
Locality as product

Kamal Lodaya and R. Ramanujam

The Institute of Mathematical Sciences, Chennai

September 2011

Transition systems and automata

I Mathematical model.
I Widely used to study

simple sequential
programs.

I Computer scientists like
them.

I Others —for example,
people in the software
industry— don’t. (cf.
Moshe Vardi’s talk in
ICLA ’09 at Chennai.)

��
���
�� ��

���
�� ��
��s

a -b
Y

a

-b

X��
���
��

Y��
��

Z��
��

-
a,b

Y

b �
�
�
�/

a

k
b

S
S
S
So

a

Rational expressions

Theorem (Kleene)
There is a syntax of rational expressions from which one can
construct equivalent nondeterministic finite automata of
polynomial size. Conversely from an automaton one can
construct in a polynomial number of steps an expression which
in the worst case can be of exponential size.

I Let A, a nonempty finite alphabet, consist of all atomic
computations. The regular expressions are:

r ::= a ∈ A | r1; r2 | r1 + r2 | r∗1
I The expressions define the following languages (sets of

computations):

Lang(a) = {a}
Lang(r1; r2) = {w1w2 | w1 ∈ Lang(r1),w2 ∈ Lang(r2)}

Lang(r1 + r2) = Lang(r1) ∪ Lang(r2)
Lang(r∗1) = {w1 . . .wn | ∃n,∀1 ≤ i ≤ n,wi ∈ Lang(r1)}

Language equivalence for rational expressions
(Aanderaa 1965, Salomaa 1966)

(Monoid) (e + f) + g = e + (f + g); e + 0 = e
(Comm) e + f = f + e
(Idem) e + e = e
(Monoid) (ef)g = e(fg); e1 = 1e = e
(Absorp) e0 = 0e = 0
(Distr) (e + f)g = eg + fg; e(f + g) = ef + eg
(Guard) e∗ = (1 + e)∗

(Fixpt) e∗ = 1 + ee∗; e∗ = 1 + e∗e
(GuardInd) Let e have the NEWP. Then:

x = ex + f
x = e∗f

;
x = xe + f

x = fe∗

Theorem (Salomaa; Meyer, Stockmeyer)
This axiomatization is sound and complete for language
equivalence of rational expressions. Checking equivalence is
complete for polynomial space.

Temporal logic

Φ ::= p,p ∈ AP | ¬α | α ∨ β | 〈a〉α | αUβ
♦α

def
= TrueUα; �α def

= ¬♦¬α;©α def
=

∨
a∈Σ

〈a〉α;

⊙
α

def
= ¬©¬α; [a]α

def
= ¬〈a〉¬α.

Definition
FRAME F = (T , δ), where δ is a run (usually infinite) on the
transition system T .
MODEL M = (F ,V), V : Q → ℘(AP) the valuation function over
Q, the states

I M, k |= p iff p ∈ V (δ(k)).
I M, k |= ¬α iff M, k 6|= α.
I M, k |= α ∨ β iff M, k |= α or M, k |= β.
I M, k |= 〈a〉α iff δ(k + 1) exists, δ(k)

a→δ(k + 1) and
M, k + 1 |= α.

I M, k |= αUβ iff for some m ≥ k such that M,m |= β, and
for all l : k ≤ l < m,M, l |= α.

Temporal logic

φ is SATISFIABLE if M,0 |= φ for some model M = ((T , δ),V).
φ is VALID if φ is satisfied in every model M.

��
��
M1

��
��
CT1 {Rs3}

��
��

0 ��
��

0

��
��
M2

��
��
C2 {Rs3,t} ��

��
T2 {Rs3,c}

��
��

0 ��
��

0

?Rs3

�
��	

c
@
@@Rt

H
HHHj
Rs3�

����
Rs3

?
c

?t

〈Rs3〉(〈c〉α ∧ 〈t〉β), 〈Rs3〉〈c〉α ∧ 〈Rs3〉〈t〉β

Axiomatization

(A0) All the substitutional instances of the tautologies of PC
(A1) [a](α =⇒ β) =⇒ ([a]α =⇒ [a]β)
(A2) 〈a〉True =⇒ [b]False, a 6= b
(A3) 〈a〉α =⇒ [a]α
(A4) αUβ =⇒ (β ∨ (α ∧

⊙
(αUβ)))

(MP)
α, α =⇒ β

β

(TG)
α

[a]α

Theorem (Gabbay, Pnueli, Shelah, Stavi; Sistla, Clarke)
This axiomatization of temporal logic is sound and complete for
infinite runs of a transition system. Satisfiability and validity are
complete for polynomial space.

