MATHEMATICAL KNOWLEDGE IS CONTEXT
DEPENDENT

BENEDIKT LOWE AND THOMAS MULLER

‘But a proof is sometimes a fuzzy concept,
subject to whim and personality.’
Kenneth Chang, New York Times
(April 6, 2004)

1. INTRODUCTION

Mathematical knowledge appears to be of a special, privileged form.
When somebody knows a mathematical fact, we say that she knows
‘with mathematical certainty’, and it is commonly assumed that noth-
ing can be more firmly grounded than that. Not surprisingly, in philo-
sophical contexts, mathematics is often used as an epistemological role
model. Mathematical knowledge is assumed to be absolute and unde-
niably firm. The main reason for that special status lies in the fact
that mathematicians prove their theorems: Mathematical knowledge
is proven knowledge. What has been proven is established beyond all
doubt. Thus, mathematical knowledge stands out as a uniform, privi-
leged form of knowledge.

Or so it would seem. The main thesis of our paper is that like other
forms of knowledge, mathematical knowledge needs to be understood
in a context dependent way. Whether a given epistemic subject knows
that P (for some mathematical proposition P) depends on specific
requirements set by context. These requirements will be linked to a
context dependent notion of proof and to the subject’s mathematical
skills.

Our thesis has a number of important consequences. For one thing,
showing even mathematical knowledge to be context dependent can be
seen as yet another, strong argument in favour of contextualism in gen-
eral. Another consequence is that epistemologically, mathematics turns
out to be much closer to the other sciences than many philosophers (or
mathematicians, for that matter) would think.

A previous version of this paper was given at the conference ‘Degrees of Belief’,
Konstanz, 24 July 2004. We like to thank the participants for the fruitful discussion
following our presentation.
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Before we begin our argumentation, we consider a few methodolog-
ical issues. We will proceed from a broadly naturalistic assumption:
In philosophising about mathematics, mathematical practice must be
taken seriously. If certain expressions, such as ‘knowledge’, or °
knows that...’, are used in the mathematical community, then that
usage cannot be dismissed without good arguments. This is not to say
that mathematical practice has the last word—but it certainly has to
have the first word.

Thus, we will not be satisfied with an epistemology for mathematics
according to which there is no (or hardly any) mathematical knowl-
edge in the world—mathematical practice asserts that on the contrary,
there is a lot of mathematical knowledge. As we will point out be-
low, a number of seemingly innocuous assumptions about mathematical
knowledge and proof quite easily lead to such a conclusion, and it will
therefore be important to avoid these assumptions. On the other hand,
we will also not be willing to accept an epistemology that identifies all
true mathematical statements (as the necessary proposition 2 + 2 = 4
in disguise), and that consequently grants that every epistemic subject
knows all mathematical truths. There is certainly less mathematical
knowledge than that! Someone supporting such an epistemology would
claim that the difference between knowing that 2+ 2 = 4 and knowing
that if for some n, 2" 4+ y™ = 2" for all natural numbers z, y, z, then
n < 2 (Fermat’s Last Theorem) is a mere difference of recognition, not
of knowledge. However, this view is deeply at odds with the way we
talk about knowledge of mathematical statements. We normally say ‘I
didn’t know that P’, but we can hardly say ‘Oh, I hadn’t recognized
that P is just 2+ 2 = 4 in a different form’, or ‘I hadn’t seen that P
means that 2 4+ 2 = 4".

With respect to contextualism (for details, cf. Section 2), our method-
ology has another important consequence. A number of philosophers,
e.g., [Scha04], concede the context dependence of knowledge attribu-
tions (quite an obvious linguistic fact), but dispute the context depen-
dence of knowledge itself. In order to support such a view, pragmatic
rules are cited according to which in some contexts it is just inappro-
priate to say that S knows that P even though S does know that P,
or in which it is appropriate to say that S knows that P even though
S does not know that P. Effects of mismatch between semantics and
pragmatics are indeed common. F.g., it is true, but not normally
appropriate to say, that the earth has less than 19 moons. These prag-
matic effects may also play a role in some epistemic situations—e.g., it
is not normally appropriate to say that somebody knows that the earth
has less than 19 moons, either. However, with respect to the question
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of knowledge attributions in mathematics, a non-contextualist reading
has to specify a rather narrow criterion for knowledge that applies to
much fewer cases than actual usage suggests. The pragmatic explana-
tion will then have to claim that these are all cases of S not knowing
that P in which it is still pragmatically adequate to say that S knows
that P. Such cases are possible, but most examples of that kind of
pragmatic/semantic mismatch are so-called white lies. E.g., it may be
appropriate to say to a nervous speaker after his talk that this was a
nice talk even if one doesn’t really think so. However, this is surely
an odd account of what goes on in mathematical knowledge attribu-
tions generally. Our methodology urges us to take such statements
at face value unless there are good reasons to the contrary—and such
reasons had better not rest on a distaste for contextualism. In math-
ematical practice (e.g., in exams), people argue about what a certain
subject knows, not what it would be appropriate to say about a cer-
tain subject. (Try telling an examinor ‘Of course I don’t know, but it
would be appropriate to say that I do, so I deserve an A’.) Thus con-
text dependence of knowledge attribution in mathematics, given our
methodology, immediately supports our thesis of context dependence
of mathematical knowledge itself.

