Locality as product

Kamal Lodaya and R. Ramanujam
The Institute of Mathematical Sciences, Chennai

September 2011

Transition systems and automata

» Mathematical model.

» Widely used to study Q @ Q

simple sequential
programs.

» Computer scientists like

them. O ———t0

» Others —for example,
people in the software

industry— don’t. (cf.
Moshe Vardi’s talk in e‘

ICLA ’09 at Chennai.)

Rational expressions

Theorem (Kleene)

There is a syntax of rational expressions from which one can
construct equivalent nondeterministic finite automata of
polynomial size. Conversely from an automaton one can
construct in a polynomial number of steps an expression which
in the worst case can be of exponential size.

» Let A, a nonempty finite alphabet, consist of all atomic
computations. The regular expressions are:

re=acAlrmn|n+nl|ry

» The expressions define the following languages (sets of
computations):

Lang(a) = {a}
Lang(ri;r2) = {wywe | wy € Lang(ry), wo € Lang(r2)}
Lang(ri +r.) = Lang(ry)U Lang(rz)
Lang(r{) = {wy...wp|3n,v1 <i<nw e Lang(r)}

Language equivalence for rational expressions

(Monoid) (e+f)+g=e+(f+9);e+0=¢e
(Comm) e+f=Ff+e
(ldem) et+te=e
(Monoid) (ef)g=e(fg); el =1e=¢e
(Absorp) e0=0e=0
(Distr) (e+f)g=eg—+fg;e(f+g)=ef+eg
(Guard) e=(1+e)
(Fixpt) ef=1+ee";e"=1+¢e"e
(Guardind) Let e have the NEWP. Then:

x=ex+f x=xe+f

x=ef x=fe*

Theorem (Salomaa; Meyer, Stockmeyer)
This axiomatization is sound and complete for language
equivalence of rational expressions. Checking equivalence is
complete for polynomial space.

Temporal logic

¢ = ppeAP|-a|aV] (aa]|alp
e def TrueUa; Do def =0-a; Oo def \/ (a)a;
acx
Oa & ~-O-a;[ga & ~(a)a.
Definition
FRAME F = (T,¢), where ¢ is a run (usually infinite) on the
transition system 7.
MoDEL M = (F, V), V: Q — p(AP) the valuation function over

Q, the states

M. k = piff p € V(5(k)).

M, k = —a iff M, k [~ a.

M.k = avgiff Mk = aor M, k = 8.

M, k |= (a)o iff §(k 4 1) exists, d(k)>d(k + 1) and

M. k+1E a.

M, k = oUg iff for some m > k such that M, m |= 3, and
foralll:k<Il<mM,IE .

vV v VY

v

Temporal logic

¢ is SATISFIABLE if M, 0 |= ¢ for some model M = ((T,0), V).
¢ is VALID if ¢ is satisfied in every model M.

Rs

Axiomatization

AO0) All the substitutional instances of the tautologies of PC
A1) [l = B) = ([ao = [a]h)
A2) (a)True — |b]False, a+# b
A3) (o = [ala

Ad) aUB = (BV (an(O(aUp)))

a, o = f3

B

i
[a]c
Theorem (Gabbay, Pnueli, Shelah, Stavi; Sistla, Clarke)

This axiomatization of temporal logic is sound and complete for
infinite runs of a transition system. Satisfiability and validity are
complete for polynomial space.

A different syntax

We also use right-linear grammars

(x)
(or tail-recursive equations) to de- s \
scribe finite state systems. 4/ /;»\ 0
} [y

X =az+ by (,,
y=cx+adz \
z=ex+ 1y
An equivalent program:
x: choose a; jump y
choose b; jump z; exit
y: choose c; jump x
choose d; jump z; exit
z: choose e, jump x
choose f; jump z; exit

Solving equations in rational expressions

W=aX+bZ, X=aY¥Y+bW, Y=aZ+bX, Z=aZ+ bZ.
By right-distributivity and introducing star, Z = (a + b)*.
Substituting:

W =aX+ bla+ b)*, X =bW + a(a(a+ b)* + bX).

By left-distributivity and introduction of star:

X = abX + bW + aa(a+ b)* = (ab)* (bW + aa(a+ b)*).
Applying the same medicine again:

W = a(ab)*bW + a(ab)*aa(a+ b)* + b(a+ b)* and

W = (a(ab)*b)*(a(ab)*aa(a+ b)* + b(a+ b)*).

This way of finding solutions is reminiscent of performing
Gaussian elimination in linear arithmetic equations and was
first used for regular languages by

By Kleene’s theorem . ..