A different syntax

We also use right-linear grammars
(or tail-recursive equations) to de-
scribe finite state systems.
x = az + by
y = cx + dz
z = ex + f y

��
��

X

��
��

Z ��
��

Y

�
��	

a
@
@@Rb
@

@@Ic

�
d

�
���e
-f

An equivalent program:

x: choose a; jump y
choose b; jump z; exit

y: choose c; jump x
choose d; jump z; exit

z: choose e; jump x
choose f; jump z; exit

Solving equations in rational expressions

W = aX + bZ , X = aY + bW , Y = aZ + bX , Z = aZ + bZ .
By right-distributivity and introducing star, Z = (a + b)∗.
Substituting:
W = aX + b(a + b)∗, X = bW + a(a(a + b)∗ + bX).
By left-distributivity and introduction of star:
X = abX + bW + aa(a + b)∗ = (ab)∗(bW + aa(a + b)∗).
Applying the same medicine again:
W = a(ab)∗bW + a(ab)∗aa(a + b)∗ + b(a + b)∗ and
W = (a(ab)∗b)∗(a(ab)∗aa(a + b)∗ + b(a + b)∗).
This way of finding solutions is reminiscent of performing
Gaussian elimination in linear arithmetic equations and was
first used for regular languages by McNaughton and Yamada.

By Kleene’s theorem . . .

Here is a rational expression:
x = (a(fd)∗(e + fc) + b(df)∗(c + de))∗

��
��

X

��
��

Z ��
��

Y

�
��	

a
@
@@Rb
@

@@Ic

�
d

�
���e
-f

Or in program notation:

x: loop choose a;
loop f; d end loop ;
choose e; or f; c end choose

end choose ;
choose b;

loop d; f end loop ;
choose c; or d; e end choose

end choose
end loop

Structured programming

Theorem (Böhm and Jacopini)
Every flowchart program can be converted into an equivalent
program using only assignments, sequencing, choice
(if-then-else) and iteration (while-do) commands.
But iteration is not as powerful as tail-recursion for reactive
behaviour, which we see in the next slide.

Reactive behaviour

��
��
M1

��
��
CT1 {Rs3}

��
��

0 ��
��

0

��
��
M2

��
��
C2 {Rs3,t} ��

��
T2 {Rs3,c}

��
��

0 ��
��

0

?Rs3

�
��	

c
@
@@Rt

H
HHHj
Rs3�

����
Rs3

?
c

?t

Rs3 · (c + t) 6= (Rs3 · c) + (Rs3 · t) Left-distributivity fails
c · 0 6= 0 Right-absorption fails

Definition (Brookes, Hoare and Roscoe)
Two machines are failure equivalent if one of them can perform
a sequence of actions and then refuse to perform an action, so
can the other.

Bisimulation

��
��

p1

��
��

p2

��
��

q1

implies

��
��

p1

��
��

p2

��
��

q1

��
��

q2

?
a

?
a

?
a

Definition (Park)
A bisimulation is a symmetric relation between the states of two
transition graphs such that if p1 is bisimilar to q1 and p1 can
make an a-move to p2, then there is a q2 bisimilar to p2 such
that q1 can make an a-move to q2.

This is a recursive version of the definition of failure
equivalence in the previous slide.

Right-linear grammars

r ::= 0 | X | a · r1 | r1 + r2 | µX .r1

Theorem (Milner)

1. For all finite state machines there is a linear size
right-linear grammar which describes their behaviour upto
bisimulation.

2. The behaviour upto bisimulation of the machine below
cannot be described by a rational expression.

X = aZ + bY
Y = cX + dZ
Z = eX + fY

��
��

X

��
��

Z ��
��

Y

�
��	

a
@
@@Rb
@

@@Ic

�
d

�
���e
-f

Park bisimulation for finite systems (Milner 1984)

(Monoid) (e + f) + g = e + (f + g); e + 0 = e
(Comm) e + f = f + e
(Idem) e + e = e
(Assoc) (ef)g = e(fg)
(LeftAbs) 0e = 0
(RightDistr) (e + f)g = eg + fg
(Guard) µX .e = µX .(X + e)
(Fixpt) µX .e = e[µX .e/X]

(GuardInd)
f = e[f/X]

f = µX .e
(provided X guarded in e)

Theorem (Milner; Kanellakis, Smolka)
This axiomatization is sound and complete for bisimulation of
mu-expressions. Bisimulation can be checked in polynomial
time.

