Locality as product

Kamal Lodaya and R. Ramanujam

The Institute of Mathematical Sciences, Chennai

September 2011

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Transition systems and automata

- Mathematical model.
- Widely used to study simple sequential programs.
- Computer scientists like them.
- Others —for example, people in the software industry— don't. (cf. Moshe Vardi's talk in ICLA '09 at Chennai.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Kleene)

There is a syntax of rational expressions from which one can construct equivalent nondeterministic finite automata of polynomial size. Conversely from an automaton one can construct in a polynomial number of steps an expression which in the worst case can be of exponential size.

Let A, a nonempty finite alphabet, consist of all atomic computations. The regular expressions are:

$$r ::= a \in A \mid r_1; r_2 \mid r_1 + r_2 \mid r_1^*$$

The expressions define the following languages (sets of computations):

Language equivalence for rational expressions (Aanderaa 1965, Salomaa 1966)

(Monoid)	(e+f) + g = e + (f+g); e+0 = e
(Comm)	e+f=f+e
(Idem)	e + e = e
(Monoid)	(ef)g = e(fg); e1 = 1e = e
(Absorp)	e0 = 0e = 0
(Distr)	(e+f)g = eg + fg; e(f+g) = ef + eg
(Guard)	$e^* = (1 + e)^*$
(Fixpt)	$e^* = 1 + ee^*; e^* = 1 + e^*e$
(GuardInd)	Let e have the NEWP. Then:
	x = ex + f, $x = xe + f$
	$\overline{x = e^* f}$, $\overline{x = fe^*}$

Theorem (Salomaa; Meyer, Stockmeyer)

This axiomatization is sound and complete for language equivalence of rational expressions. Checking equivalence is complete for polynomial space.

Temporal logic

 $\Phi ::= p, p \in AP \mid \neg \alpha \mid \alpha \lor \beta \mid \langle a \rangle \alpha \mid \alpha \bigcup \beta$ $\Diamond \alpha \stackrel{\text{def}}{=} True \bigcup \alpha; \Box \alpha \stackrel{\text{def}}{=} \neg \Diamond \neg \alpha; \bigcirc \alpha \stackrel{\text{def}}{=} \bigvee_{a \in \Sigma} \langle a \rangle \alpha;$ $\bigcirc \alpha \stackrel{\text{def}}{=} \neg \bigcirc \neg \alpha; [a] \alpha \stackrel{\text{def}}{=} \neg \langle a \rangle \neg \alpha.$ Definition FRAME $F = (\mathcal{T}, \delta)$, where δ is a run (usually infinite) on the transition system \mathcal{T} . MODEL $M = (F, V), V : Q \to \wp(AP)$ the valuation function over Q, the states

- $M, k \models p \text{ iff } p \in V(\delta(k)).$
- $M, k \models \neg \alpha$ iff $M, k \not\models \alpha$.
- $M, k \models \alpha \lor \beta$ iff $M, k \models \alpha$ or $M, k \models \beta$.
- $M, k \models \langle a \rangle \alpha$ iff $\delta(k+1)$ exists, $\delta(k) \stackrel{a}{\rightarrow} \delta(k+1)$ and $M, k+1 \models \alpha$.
- ► $M, k \models \alpha \bigcup \beta$ iff for some $m \ge k$ such that $M, m \models \beta$, and for all $l : k \le l < m, M, l \models \alpha$.

 ϕ is SATISFIABLE if $M, 0 \models \phi$ for some model $M = ((\mathcal{T}, \delta), V)$. ϕ is VALID if ϕ is satisfied in every model M.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $\langle Rs3 \rangle (\langle c \rangle \alpha \land \langle t \rangle \beta), \langle Rs3 \rangle \langle c \rangle \alpha \land \langle Rs3 \rangle \langle t \rangle \beta$

Axiomatization

Theorem (Gabbay, Pnueli, Shelah, Stavi; Sistla, Clarke) This axiomatization of temporal logic is sound and complete for infinite runs of a transition system. Satisfiability and validity are complete for polynomial space.

A different syntax

We also use right-linear grammars (or tail-recursive equations) to describe finite state systems.

x = az + by y = cx + dz z = ex + fyAn equivalent program:

> x: choose a; jump y choose b; jump z; exit
> y: choose c; jump x choose d; jump z; exit
> z: choose e; jump x choose f; jump z; exit

・ コット (雪) (小田) (コット 日)

W = aX + bZ, X = aY + bW, Y = aZ + bX, Z = aZ + bZ. By right-distributivity and introducing star, $Z = (a + b)^*$. Substituting: $W = aX + b(a + b)^*, X = bW + a(a(a + b)^* + bX).$ By left-distributivity and introduction of star: $X = abX + bW + aa(a + b)^* = (ab)^*(bW + aa(a + b)^*).$ Applying the same medicine again: $W = a(ab)^*bW + a(ab)^*aa(a+b)^* + b(a+b)^*$ and $W = (a(ab)^*b)^*(a(ab)^*aa(a+b)^* + b(a+b)^*).$ This way of finding solutions is reminiscent of performing Gaussian elimination in linear arithmetic equations and was first used for regular languages by McNaughton and Yamada.