2. CONTEXTUALIST EPISTEMOLOGY: LEWIS’S ANALYSIS

Contextualism is a fairly recent attempt at answering one of the
long-standing problems of epistemology, viz., the problem of skepti-
cism. In spelling out contextualism, we follow David Lewis’s general
analysis, given in his 1996 classic, ‘Elusive knowledge’. Lewis tries
to find a way of holding on to the at least prima facie reasonable
claim that knowledge must be infallible while avoiding the skeptical
challenge. Infallibility means that a purported knower must have elim-
inated all possibilities that put her knowledge claim in doubt. However,
the skeptic can always point to some far-fetched possibilities which the
purported knower has overlooked: CIA plots, brains-in-a-vat scenarios,
a deceiving demon. Thus, the purported knower cannot sustain her in-
fallibility claim—and accordingly, there is no knowledge. As arguments
of that type apply to all knowledge claims, it would seem that there is
no knowledge at all. But this is absurd; we know a lot. Lewis counters
the skeptic’s moves by pointing out that these moves amount to chang-
ing the context of the knowledge claim. His own, context dependent
analysis of ‘S knows that P’ is as follows:
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S knows that P iff S’s evidence eliminates every possibility
(#)  in which not-P—Psst!—except for those possibilities
that we are properly ignoring [Lew96, 554].

The option of ‘properly ignoring possibilities’ allows for a spectrum of
knowledge contexts from the loose standards of every-day usage (in
which, e.g., I know that my cat Possum is not in the study with-
out checking the closed drawers; cf. [Lew96, 562]) to the demanding
standards of epistemology (Cartesian Doubt), in which (almost) all
knowledge claims are defeated. Consequently, a switch of context may
destroy knowledge. This, so Lewis, both explains the force of skeptical
arguments and points a way to a cure.

Lewis’s paper and a number of other related works gave rise to a huge
debate about details and technicalities of his version of contextualism,
dealing with important questions about the specification of ‘properly
ignoring possibilities’ and the context changes in communicative acts.
This paper is not intended to be a direct contribution to that debate.’
We rather assume that contextualism has a stable core, and we will
try to employ that core notion to mathematics. Our emphasis will be
on determining how a context for knowledge claims can be specified
in mathematics, and how such contexts can be related to the math-
ematically central notion of proof. We will follow Lewis’s outline of
‘eliminating adverse possibilities” and ‘properly ignoring possibilities’
to fix the terminology. As to details of the debate, to put our cards on
the table, we favour the approach to contextualism put forward by Mac-
Farlane [MacF05], who points to a number of important phenomena
connected with nesting knowledge claims and other modal operators.
As we will treat stand-alone sentences only, we will not need to dis-
cuss the intricacies of the distinction between context of use, context
of evaluation, and context of assessment here.

Contextualism has not been employed in the epistemology of mathe-
matics so far. There is certainly a number of reasons why this is so. For
Lewis, the main reason seems to be that he treats all true mathematical
statements as the necessary proposition in disguise, thus blocking any
way of distinguishing among them epistemologically. This is a con-
sequence of Lewis’s modal epistemology: A semantics for knowledge
claims for Lewis must be based on possible worlds. As all mathe-
matical statements are true in all possible worlds, modal semantics
must treat all mathematical statements as the necessary proposition,

Important recent contributions include [MacF05], [Scha04], and [DeR02]. Cf. also
the April 2005 issue of The Philosophical Quarterly.
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modelled as the set of all worlds. As we pointed out above, given our
methodology, we cannot follow Lewis here. (Incidentally, in his [Lew93,
218], Lewis supports something very close to our methodology, so there
may be a slight tension in his position.) It seems obvious to us that
Lewis’s modal approach to epistemology can be separated from his con-
textualist stance, and thus we will employ a contextualist analysis of
knowledge along Lewisian lines, but with respect to finely individuated
mathematical statements.