Extensions of rational expressions

r ::= a ∈ A | r1; r2 | r1 + r2 | r∗1 | r1 ∩ r2 | r1
Lang(r1 ∩ r2) = Lang(r1) ∩ Lang(r2)

Lang(r1) = Lang(r1)

I For an automaton for the expression r1 ∩ r2 we inductively
assume automata M1 for r1 and M2 for r2 and perform a
product construction. Its size will be O(|M1|)×O(|M2|). If
there are many intersections, the size of the automaton
constructed can be exponential in |r1 ∩ r2|.

I An automaton for r1 requires a subset construction. Its size
is exponential in the size of the automaton for r1. If there
are many negations, the size of the automaton constructed
can be a tower of exponentials in |r1|.

Shuffle with synchronization
(Campbell,Habermann 1974)

Concurrent composition of two automata can be thought of as a
product on their common actions, and a shuffle of the other
letters of the alphabet.
r ::= a ∈ A | r1; r2 | r1 + r2 | r1

∗ | SYNC J IN(r1, r2), J ⊆ A
PAR(r1, r2) = SYNC ∅ IN(r1, r2)

Lang(SYNC J IN(r1, r2)) = {w | w is a shuffle of w1,w2
except that w1dJ = w2dJ;
w1 ∈ Lang(r1),w2 ∈ Lang(r2)}

Example
When j synchronizes aaja aaja and na jaao na jaao, you might
get a word like aa na jaao naaaa jaaao.

Counting and state explosion

Example
SYNC j IN((j ; j)∗, (j ; j ; j)∗).

The first process does a loop of two j ’s.
The second process does a loop of three j ’s.
The j ’s synchronize.

Er . . . which j ’s ?

Suppose the automata for r1 and r2 have n1 and n2 states
respectively. The automaton construction for SYNC j IN(r1, r2)
has complexity O(n1n2).

Theorem (State explosion)
From a syntax of parallel products of rational expressions one
can construct equivalent product systems (products of
nondeterministic finite automata) of exponential size.

Synchronization on common letters
(Mazurkiewicz 1977)

LOCATIONS Loc = {1, . . . ,n}.
DISTRIBUTED ALPHABET Σ

def
= Σ1 ∪ ... ∪ Σn, each Σi finite

nonempty set of actions of agent i . When an action a is in
Σi ∩ Σj , i 6= j , we think of it as a synchronization action between
i and j . (There can be k -way synchronizations also.)
Let loc(a)

def
= {i | a ∈ Σi}.

PRODUCT WORD (w1, . . . ,wn) ∈ (Σ∗)Loc , such that for some
w ∈ Σ∗, every wi = wdΣi .

Definition
PRODUCT SYSTEM TS = (Q,⇒) over Σ, where

I Q̃ def
= Q1 × · · · ×Qn

I Global transition function⇒⊆ Q × Σ×Q:
(q1, . . . ,qn)

a⇒ (q′1, . . . ,q
′
n) iff

for all i ∈ loc(a),qi
a→iq′i and for all j /∈ loc(a),qj = q′j .

Parallel product of regular expressions (Hoare 1981)

REGULAR EXPRESSIONS WITH PARALLEL

r ::= 0 | 1 | a | r1 · r2 | r1 + r2 | r∗1 | r1 ‖ r2 | r1 + r2
MU-EXPRESSIONS WITH PARALLEL

r ::= 0 | X | a · r1 | r1 + r2 | µX .r1 | r1 ‖ r2 | r1 + r2
(Distr) p ‖ (q + r) = (p ‖ q) + (p ‖ r)
(Expansion) ap ‖ bq = a(p ‖ bq) + b(ap ‖ q) + (a|b)(p ‖ q)
(Monoid) (e + f) + g = e + (f + g); e + 0 = e
(Comm) e + f = f + e
(Idem) e + e = e

Theorem (Milner; Bergstra and Klop)
Parallel product can be eliminated over term algebras to yield a
sound and complete axiomatization.
This destroys locality.