Here is a rational expression:
x = (a(fd)*(e + fc) + b(df)*(c + de))*
Or in program notation:

x: loop choose a;
loop 1; d end loop ;
choose ¢; or f; ¢ end choose
end choose ;
choose b;
loop d; fend loop ;
choose c; or d; e end choose
end choose
end loop

Structured programming

Theorem (B6hm and Jacopini)

Every flowchart program can be converted into an equivalent
program using only assignments, sequencing, choice
(if-then-else) and iteration (while-do) commands.

But iteration is not as powerful as tail-recursion for reactive
behaviour, which we see in the next slide.

Reactive behaviour

C t C t
Rs3-(c+1)# (Rs3-¢)+ (Rs3-1) Left-distributivity fails
c-0#0 Right-absorption fails

Definition (Brookes, Hoare and Roscoe)

Two machines are failure equivalent if one of them can perform
a sequence of actions and then refuse to perform an action, so
can the other.

Bisimulation

/ pzi/j‘ implies w,Og _ wC]g\

Definition (Park)

A bisimulation is a symmetric relation between the states of two
transition graphs such that if p; is bisimilar to g; and p; can
make an a-move to po, then there is a g» bisimilar to p» such
that g; can make an a-move to go.

This is a recursive version of the definition of failure
equivalence in the previous slide.

Right-linear grammars

re=0[X|a-n|n+r|pXrn
Theorem (Milner)
1. For all finite state machines there is a linear size
right-linear grammar which describes their behaviour upto
bisimulation.

2. The behaviour upto bisimulation of the machine below
cannot be described by a rational expression.

X

Park bisimulation for finite systems

(Monoid) (e+f)+g=e+(f+9g);e+0=e
(Comm) e+f=Ff+e

(ldem) et+e=e

(Assoc) (ef)g = e(fg)

(LeftAbs) 0e=0

(RightDistr) (e+ f)g=eg+ fg

(Guard) uX.e =uX.(X+e)

(Fixpt) uX.e =e[uX.e/X]

f=e[f/X]
(f=uX.e
Theorem (Milner; Kanellakis, Smolka)

This axiomatization is sound and complete for bisimulation of
mu-expressions. Bisimulation can be checked in polynomial
time.

Guardind) (provided X guarded in e)

Extensions of rational expressions

re=acAlrn|n+n|rf|lnnn|n
Lang(ry nrn) = Lang(ry) N Lang(rz)
Lang(ry) = Lang(n)

» For an automaton for the expression ry N r, we inductively
assume automata M; for r; and M for r. and perform a
product construction. lts size will be O(|M;]) x O(|Ma|). If
there are many intersections, the size of the automaton
constructed can be exponential in |ry N ro|.

» An automaton for r; requires a subset construction. Its size
is exponential in the size of the automaton for ry. If there
are many negations, the size of the automaton constructed
can be a tower of exponentials in |rq].

Shuffle with synchronization

Concurrent composition of two automata can be thought of as a
product on their common actions, and a shuffle of the other
letters of the alphabet.
r == acA|rnn|n+r|n*| SYNCJIN(r,rn),JCA
PAR(H , I’2) = SYNC IN(r1 , fg)
Lang(SYNC J IN(ry,r2)) = {w| wis a shuffle of wy, ws
except that wy [J = wa[J;
wy € Lang(ry), wo € Lang(ra)}

Example

When j synchronizes aaja aaja and na jaao na jaao, you might
get a word like aa na jaao naaaa jaaao.

Counting and state explosion

Example
SYNC j IN((j:)", (i :)*)-

The first process does a loop of two j’s.
The second process does a loop of three J’s.
The j’s synchronize.

Er...which s ?

Suppose the automata for r; and r» have ny and n, states
respectively. The automaton construction for SYNC j IN(rq, 1»)
has complexity O(nqn.).

Theorem (State explosion)

From a syntax of parallel products of rational expressions one
can construct equivalent product systems (products of
nondeterministic finite automata) of exponential size.

Synchronization on common letters

LOCATIONS Loc = {1,...,n}.

DISTRIBUTED ALPHABET ¥ = Y1 U ... U Xy, each X finite

nonempty set of actions of agent i. When an action ais in
YN Y, i # J, we think of it as a synchronization action between
i and j. (There can be k-way synchronizations also.)
Let loc(a) &f {i|aeX}.
PRODUCT WORD (Wy, ..., w,) € (£*)°°, such that for some
w e X" every w; = w[x;.
Definition
PRODUCT SYSTEM TS = (Q, =) over X, where
def

» Q¢ Qi x - x Qp

» Global transition function =C Q x ¥ x Q:
(@1, a0) 2 (4, qp) ff
for all i € loc(a), g;-%qj and for all j ¢ loc(a), g; = g.