How finely? This is a good question, and we do not have a definite
answer. However, from mathematical practice we learn that while we
must not individuate too coarsely (24 2 = 4 is different from Fermat’s
Last Theorem), we must not individuate too finely either: One and the
same mathematical statement can be expressed in various ways, e.g.,
in different languages and with or without the explicit use of formal
symbolism, and one and the same statement can have a number of
different proofs. Any way of individuating mathematical statements
that honours these constraints will be fine with us. We are not after a
formal theory here.

3. STANDARD MATHEMATICAL EPISTEMOLOGY

In this section we give an outline of a standard view of knowledge
in mathematics that, we claim, both plays an important role in philo-
sophical debates and is held by the educated public:

(%) S knows that P iff S has available a proof of P.

Our final view, (1), in some way still honours many of the intuitions
behind (). However, as it stands, (x) is open to a number of criticisms.
Firstly, it is vague with respect the two key notions of the explanans
(‘proof’ and ‘having available’). Secondly, it does not cover all cases of
knowledge attributions in mathematical practice: as we will argue in
section 4.3, there are cases of mathematical knowledge in which avail-
ability of proof is out of the question. Thirdly and most importantly,
attempts at removing the vagueness of (x) usually proceed to fix the
notions of ‘proof’ and of ‘having available’ in a uniform way, leading
to an invariantist reading of (x):

(%%) S knows that P iff S has available’ a proof* of P.

Here, ‘has available?” and ‘proof*’ are sharp, fixed notions. As we will
show, such a reading leads to theories that run counter to our method-
ological presuppositions. The view sketched here thus provides the
basis for our more detailed argumentation in section 4 below, through
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which we will establish and substantiate our thesis of context depen-
dence of mathematical knowledge as a viable alternative to (x*).

As mentioned in the introduction, it has often been observed that
compared to the other sciences, mathematics is an ‘epistemic excep-
tion’:> Whereas empirical claims have relative support through other
empirical claims, mathematical claims admit of proof, and as we learn
early on in our education, a mathematical proof is either correct or
incorrect. A proven mathematical statement is beyond doubt in a way
that even a well-supported empirical claim is not: The notion of proof
sets an absolute standard of support for a mathematical claim. Fur-
thermore, proofs do not admit degrees of correctness. To use Keith
Devlin’s polemic words: ‘Surely, any math teacher can tell in ten min-
utes whether a solution to a math problem is right or wrong! |...] Come
on folks, it’s a simple enough question. Is his math right or wrong?’
[Dev03]?

This widespread belief in the objectivity of a notion of mathemat-
ical proof gives intuitive support to a context independent reading a
la (¥). Such a position concerning mathematical knowledge is im-
plicitly or explicitly shared by a large number of philosophers ancient
and modern. E.g., Plato in the famous pais example (Meno, 82b-84a)
shows how the slave, guided by Socrates, has available a proof of the
Pythagorean theorem and thus, mathematical knowledge. Locke, in
discussing knowledge in the Essay [LE], uses mathematics as a prime
example. While he makes a number of observations based on actual
mathematical practice, e.g., on difficulties of long deductions (esp. in
Bk. IV, Chap. ii, which is entitled ‘Degrees of Knowledge’), he also sub-
scribes to (%) in general. Kant, who holds that mathematical truths
are synthetic a priori, limits the use of ‘knowledge’ generally to proven
certainties and even claims that mere belief has no place in mathe-
matics at all (Critique of Pure Reason [KCPR], A 823/B851). Frege’s
project of logicism, i.e., grounding all of mathematics on pure logic
alone, makes explicit formal proof the hallmark of secure knowledge
(Begriffsschrift [FBS] IXf.). And to bring in a contemporary contex-
tualist, Lewis also seems to endorse an invariantist view like (x*) when
he remarks in passing that in ‘the mathematics department, [...]| they
are in confident agreement about what’s true and how to tell, and they
disagree only about what’s fruitful and interesting’ [Lew00, 187f.].

2This has been an important topic in the sociology of science, discussed, e.g., by
Bloor [Blo76] and Livingston [Liv86]. Cf. also [Hei00, Chap. 1].

3Just for the record: Of course, Devlin is playing the advocatus here, arguing that
even checking proofs is not as trivial as is often believed.
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Arguably even more important is the fact that an invariantist reading
of the standard view is deeply entrenched in the image of mathematics
in the educated public.

It is no coincidence that the standard view is so widespread. In a way
it expresses, in a form suitable for mathematics, just the intuitions that
stand behind the classical tri-partite analysis of knowledge as justified
true belief:

(§) S knows that P iff S has the justified true belief that P.