Reasoning for products of rational expressions

For technical reasons (Zielonka 1989) we need a renaming
operation.
By adding a few axioms for renaming (letter-to-letter
substitution), we can characterize language and bisimulation
behaviour of finite labelled product systems.
(Subst) a[σ] = σ(a)
(Comp) e[σ1][σ2] = e[σ1 ◦ σ2]
(Distr) (p + q)[σ] = p[σ] + q[σ]
(Distr) (pq)[σ] = p[σ]q[σ]

Product temporal logic

Φi ::= p | ¬α | α ∨ β | 〈a〉iα, a ∈ Σi | αUiβ
Φ ::= α@i , α ∈ Φi | ¬φ | φ1 ∨ φ2

Let â def
=

∧
i∈loc(a)

(〈a〉iTrue)@i .

We now define the semantics of global formulas.
FRAME F = (T , δ), where T is a product transition system
MODEL M = (F ,V),V : Q → ℘(AP), Q the set of all local
states of the system. Thus, atomic propositions are evaluated
at local states.

I M |= α@i iff Mi ,0 |= α.
I M |= ¬φ iff M 6|= φ.
I M |= φ1 ∨ φ2 iff M |= φ1 or M |= φ2.

Product temporal induction

Usual temporal induction for reachability:
GI =⇒ α ∧

⊙
(GI)

GI =⇒ �α
Product generalization is too weak:∧

k

LI@k =⇒ α@i ∧
⊙

jLI@j∧
k

LI@k =⇒ (�iα)@i

Combination of LIs can specify global states which are not
reachable.
Product induction:
b̂ ∧

∧
k

Pre@k =⇒ ([b]jPost)@j , j ∈ loc(b)∧
k 6∈loc(b)

Pre@k ∧
∧

j∈loc(b)

Post@j =⇒ GI

Global axiomatization, part 1

(A0) (¬α)@i ≡ ¬α@i
(A1) (α ∨ β)@i ≡ (α@i ∨ β@i)
(A2)

∨
a∈Σ

â

(MP)
α, α =⇒ β

β

(GG)
`i α

α@i

(GM)

∧
i∈loc(a)

αi@i =⇒
∨

j 6∈loc(a)

αj@j

∧
i∈loc(a)

(〈a〉iαi)@i =⇒
∨

j 6∈loc(a)

αj@j

Global axiomatization, synchronization

Let m > 0 and α1, . . . , αm be formulas such that for all

l ∈ {1, . . . ,m}, αl is of the form
∧

k∈Loc

αl(k)@k . Let γ def
=

m∨
l=1

αl .

(Sym) γ =⇒ ¬â∧
l∈{1,...,m}

(αl =⇒ (
∧

b 6∈Σi

(b̂ =⇒
∧

j∈loc(b)

([b]jβ(l ,b, j))@j)))∧
l∈{1,...,m}

∧
b 6∈Σi

((
∧

k 6∈loc(b)

αl(k)@k ∧
∧

j∈loc(b)

β(l ,b, j)@j) =⇒ γ)

γ =⇒ ([a]iFalse)@i , for i ∈ loc(a)

Gloabl axiomatization, the until operator

(Unm) γ =⇒ ¬γ2@i∧
l∈{1,...,m}

(αl =⇒ (
∧
b∈Σ

(b̂ =⇒
∧

j∈loc(b)

([b]jβ(l ,b, j))@j)))∧
l∈{1,...,m}

∧
b∈Σ

((
∧

k 6∈loc(b)

αl(k)@k ∧
∧

j∈loc(b)

β(l ,b, j)@j) =⇒ γ)

γ =⇒ ¬(γ1Uiγ2)@i

Theorem
The local and global axiomatizations, put together, are sound
and complete.

Equivalence of products of rational expressions

Consider X ||Y = (a + ba)∗||(ab)∗.
By fixpoint expansion:
X ||Y = 1 + a(1 + (a + ba)(a + ba)∗) + ba(a + ba)∗||1 + ab(ab)∗.
Distributing and eliminating useless actions:
X ||Y = 1 + aba(a + ba)∗||1 + ab(ab)∗ = 1 + abaX ||1 + abY
By product induction and fixpoint expansion:
X ||Y = (aba)∗||(ab)∗ = 1 + aba(aba)∗||1 + ab(ab)∗.
Continuing in this way:
W ||Z = a(aba)∗||(ab)∗ = ae||bf , for some e, f .
Eliminating useless actions, W ||Z = 0||0.
Hence X ||Y = 1||1.

Questions open

A question from me:
Is there a sound and complete axiomatization of language
equivalence of products of rational expressions which does not
reduce parallel product to interleaving?