Parallel product of regular expressions

REGULAR EXPRESSIONS WITH PARALLEL
re=0[1laln-n|ln+n|rlinln|n+rn
MU-EXPRESSIONS WITH PARALLEL
re=0|Xlan|n+nr|pXn|lnlr|ln+r

(Distr) pli(@+r)=(la+@lr

(Expansion) ap || bg = a(p || bq) + b(ap || q) + (ab)(p || 9)
(Monoid) (e+f)+g=e+(f+9);e+0=¢e

(Comm) e+f=Ff+e

(Idem) e+e=e

Theorem (Milner; Bergstra and Klop)

Parallel product can be eliminated over term algebras to yield a
sound and complete axiomatization.

This destroys locality.

Reasoning for products of rational expressions

For technical reasons we need a renaming
operation.
By adding a few axioms for renaming (letter-to-letter
substitution), we can characterize language and bisimulation
behaviour of finite labelled product systems.

(Subst) alo] =0o(a)

(Comp) e =e

(Distr) (p+q)lol =plo]+q

(Distr) (pq)lo| = plolq

Product temporal logic

¢ == p|-alaVvp|(a)w acXi| Ul
¢ = ali,a € ®;| ¢ | P1V P2
Leta € A ((a)True)i.

ieloc(a)
We now define the semantics of global formulas.

FRAME F = (7,0), where 7 is a product transition system
MoDEL M = (F, V),V : Q — p(AP), Q the set of all local
states of the system. Thus, atomic propositions are evaluated
at local states.

» M E aQjiff M;,0 = a.

» M= =g iff M £ ¢.

> M g1V g iff M= ¢4 or M |= ¢o.

Product temporal induction

Usual temporal induction for reachability:
Gl = an(O(G])

Gl = Do, . .
Product generalization is too weak:

/\ LIk = a@i A O),LI0]
k
/\LIGk = (T;a)@i

k
Combination of Lls can specify global states which are not
reachable.
Product induction:
bA /\ Pre@k = ([b];Post)@j, j € loc(b)
K
/\ Preekn A Postej = GI
k¢loc(b) jeloc(b)

Global axiomatization, part 1

(—a)@i = - @i
(aV B)0i = (@i V @J)

\/ a
acy
o o= p
p
F,'Oé
a@j
/\ a0 — \/ Oéj@j
icloc(a) j¢loc(a)

/\ (<a>,-a,-)@i - \/ a/©j

icloc(a) jéloc(a)

Global axiomatization, synchronization

Let m > 0 and a4, ..., am be formulas such that for all
m
Ie{1,...,m}, o is of the form /\ a)(k)@k. Let y & \/ o,
kelLoc =1

(Sym) v = -a

N (= (N = A\ ([b];5(b,})e))

le{1,...,m} b¢x; jeloc(b)
A ANC N akekn N\ B(1.b.j)Cj) =)
le{1,...m} b¢¥; k¢loc(b) j€eloc(b)

v = ([a]iFalse)@i, for i € loc(a)

Gloabl axiomatization, the until operator

N (= (Nb = N (b3(b.)ej))

le{1,...,.m} bex j€loc(b)
A ANC AN akekn N\ B,b.)j)e)) =)
le{1,...m} bex k¢loc(b) jeloc(b)

v = (11Ui)Qi

Theorem
The local and global axiomatizations, put together, are sound
and complete.

Equivalence of products of rational expressions

Consider X||Y = (a+ ba)*||(ab)*.

By fixpoint expansion:

X||Y =1+ a(1+ (a+ ba)(a+ ba)*) + ba(a+ ba)*||1 + ab(ab)*.
Distributing and eliminating useless actions:

X||Y =1+ aba(a+ ba)*||1 + ab(ab)* = 1 + abaX||1 + abY
By product induction and fixpoint expansion:

X||Y = (aba)*||(ab)* = 1 + aba(aba)*||1 + ab(ab)*.
Continuing in this way:

W||Z = a(aba)*||(ab)* = ae||bf, for some e, f.

Eliminating useless actions, W||Z = 0||0.

Hence X||Y = 1|[1.

Questions open

A question from me:

Is there a sound and complete axiomatization of language
equivalence of products of rational expressions which does not
reduce parallel product to interleaving?