Taking for granted the context independence of (%), we get that proof
is the only source of knowledge in mathematics, and whether someone
has available a proof or not is an objective, indisputable fact. This
is a crisp explication of the word ‘justified’ in (§) in that it describes
a unique possibility of justification for mathematical belief: having
available a proof.

Now Gettier-style problems®* show that the classical analysis (§) mer-
its critical discussion. Instead of a context independent notion of jus-
tification, we seem to need a context dependent notion of ‘appropriate
justification’. The received view about mathematics seems to imply
that mathematics is immune to these problems, as there is only one
‘appropriate justification’ in mathematics and that is the objective no-
tion of proof. We shall show that this view is as naive as the in-
variantist reading of (§), leading to conflicts with our methodological
assumptions. Instead, a context dependent reading of (%) is needed.

4. MATHEMATICAL KNOWLEDGE

In this section we have two main aims. The first is negative: we
will criticize the context independent reading of the standard view of
mathematical knowledge, (%), outlined in the previous section. Our
second aim is positive: we will show how contextualism a la Lewis can
be spelled out for the case of knowledge in mathematics. To this end,
we first give an overview of how the two crucial notions of (x), ‘proof’
and ‘having available’, are employed in mathematical practice. This
overview strongly supports a contextualist reading of ().

4.1. Proof in mathematical practice: derivation and informal
proof. Proof is perhaps the central notion in mathematics. Despite
that, it is not exactly clear what a proof is: a wide range of texts is
called ‘proof’ in actual mathematical practice. The guiding idea of

ACt. Gettier’s classic [Get63]; for the ensuing discussion, cf., e.g., [Pap78] and
[DeR9Y.
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proving something is to arrive at the result through a number of se-
cure steps, but one needs to specify which steps may be used. Frege
in his Begriffsschrift proposed that the steps should be so small that
a mechanical procedure was available for checking each step. This led
to a mathematically precise definition of formal proof which was then
available for metamathematical investigations leading, e.g., to Godel’s
completeness and incompleteness results. We will use the term deriva-
tion to stand for formal proof in a mathematically well-defined system.®
Outside metamathematical investigations and a few very specialised ar-
eas,® one will not find derivations in mathematical publications. Math-
ematical journals and textbooks (as well as lectures, research notes and
conference talks) instead contain informal proofs.” The notion of infor-
mal proof does not have a mathematically precise definition—if it did,
it would be just another version of derivation.

From the point of view of derivation, informal proofs contain gaps
and appear to be unfinished. It is therefore tempting to see an informal
proof just as an imperfect stand-in for a derivation. However, mathe-
matical practice strongly supports the view that the important notion
of proof in mathematics is not derivation, but informal proof. One rea-
son for this is communication: ‘The point of publishing a proof |[...] is
to communicate that proof to other mathematicians. [...] [T]he most
efficient way [. . .] is not by laying out the entire sequence of propositions
in excruciating detail’ [Fal03, 55]. Instead, mathematicians publish in-
formal proofs. However, there is more to informal proof than ease
of communication. It just isn’t the case that mathematicians have a
derivation in mind and transform it into an informal proof for publi-
cation in order to reach a wider public—the entire procedure of doing
research mathematics rests on doing informal proofs. The proofs in
mathematical research papers are so far removed from derivations that
only a few experts could produce a derivation from them even if they
wanted to, and only a minority considers that a worthwhile enterprise.
We need to take seriously the fact that derivations are hardly ever used.
Subscribing to the tempting image of the derivations as the real objects

SThere are various competing notions of derivation, but their differences do not
matter for our purposes. For first-order logic, the competing formal systems are
equivalent in allowing one to prove exactly the same theorems.

SE.g., the Journal of Formalized Mathematics, which focuses on derivations in the
specific proof system MIZAR, c¢f. http://www.mizar.org/JFM/; or the publications
of the Coq group discussed in section 4.2.

Ct., e.g., [Rav99] for discussion of this distinction.
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of mathematical study to which informal proofs are imperfect approx-
imations would be a violation of our maxim of taking mathematical
practice seriously.

Informal proofs come in many flavours. One can, e.g., distinguish
semi-formal textbook proofs for beginning students, graduate-level text-
book proofs, journal proofs, informal research notes, and proof sketches.
Each of these types is pragmatically fairly well delineated—try submit-
ting a textbook-style proof to a mathematical journal, or presenting
research note-style proofs to beginning students, and you will feel the
force of the boundaries.

It is often possible to compare proofs for one and the same P with
respect to the level of detail they exhibit. One proof may give more
details than another, even though both are valid and complete proofs
of certain types. F.g., a textbook proof may contain a whole page of
detail for a certain inductive construction where a research note would
just say ‘by induction’. Thus it makes sense to say of a proof that it
contains gaps relative to another. However, we do not subscribe to an
absolute notion of ‘gaps in proofs’, because that would presuppose an
absolute standard of a ‘gap-less’ proof.