By Kleene's theorem ...

Here is a rational expression: $x = (a(fd)^*(e + fc) + b(df)^*(c + de))^*$

Or in program notation:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Böhm and Jacopini)

Every flowchart program can be converted into an equivalent program using only assignments, sequencing, choice (if-then-else) and iteration (while-do) commands.

But iteration is not as powerful as tail-recursion for reactive behaviour, which we see in the next slide.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reactive behaviour

 $Rs3 \cdot (c+t) \neq (Rs3 \cdot c) + (Rs3 \cdot t)$ $c \cdot 0 \neq 0$ Left-distributivity fails Right-absorption fails

Definition (Brookes, Hoare and Roscoe)

Two machines are failure equivalent if one of them can perform a sequence of actions and then refuse to perform an action, so can the other.

Bisimulation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition (Park)

A bisimulation is a symmetric relation between the states of two transition graphs such that if p_1 is bisimilar to q_1 and p_1 can make an *a*-move to p_2 , then there is a q_2 bisimilar to p_2 such that q_1 can make an *a*-move to q_2 .

This is a recursive version of the definition of failure equivalence in the previous slide.

Right-linear grammars

```
r ::= \mathbf{0} \mid X \mid \mathbf{a} \cdot r_1 \mid r_1 + r_2 \mid \mu X.r_1
```

Theorem (Milner)

- 1. For all finite state machines there is a linear size right-linear grammar which describes their behaviour upto bisimulation.
- 2. The behaviour upto bisimulation of the machine below cannot be described by a rational expression.

X = aZ + bYY = cX + dZZ = eX + fY

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Park bisimulation for finite systems (Milner 1984)

(Monoid)	(e+f) + g = e + (f+g); e+0 = e
(Comm)	e + f = f + e
(Idem)	e + e = e
(Assoc)	(ef)g = e(fg)
(LeftAbs)	0 <i>e</i> = 0
(RightDistr)	(e+f)g = eg + fg
(Guard)	$\mu X. \boldsymbol{e} = \mu X. (\boldsymbol{X} + \boldsymbol{e})$
(Fixpt)	$\mu X.e = e[\mu X.e/X]$
(GuardInd)	$\frac{f = e[f/X]}{f = \mu X.e}$ (provided X guarded in e)

Theorem (Milner; Kanellakis, Smolka)

This axiomatization is sound and complete for bisimulation of mu-expressions. Bisimulation can be checked in polynomial time.

Extensions of rational expressions

```
r ::= a \in A | r_1; r_2 | r_1 + r_2 | r_1^* | r_1 \cap r_2 | \overline{r_1}

Lang(r_1 \cap r_2) = Lang(r_1) \cap Lang(r_2)

Lang(\overline{r_1}) = Lang(r_1)
```

- ► For an automaton for the expression $r_1 \cap r_2$ we inductively assume automata M_1 for r_1 and M_2 for r_2 and perform a product construction. Its size will be $O(|M_1|) \times O(|M_2|)$. If there are many intersections, the size of the automaton constructed can be exponential in $|r_1 \cap r_2|$.
- ► An automaton for r₁ requires a subset construction. Its size is exponential in the size of the automaton for r₁. If there are many negations, the size of the automaton constructed can be a tower of exponentials in |r₁|.

Concurrent composition of two automata can be thought of as a product on their common actions, and a shuffle of the other letters of the alphabet.

 $\begin{array}{rcl} r & ::= & a \in A \mid r_1; r_2 \mid r_1 + r_2 \mid r_1^* \mid SYNC \; J \; IN(r_1, r_2), J \subseteq A \\ & PAR(r_1, r_2) \; = \; SYNC \; \emptyset \; IN(r_1, r_2) \\ Lang(SYNC \; J \; IN(r_1, r_2)) \; = \; \left\{ w \mid w \text{ is a shuffle of } w_1, w_2 \\ & \text{except that } w_1 \lceil J = w_2 \lceil J; \\ & w_1 \in Lang(r_1), w_2 \in Lang(r_2) \right\} \end{array}$

Example

When *j* synchronizes *aaja aaja* and *na jaao na jaao*, you might get a word like *aa na jaao naaaa jaaao*.

