Locality as product

Kamal Lodaya and R. Ramanujam

The Institute of Mathematical Sciences, Chennai

September 2011

Transition systems and automata

- Mathematical model.
- Widely used to study simple sequential
 programs.
- Computer scientists like them.
- Others - for example, people in the software industry- don't. (cf. Moshe Vardi's talk in ICLA '09 at Chennai.)

Rational expressions

Theorem (Kleene)

There is a syntax of rational expressions from which one can construct equivalent nondeterministic finite automata of polynomial size. Conversely from an automaton one can construct in a polynomial number of steps an expression which in the worst case can be of exponential size.

- Let A, a nonempty finite alphabet, consist of all atomic computations. The regular expressions are:

$$
r::=a \in A\left|r_{1} ; r_{2}\right| r_{1}+r_{2} \mid r_{1}^{*}
$$

- The expressions define the following languages (sets of computations):

$$
\begin{aligned}
\operatorname{Lang}(a) & =\{a\} \\
\operatorname{Lang}\left(r_{1} ; r_{2}\right) & =\left\{w_{1} w_{2} \mid w_{1} \in \operatorname{Lang}\left(r_{1}\right), w_{2} \in \operatorname{Lang}\left(r_{2}\right)\right\} \\
\operatorname{Lang}\left(r_{1}+r_{2}\right) & =\operatorname{Lang}\left(r_{1}\right) \cup \operatorname{Lang}\left(r_{2}\right) \\
\operatorname{Lang}\left(r_{1}^{*}\right) & =\left\{w_{1} \ldots w_{n} \mid \exists n, \forall 1 \leq i \leq n, w_{i} \in \operatorname{Lang}\left(r_{1}\right)\right\}
\end{aligned}
$$

Language equivalence for rational expressions

(Aanderaa 1965, Salomaa 1966)

```
(Monoid) \(\quad(e+f)+g=e+(f+g) ; e+0=e\)
(Comm) \(\quad e+f=f+e\)
(Idem) \(\quad e+e=e\)
(Monoid) \(\quad(e f) g=e(f g) ; e 1=1 e=e\)
(Absorp) \(\quad e 0=0 e=0\)
(Distr)
(Guard) \(\quad e^{*}=(1+e)^{*}\)
(Fixpt)
(Guardlnd) Let \(e\) have the NEWP. Then:
\[
\frac{x=e x+f}{x=e^{*} f} ; \frac{x=x e+f}{x=f e^{*}}
\]
```

Theorem (Salomaa; Meyer, Stockmeyer)
This axiomatization is sound and complete for language equivalence of rational expressions. Checking equivalence is complete for polynomial space.

Temporal logic

$\Phi::=p, p \in A P|\neg \alpha| \alpha \vee \beta|\langle a\rangle \alpha| \alpha \mathbf{U} \beta$
$\diamond \alpha \stackrel{\text { def }}{=} \operatorname{True} \mathbf{U} \alpha ; \square \alpha \stackrel{\text { def }}{=} \neg \diamond \neg \alpha ; \bigcirc \alpha \stackrel{\text { def }}{=} \bigvee_{a \in \Sigma}\langle a\rangle \alpha$;
$\bigcirc \alpha \stackrel{\text { def }}{=} \neg \bigcirc \neg \alpha ;[a] \alpha \stackrel{\text { def }}{=} \neg\langle a\rangle \neg \alpha$.
Definition
Frame $F=(\mathcal{T}, \delta)$, where δ is a run (usually infinite) on the transition system \mathcal{T}.
Model $M=(F, V), V: Q \rightarrow \wp(A P)$ the valuation function over Q, the states

- $M, k \mid=p$ iff $p \in V(\delta(k))$.
- $M, k \models \neg \alpha$ iff $M, k \not \vDash \alpha$.
- $M, k \models \alpha \vee \beta$ iff $M, k \models \alpha$ or $M, k \models \beta$.
- $M, k \models\langle a\rangle \alpha$ iff $\delta(k+1)$ exists, $\delta(k) \xrightarrow{a} \delta(k+1)$ and $M, k+1 \models \alpha$.
- $M, k \models \alpha \mathbf{U} \beta$ iff for some $m \geq k$ such that $M, m \vDash \beta$, and for all $I: k \leq I<m, M, I \models \alpha$.