If we wish to analyse mathematical knowledge by (x) taking into ac-
count many different forms of proofs, we thus have two options. Either
we accept that the word ‘proof’ will be analysed by different types of
proofs in different contexts, thus leading to a context dependent read-
ing of (x), or we fix a level of detail and declare the corresponding type
of proof* as constitutive for mathematical knowledge via (x*). For both
options it is necessary to spell out what it means to have available a
proof.

4.2. Having available a proof. What does it mean to have available
a proof? A literal reading in terms of having access to a material copy
of the proof is inappropriate. It is too narrow, because there just aren’t
enough copies of proofs to back even a fraction of true mathematical
knowledge claims (especially if one demands derivations, of which there

8Note that there is a different notion of gap in proof, which Fallis [Fal03] calls
‘untraversed gaps’ in contrast to the ‘enthymematic gaps’ that we just discussed: If
in proving one fails to note a certain special case, the proof will be incomplete—it
won’t even belong to the intended class of informal proof. Here the gap terminology
is appropriate in an absolute sense.
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are hardly any around).” But it is also too wide: A mathematical illit-
erate on the first floor of UC Berkeley’s Evans Hall (the math library)
has available lots and lots of proofs, but it would be odd to say that
the mere location could affect any change in mathematical knowledge
(genius loci nonwithstanding).

Thus, ‘having available’ cannot be spelled out in terms of actual
physical access; it needs to be given a modalised reading in which the
epistemic subject S plays an active role. A reformulation of (%) that
makes that modalisation explicit is the following:

S knows that P iff
(1)

S could in principle generate a proof of P.
That model, with ‘proof” mostly fixed to mean ‘derivation’, has been
advocated by many writers, and we would venture to say that some-
thing like (), quite possibly with the ‘derivation’ reading of ‘proof’; is
what most people will come up with when pressed to explicate (x).*°

9F.g., almost certainly no living mathematician has seen a derivation of the Feit-
Thompson Theorem, yet there are (many) mathematicians who know that every
group of odd order is solvable. The original paper, [FeiTho63], has over 250 pages.
Only specialists in finite group theory will know even an informal proof, let alone
a derivation. On the other hand, the theorem is rather well known.

ODerivation is often called the gold standard of mathematical proof. That
metaphor is quite telling. First, a few historical facts. Implementing a gold stan-
dard means making a fixed weight of gold the standard economic unit of account.
This can, e.g., be established by using coins made of gold. More practically, gold is
stored in some central reservoir, and paper money is issued as certificates entitling
the holder to a fixed amount of gold. Such systems were established in the late 19th
century in many Western countries, and there were earlier, similar systems in many
places. A positive aspect of an international gold standard is free convertibility of
currencies, which was important in boosting international trade. A negative aspect
of such a system is that even though gold is nice stuff, what people actually need
isn’t gold (except in some cases related to dentistry), but other goods, and the
scarcity or otherwise of gold dictates in effect the price of other goods. The succes-
sor of the early international gold standard, the Bretton Woods system, collapsed
in the early 1970ies. Since then, many countries have sold off much of their gold.
Other mechanisms of establishing trust between trading parties have proved to be
more practical and more efficient.

We would like to draw a rather strict analogy between the réle of gold for the
exchange of goods and the role of derivation for the exchange of mathematical
knowledge. Historically, of course there never was a period in the development of
mathematics during which derivation was the generally accepted currency, but the
logicist movement of the early 20th century surely was an attempt at establishing
that currency. Just like gold vs. goods, derivation is neither the only store of value
for mathematics, nor the most useful. If anything, trading in derivations is more
impractical than trading in gold. (Given the scarcity of gold and the expanded
international trade today, a return to an international gold standard would mean
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The notion of ‘could in principle generate’ implies some type of modal
idealisation. Such idealisations are often invoked when it comes to ex-
plaining what human beings do when they do mathematics. A classical
example is Brouwer’s idealised mathematician, the creative subject who
creates his choice sequences.’ Kitcher [Ki84, Chap. 6.1I1], in a similar
vein, employs the notion of an ‘ideal agent’ to account for the fact that
actual operations of actual agents do not suffice to establish the truths
of arithmetic as he conceives it.'* Steiner [Ste75, Chap. 3] explicates
the modal idealisation of (}) via the following thought experiment: In
order to check whether a mathematician has available a proof of P and
thus, knows that P, she is asked to transform her (informal) proof into
a derivation with the aid of a logician who as a Socratean ‘midwife’
works out the formal details, but is not otherwise mathematically cre-
ative. “If the two can bang out a formal proof, then the mathematician
is said to have known the proof all along, on the basis of the informal
argument” [Ste75, p. 100]. Thus:

S knows that P iff with the help of a logician,
S can generate a derivation of P.