Counting and state explosion

```
Example 
SYNC j IN((j; j)*, (j; j; j)*).
```

The first process does a loop of two j's. The second process does a loop of three j's. The j's synchronize.

```
Er ... which j's ?
```

Suppose the automata for r_1 and r_2 have n_1 and n_2 states respectively. The automaton construction for *SYNC j* $IN(r_1, r_2)$ has complexity $O(n_1n_2)$.

Theorem (State explosion)

From a syntax of parallel products of rational expressions one can construct equivalent product systems (products of nondeterministic finite automata) of exponential size.

Synchronization on common letters (Mazurkiewicz 1977)

LOCATIONS $Loc = \{1, ..., n\}$. DISTRIBUTED ALPHABET $\Sigma \stackrel{\text{def}}{=} \Sigma_1 \cup ... \cup \Sigma_n$, each Σ_i finite nonempty set of actions of agent *i*. When an action *a* is in $\Sigma_i \cap \Sigma_j, i \neq j$, we think of it as a synchronization action between *i* and *j*. (There can be *k*-way synchronizations also.) Let $loc(a) \stackrel{\text{def}}{=} \{i \mid a \in \Sigma_i\}$. PRODUCT WORD $(w_1, ..., w_n) \in (\Sigma^*)^{Loc}$, such that for some $w \in \Sigma^*$, every $w_i = w[\Sigma_i]$.

Definition

PRODUCT SYSTEM $TS = (Q, \Rightarrow)$ over Σ , where

- $\blacktriangleright \widetilde{\boldsymbol{Q}} \stackrel{\text{def}}{=} \boldsymbol{Q}_1 \times \cdots \times \boldsymbol{Q}_n$
- ► Global transition function $\Rightarrow \subseteq Q \times \Sigma \times Q$: $(q_1, \ldots, q_n) \stackrel{a}{\Rightarrow} (q'_1, \ldots, q'_n)$ iff for all $i \in loc(a), q_i \stackrel{a}{\rightarrow}_i q'_i$ and for all $j \notin loc(a), q_j = q'_j$.

Parallel product of regular expressions (Hoare 1981)

 REGULAR EXPRESSIONS WITH PARALLEL

 $r ::= 0 | 1 | a | r_1 \cdot r_2 | r_1 + r_2 | r_1^* | r_1 || r_2 | r_1 + r_2$

 MU-EXPRESSIONS WITH PARALLEL

 $r ::= 0 | X | a \cdot r_1 | r_1 + r_2 | \mu X \cdot r_1 || r_1 || r_2 | r_1 + r_2$

 (Distr)
 p || (q + r) = (p || q) + (p || r)

 (Expansion)
 ap || bq = a(p || bq) + b(ap || q) + (a|b)(p || q)

 (Monoid)
 (e + f) + g = e + (f + g); e + 0 = e

 (Comm)
 e + f = f + e

 (Idem)
 e + e = e

Theorem (Milner; Bergstra and Klop)

Parallel product can be eliminated over term algebras to yield a sound and complete axiomatization.

This destroys locality.

For technical reasons (Zielonka 1989) we need a renaming operation.

By adding a few axioms for renaming (letter-to-letter substitution), we can characterize language and bisimulation behaviour of finite labelled product systems.

(ロ) (同) (三) (三) (三) (三) (○) (○)

(Subst) $a[\sigma] = \sigma(a)$ (Comp) $\boldsymbol{e}[\sigma_1][\sigma_2] = \boldsymbol{e}[\sigma_1 \circ \sigma_2]$ (Distr) $(p+q)[\sigma] = p[\sigma] + q[\sigma]$

(Distr) $(pq)[\sigma] = p[\sigma]q[\sigma]$

Product temporal logic

 $\begin{array}{l} \Phi_{i} :::= p \mid \neg \alpha \mid \alpha \lor \beta \mid \langle a \rangle_{i} \alpha, \ a \in \Sigma_{i} \mid \alpha \textbf{U}_{i} \beta \\ \Phi ::= \alpha @i, \alpha \in \Phi_{i} \mid \neg \phi \mid \phi_{1} \lor \phi_{2} \\ \text{Let } \widehat{a} \stackrel{\text{def}}{=} \bigwedge (\langle a \rangle_{i} \textit{True}) @i. \\ i \in \textit{loc}(a) \\ \end{array}$ We now define the semantics of global formulas. FRAME $F = (\mathcal{T}, \delta)$, where \mathcal{T} is a product transition system MODEL $M = (F, V), V : Q \to \wp(AP), Q$ the set of all local states of the system. Thus, atomic propositions are evaluated at local states.

