accepted: ICFUA'2013, Kolkata, 2013 10pp.

Mani, A.:

Contamination-Free Measures and Algebraic Operations. Proceedings of FUZZIEEE'2013 Eds N.Pal et al. (F-1438) Hyderabad, India, CIS-IEEE, 2013, 16pp.

Mani, A.:

Dialectics of Knowledge Representation in a Granular Rough Set Theory. Refereed Conference Paper: ICLA'2013, Inst. Math. Sci. Chennai Updated Expanded Version: http://arxiv.org/abs/1212.6519.15pp.

Mani, A.:

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References II

Mani, A.:

Axiomatic Approach to Granular Correspondences. Proceedings of RSKT'2012, LNAI 7414, Springer-Verlag, 482–487, Eds: Li, T., and others, 2012

📄 Mani, A.:

Semantics of Proto-Transitive Rough Sets. To Appear, 63 pp, 2012–2013

Mani, A.: Choice Inc

Choice Inclusive General Rough Semantics. Information Sciences **181**(6) (2011) 1097–1115

Mani, A.:

Dialectics of Counting and the Mathematics of Vagueness. Transactions on Rough Sets **XV**(LNCS 7255) (2012) 122–180

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References III

Mani, A.:

Dialectics of Counting and Measures of Rough Set Theory. In: IEEE Proceedings of NCESCT'2011, Pune, Feb-1-3, Arxiv:1102.2558 (2011) 17pp

Mani, A.: Towards Logics

Towards Logics of Some Rough Perspectives of Knowledge. In Suraj, Z., Skowron, A., eds.: Intelligent Systems Reference Library dedicated to the memory of Prof. Pawlak,. Springer Verlag (2011-12) 342–367

Cattaneo, G., Ciucci, D.: Lattices with Interior and Closure Operators and Abstract Approximation Spaces. In Peters, J.F., et al., eds.: Transactions on Rough Sets X, LNCS 5656. Springer (2009) 67–116

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References IV

Janicki, R.:

Approximation of Arbitrary Binary Relations by Partial Orders: Classical and Rough Set Models In Peters, J.F., et al.,eds.:Transactions on Rough Sets XIII, LNCS 6499. Springer (2011) 17–38

 Jarvinen, J., Pagliani, P., Radeleczki, S.: Information completeness in Nelson algebras of rough sets induced by quasiorders Studia Logica 2012 1–20

Jarvinen, J. and Radeleczki, S. Representation of Nelson Algebras by Rough Sets Determined by Quasi-orders Algebra Universalis 66, (2011) 163–179

Burmeister, P.:

A Model-Theoretic Oriented Approach to Partial Algebras. Akademie-Verlag (1986, 2002)

イロト (四) (日) (日) (日) (日) (日)

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References V

Varzi, A.: Parts, Wholes and Part-Whole Relations: The Prospects of Mereotopology. Data and Knowledge Engineering 20 (1996) 259–286
Polkowski, L., Skowron, A.:

Rough Mereology: A New Paradigm for Approximate Reasoning. Internat. J. Appr. Reasoning **15**(4) (1996) 333–365

Mani, A.:

Meaning, choice and similarity based rough set theory. Internat. Conf. Logic and Applications, Chennai; http://arxiv.org/abs/0905.1352 (2009) 12p

🚺 Mani, A.:

Towards an algebraic approach for cover based rough semantics and combinations of approximation spaces. In: Sakai, H. et al (Eds) RSFDGrC 2009, LNAI.5908 (2009) 77–84 Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References VI

Mani, A.: Esoteric Rough Set Theory-Algebraic Semantics of a Generalized VPRS and VPRFS, in: Transactions on Rough Sets VIII (A. Skowron, J. F. Peters, Eds.), vol. LNCS 5084, Springer Verlag, 2008, 182–231.

Mani, A.: Dialectics of Counting and Measures of Rough Set Theory, IEEE Proceedings of NCESCT'2011, Pune, Feb.1-3,

Arxiv:1102.2558, 17pp, 2011

Chakraborty, M. K., and Samanta, P.: On Extension of Dependency and Consistency Degrees of Two Knowledges Represented by Covering Transactions on Rough Sets IX, LNCS 5390, Springer Verlag, Eds: Peters, J. F., and Skowron, A., 2008, 351–364.

Gomolinska, A.: On Certain Rough Inclusion Functions, Transactions on Rough Sets IX, LNCS 5390, Springer Verlag, 35–55, 2008. Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References VII

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

Mani, A.: Super rough semantics. Fundamenta Informaticae 65(3), (2005) 249–261

Banerjee, M. and Chakraborty, M. K.: Algebras from Rough Sets –an Overview, in Rough-Neural Computing, S. K. Pal and et. al, Eds. Springer Verlag, 2004, pp. 157âĂŞ184.

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへぐ

Approximate Semantics

A. Mani

Context

Approximation of Relations

Granules of Derived Relations

Transitive Completion and Approximate Semantics

References

THANK YOU !

・ロト・4回ト・4回ト・目・9900