(1)

The three cited authors give quite specific readings of modal aspects
of mathematics, and Steiner gives an explicit test for ‘could in principle
generate a proof’. This is what one needs to do if one is after an invari-
antist version of (). However, mathematical practice provides coun-
terexamples against any fixed notion—there is even knowledge without
proof (cf. section 4.3 below). We will now explore the modal dimension
of (f) in three steps, starting with a critique of Steiner’s approach.

increasing the current price of gold more than ten-fold. But given the scarcity of
derivations, establishing derivations as the sole vehicle of mathematical justification
would at present completely stop the development of mathematics.)

Other mechanisms for establishing trust in the mathematical community are well
established, and they are working. Of course that does not mean that derivations
are worthless. Quite on the contrary—the belief in the possibility to generate, at
least in principle, a derivation corresponding to any given informal proof, may well
be one of the strongest sources of mutual trust in the mathematics community. It is
just that actual derivations aren’t really needed—except, if you allow, for exercises
in mathematical dentistry.

Hcf. [Brow29]; for an historical overview of the notion, cf. [Troe82].

12¢f. Chihara [Chi90, Chap. 11.2] for decisive criticism of Kitcher’s approach.
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(i) Steiner’s model (f;) is open to a number of criticisms, some al-
ready voiced in the original publication.!® The envisaged test for knowl-
edge only replaces one form of modalisation (‘has available’ or ‘could
in principle generate’) with another, not much clearer one (‘can pro-
duce, with the aid of a logician, ...")—and the kind of logician that is
needed may well turn out not to exist. The logician’s powers play a
crucial role. Steiner rightly stresses that “we cannot envision a super-
human, because such a being would discover a completed proof despite
the ignorance of the mathematician” [Ste75, pp. 101f.], rendering the
test useless. In practice, even if two persons cooperate in producing
a derivation, the roles will never be as clearly delineated as the test
suggests. It may be fine to say that the pair who succeeded in writing
down a derivation had available a proof (and thus, knew that P), but
that is of course no good as a test of the mathematician’s knowledge.

Let us now consider two variants of Steiner’s modalisation. In both
variants, the dubious logician is replaced by a direct appeal to the
subject’s capabilities. The first variant is based on derivation, the
second, on informal blackboard proof.

(ii) Suppose that we want to read (f) without context dependence,
and let us fix ‘proof’ to mean derivation. The task then is to try to
find a good explication of ‘could in principle generate’. The successes
of formalized mathematics have shown that it is possible to provide
derivations for many important mathematical statements, however do-
ing so requires a long time: e.g., the Coq community worked for over ten
years before Geuvers, Wiedijk, and Zwanenburg were able to formal-
ize the fundamental theorem of algebra [GWZ01]. Now, this suggests
reading ‘could in principle generate’ as follows:

(f2)

But compared to these ten years, the time we need to learn mathe-
matical facts is short: many mathematicians could be in the situation
that they don’t know anything about P, but are able to learn within
ten years both the mathematics needed to understand why P is true
and then formalize it in Coq. These mathematicians would satisfy our
fixed reading of (t,), but by assumption do not know P. For particu-
larly bright beginning students, the time of ten years might be enough
to study mathematics, enter graduate school, finish a PhD, and learn

S knows that P iff, given ten years,
she could write a formal derivation in the language Coq.

13Tt must be said in fairness to Steiner that he does not it in the end subscribe to the
model sketched. Rather, he gives an example of mathematical knowledge without
proof and then argues for a Platonist understanding of mathematical knowledge.
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Coq. Thus, the reading (f,) would grant almost indefinite mathemati-
cal knowledge to everyone who has the intellectual capacity to finish a
mathematics degree. Clearly, not an intended reading.

The invariantist readings (f,) and (f,) face another difficulty. As
soon as derivations or a system like Coq play a role, we need to con-
cede that there was no mathematical knowledge prior to a certain point
in time: e.g., before the Begriffsschrift, nobody could give a derivation
of anything, because the concept of derivation had not yet been in-
vented.' But mathematics is commonly taken to be the prime exam-
ple of historically stable knowledge—the ancient Greeks already knew
the Pythagorean theorem.