(日) (日) (日) (日) (日) (日) (日)

- $M \models \alpha @i$ iff $M_i, 0 \models \alpha$.
- $M \models \neg \phi$ iff $M \not\models \phi$.
- $M \models \phi_1 \lor \phi_2$ iff $M \models \phi_1$ or $M \models \phi_2$.

Combination of LIs can specify global states which are not reachable.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Product induction:

 $\widehat{b} \wedge \bigwedge_{k} \operatorname{Pre@k} \implies ([b]_{j}\operatorname{Post})@j, \ j \in \operatorname{loc}(b)$ $\overbrace{\underset{k \notin \operatorname{loc}(b)}{}}^{k} \operatorname{Pre@k} \wedge \bigwedge_{j \in \operatorname{loc}(b)} \operatorname{Post}@j \implies Gl$

Global axiomatization, part 1

$$\begin{array}{ll} (\mathsf{A0}) & (\neg \alpha) @i \equiv \neg \alpha @i \\ (\mathsf{A1}) & (\alpha \lor \beta) @i \equiv (\alpha @i \lor \beta @i) \\ (\mathsf{A2}) & \bigvee \widehat{a} \\ \\ (\mathsf{MP}) & \frac{a \in \Sigma}{\beta} \\ (\mathsf{GG}) & \frac{\vdash_{i} \alpha}{\beta} \\ (\mathsf{GG}) & \frac{\vdash_{i} \alpha}{\alpha @i} \\ & \bigwedge \\ \frac{i \in loc(a)}{\alpha_{i} @i} \implies \bigvee_{\substack{j \notin loc(a)}} \alpha_{j} @j \\ & \frac{i \in loc(a)}{\beta} (\langle a \rangle_{i} \alpha_{i}) @i \implies \bigvee_{\substack{j \notin loc(a)}} \alpha_{j} @j \\ \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Global axiomatization, synchronization

Let m > 0 and $\alpha_1, \ldots, \alpha_m$ be formulas such that for all $l \in \{1, \ldots, m\}, \alpha_l$ is of the form $\bigwedge_{k \in Loc} \alpha_l(k)@k$. Let $\gamma \stackrel{\text{def}}{=} \bigvee_{l=1}^m \alpha_l$. (Sy_m) $\gamma \implies \neg \widehat{a}$ $\bigwedge_{l \in \{1, \ldots, m\}} (\alpha_l \implies (\bigwedge_{b \notin \Sigma_i} (\widehat{b} \implies \bigwedge_{j \in loc(b)} ([b]_j \beta(l, b, j))@j)))$ $\bigwedge_{l \in \{1, \ldots, m\}} \bigwedge_{b \notin \Sigma_i} ((\bigwedge_{k \notin loc(b)} \alpha_l(k)@k \land \bigwedge_{j \in loc(b)} \beta(l, b, j)@j) \implies \gamma)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\gamma \implies ([a]_i False)@i$, for $i \in loc(a)$

Gloabl axiomatization, the until operator

$$(Un_m) \quad \gamma \implies \neg \gamma_2 @i \\ \bigwedge_{l \in \{1, \dots, m\}} (\alpha_l \implies (\bigwedge_{b \in \Sigma} (\widehat{b} \implies \bigwedge_{j \in loc(b)} ([b]_j \beta(l, b, j))@j))) \\ \bigwedge_{l \in \{1, \dots, m\}} \bigwedge_{b \in \Sigma} ((\bigwedge_{k \notin loc(b)} \alpha_l(k)@k \land \bigwedge_{j \in loc(b)} \beta(l, b, j)@j) \implies \gamma)$$

 $\gamma \implies \neg(\gamma_1 \mathbf{U}_i \gamma_2) @i$

Theorem

The local and global axiomatizations, put together, are sound and complete.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Consider $X||Y = (a + ba)^*||(ab)^*$. By fixpoint expansion: $X||Y = 1 + a(1 + (a + ba)(a + ba)^*) + ba(a + ba)^*||1 + ab(ab)^*.$ Distributing and eliminating useless actions: $X||Y = 1 + aba(a + ba)^*||1 + ab(ab)^* = 1 + abaX||1 + abY$ By product induction and fixpoint expansion: $X||Y = (aba)^*||(ab)^* = 1 + aba(aba)^*||1 + ab(ab)^*.$ Continuing in this way: $W||Z = a(aba)^*||(ab)^* = ae||bf$, for some e, f. Eliminating useless actions, W||Z = 0||0. Hence X || Y = 1 || 1.

(日) (日) (日) (日) (日) (日) (日)

A question from me:

Is there a sound and complete axiomatization of language equivalence of products of rational expressions which does not reduce parallel product to interleaving?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@