(iii) At the other end of the spectrum let us read () without context
dependence by fixing ‘proof’ to mean ‘informal proof on the black-
board’. For many research situations in mathematics, the relevant
notion of ‘could in principle generate’ is something like the following:

S knows that P iff, given a blackboard and
(ts) a piece of chalk, she is able to produce
an acceptable blackboard proof within an hour.

The time frame of one hour is important here, as many research mathe-
maticians do not have all of the proofs they need for their work at their
immediate cognitive disposal. They need to try one or two standard
approaches to tackle the problem, remember the important details, and
then are able to provide an acceptable proof. If one keeps this time
interval too short, then one arrives at too strict a criterion for knowl-
edge. But the time frame is not uniform across all situations even for
fixed P. Consider a student in an oral exam asked whether P or non-P
is true. Suppose that the student erroneously believes that non-P is
true but given a blackboard, a piece of chalk and one hour of time, this
particular student might be able to create a blackboard proof of P,
first trying to prove non-P, failing, getting some ideas from the failed
attempts, then remembering some facts and ideas from lectures, and
finally proving P. However, in the oral exam, the examiner will not
wait for an hour, the student has to rely on his belief, says ‘non-P’ and
fails. Does this mean that the oral exam is not testing knowledge? In
view of our methodological maxim, that would be absurd.

These examples show that the temporal component in ‘having avail-
able’ is immensely important, and that it seems hopeless to try to fix a

H1f you are not satisfied with taking the Begriffsschrift as the beginning of deriva-
tion, supply your favourite reading instead. The consequences are practically the
same.
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single reading of ‘having available’ for all contexts. E.g., on a temporal
reading of the modalisation, if one gives the subjects too much time
to generate a proof, then one ends up with knowledge assertions that
shouldn’t be true, but if one gives them too little time, then some true
knowledge assertions dissolve.

4.3. Contextualism in mathematics. Our discussion of the key no-
tions of the standard analysis of mathematical knowledge, (%), has
revealed that both ‘proof’ and ‘having available’ admit of gradations.
For the former notion, there are various notions of proof available, rang-
ing from formal derivation to informal proof sketch. For the notion of
‘having available’, we have argued that a modalised reading is neces-
sary, as actual availability is far too strict a criterion. We have shown
that there are various such modalisations available, e.g., a family of
modalisations distinguished by a (counterfactual) time constraint.

If (%) is to be given a context independent reading as in (x*), then
it must be possible to select, at least relative to any mathematical
proposition P and/or a subject S, a single proof type and a single
reading of the modalisation (e.g., a single time frame) that could fix
the standards for all cases of “S knows that P”. It is not difficult
to see that this is a hopeless enterprise. One will always be able to
come up with a scenario in which S fulfills the conditions, and yet
doesn’t know, or knows despite failing the conditions. No fized notion
of ‘having available a proof’ yields an adequate analysis for all cases of
mathematical knowledge.

Actually, things are even worse for the standard view: There are
many examples of proper knowledge attributions where (1) is false—
we commonly attribute mathematical knowledge to people who are
currently in no position to produce a derivation or any other type of
proof of mathematical facts that they know.

A good historical example is reported in Polya’s study of Euler
[P6154, Chap. 2.6]: It is certainly true to say that Euler knew that

1+1/4+1/9+1/16 +1/25+... = 7%/6,

but Euler didn’t have available (and knew that he didn’t have available,
nor could in principle generate) a proof of that fact—he had established
it via generally shaky generalisations from finite to infinite sums, and
his evidence was to a large part inductive (i.e., the first 20 or so decimal
places coincided). Still, it would be ahistorical to say that Euler had
just guessed.'®

15Cf. [Ste75, Chap. 3.IV] for a similar assessment.
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Cases of knowledge without proof are not rare at all, nor are they
a thing of the past. In industrialised countries the majority of the
public has mathematical knowledge of some kind, e.g. elementary al-
gorithms of arithmetic, the Rule of Three, etc., but of course only
a tiny fraction of the public would satisfy any reasonable reading of
(1).'® Furthermore, there is mathematical knowledge via testimony,
for which proof plays no role at all—and yet, in many mathematical
contexts it is fine to base a knowledge claim on testimony. That is
obvious enough for claims to mathematical knowledge in the general
public: Most people haven’t actually seen any mathematical proofs at
all. For beginning math students, a similar observation holds: While
we certainly urge them to try to learn and understand the proofs, we
also concede that the students do acquire knowledge (though not a
very deep kind of knowledge) by just learning theorems by heart, and
that may be enough to pass a first exam. And even in the context of
research mathematics, some knowledge is just based on trust. If one
works in cooperation with others, it will not normally be possible, nor
required, to learn and check all proofs.

No context independent reading of () can cover all true knowledge
attributions in mathematical practice. Thus, contextualism wins the
day. But how? Our task now is to link the general contextualist anal-
ysis of knowledge to the specific case of mathematics. Recall Lewis’s
analysis (#): S knows that P iff S’s evidence eliminates all possibilities
in which non- P—except for those possibilities that we are properly ig-
noring. In mathematics, S’s evidence and the ignored possibilities must
be linked to the proof or other justification that S has available accord-
ing to (). As we saw, a context generally specifies a type of proof (or
other justification) as appropriate. Very few contexts in mathematics
demand derivations. Blackboard proofs are typical of research mathe-
matics, and mathematical knowledge claims in the general public typ-
ically do not need to be backed by any form of proof at all. Similarly,
S’s evidence may be interpreted as the dispositional state of mind of
S with respect to the required form of proof of P. Above we gave one
explication by linking that disposition to a time frame that would be
required to generate the proof in question. Thus one way of writing

16Behind these commonsensical examples, a vexing question in the philosophy of
mathematics is hidden: Is it possible to have (a high degree of) knowledge of P by
pure intuition without any formal proof in mind (the Ramanujan phenomenon)?
Cf. [Thu94] for discussion of this point.
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out (#) for the case of mathematics is the following:

S knows that P iff S’s dispositional state of mind allows her
(#') to produce the required form of proof or justification for P
within the time frame allowed by the context.

This analysis may be all that is needed, but it also comes with a certain
problem: There does not seem to be an independent standard from
which to assess the necessary time. Thus, (#) might be accused of
being empirically void. We suggest that the notion of mathematical
skill can help to improve the analysis.

4.4. Mathematical knowledge and mathematical skills. The no-
tion of mathematical skill links the ‘dispositional state of mind’ of (#/)
with actual performance: Skill is both a modal notion (what somebody
is able to do even while not doing it) and has an empirical side (skills
can be tested). Our motivation for bringing skills into the picture is
that through the Dreyfus-Dreyfus model of skill acquisition there is
available a semi-formal theory of skill levels that has been fruitfully
applied, e.g., to chess skills and nursing skills [Ben84]. In the Dreyfus-
Dreyfus model [DreDre86], there are five levels of skill ranging from
novice to expert. These levels are delineated by their different rela-
tion to explicitly formulated rules. While a novice needs to stick to
explicit rules in a step-by-step fashion, experts have internalised and
transgressed such rules and are able to proceed intuitively.

Certainly the link between mathematical knowledge and mathemat-
ical skills merits further investigation, which will need to be left for
a future occasion. Here we merely wish to argue that a skill-based
analysis is plausible.

Using the notion of skill, we can reformulate (#’), our preliminary
synthesis of contextualism (#) and mathematical knowledge (), as
follows:

S knows that P iff S’s current mathematical skills are
(1) sufficient to produce the form of proof or justification
for P required by the actual context.

This analysis, we claim, is adequate as a general explication of math-
ematical knowledge. It refers to the actual context and is thus flex-
ible with respect to both crucial aspects of mathematical knowledge:
Context determines the required form of proof or other justification,
and context also sets the standard for the modal component in terms
of a required skill level. Skill levels provide the link of our analysis
with independent constraints that was lacking in the case of (#')—
unlike counterfactual time constraints, skill levels can be (and, more
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importantly: are) characterised independently of any theory of ours.
Mathematical practice affirms that the concept of mathematical skill
is well entrenched. It is customary to comment on students’ or re-
searchers’ skills, and it is often possible to rank people with respect to
their skills.!” Skills are tested in exams and job talks, and it may well
be that the aim of mathematics education is best characterised not as
instilling mathematical knowledge, but as teaching mathematical skills.

5. CONCLUSION

In this paper we argued that contrary to first appearances, mathe-
matical knowledge is not a fixed, context independent notion. Rather,
we showed by appeal to mathematical practice that unless one dis-
regards actual practice—which in our view would be just plain bad
methodology—, one is forced to admit that mathematical knowledge
is context dependent.

Many accounts of mathematical knowledge refer to the need to have
available a proof. We concede that proof plays a crucial role in mathe-
matics and in mathematical knowledge, but there is also mathematical
knowledge without proof. Nor is proof a fixed notion: There are vari-
ous forms of proof, and context determines which type of proof, if proof
at all, is required. Furthermore, availability of proof is a modal notion
that we suggested is best explained by reference to mathematical skills.

What then of formal derivation? The concept of derivation and
its universal acceptance as a formalization of the intuitive notion of
proof is important for the foundations of mathematics, but contrary to
folklore, it hardly plays any role in determining the truth of ‘S knows
that P’—Psst!—unless the context explicitly demands it.
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