Temporal logic

ϕ is SATISFIABLE if $M, 0 \models \phi$ for some model $M=((\mathcal{T}, \delta), V)$. ϕ is VALID if ϕ is satisfied in every model M.

$\langle R s 3\rangle(\langle c\rangle \alpha \wedge\langle t\rangle \beta),\langle R s 3\rangle\langle c\rangle \alpha \wedge\langle R s 3\rangle\langle t\rangle \beta$

Axiomatization

(A0) All the substitutional instances of the tautologies of PC (A1) $\quad[a](\alpha \Longrightarrow \beta) \Longrightarrow([a] \alpha \Longrightarrow[a] \beta)$
(A2) $\langle a\rangle$ True $\Longrightarrow[b]$ False, $\quad a \neq b$
(A3) $\langle a\rangle \alpha \Longrightarrow[a] \alpha$
(A4) $\quad \alpha \mathbf{U} \beta \Longrightarrow(\beta \vee(\alpha \wedge \bigodot(\alpha \mathbf{U} \beta)))$
(MP) $\frac{\alpha, \alpha \Longrightarrow \beta}{\beta}$
(TG) $\frac{\alpha}{[a] \alpha}$
Theorem (Gabbay, Pnueli, Shelah, Stavi; Sistla, Clarke)
This axiomatization of temporal logic is sound and complete for infinite runs of a transition system. Satisfiability and validity are complete for polynomial space.

A different syntax

We also use right-linear grammars (or tail-recursive equations) to describe finite state systems.
$x=a z+b y$
$y=c x+d z$
$z=e x+f y$
An equivalent program:

$$
\begin{aligned}
& \text { x: choose a; jump y } \\
& \text { choose b; jump z; exit } \\
& \text { y: choose c; jump x } \\
& \text { choose d; jump z; exit } \\
& \text { z: choose e; jump x } \\
& \text { choose f; jump z; exit }
\end{aligned}
$$

Solving equations in rational expressions

$$
W=a X+b Z, X=a Y+b W, Y=a Z+b X, Z=a Z+b Z
$$

By right-distributivity and introducing star, $Z=(a+b)^{*}$.
Substituting:
$W=a X+b(a+b)^{*}, X=b W+a\left(a(a+b)^{*}+b X\right)$.
By left-distributivity and introduction of star:
$X=a b X+b W+a a(a+b)^{*}=(a b)^{*}\left(b W+a a(a+b)^{*}\right)$.
Applying the same medicine again:
$W=a(a b)^{*} b W+a(a b)^{*} a a(a+b)^{*}+b(a+b)^{*}$ and
$W=\left(a(a b)^{*} b\right)^{*}\left(a(a b)^{*} a a(a+b)^{*}+b(a+b)^{*}\right)$.
This way of finding solutions is reminiscent of performing
Gaussian elimination in linear arithmetic equations and was first used for regular languages by McNaughton and Yamada.

By Kleene's theorem ...

Here is a rational expression:
$x=\left(a(f d)^{*}(e+f c)+b(d f)^{*}(c+d e)\right)^{*}$

Or in program notation:

```
x: loop choose a;
    loop f; d end loop ;
    choose e; or f; c end choose
    end choose;
    choose b;
    loop d; f end loop ;
    choose c; or d; e end choose
    end choose
end loop
```


Structured programming

Theorem (Böhm and Jacopini)

Every flowchart program can be converted into an equivalent program using only assignments, sequencing, choice (if-then-else) and iteration (while-do) commands.
But iteration is not as powerful as tail-recursion for reactive behaviour, which we see in the next slide.

Reactive behaviour

Rs3 $\cdot(c+t) \neq($ Rs3 $\cdot c)+($ Rs3 $\cdot t)$
c. $0 \neq 0$

Left-distributivity fails
Right-absorption fails

Definition (Brookes, Hoare and Roscoe)
Two machines are failure equivalent if one of them can perform a sequence of actions and then refuse to perform an action, so can the other.

Bisimulation

Definition (Park)

A bisimulation is a symmetric relation between the states of two transition graphs such that if p_{1} is bisimilar to q_{1} and p_{1} can make an a-move to p_{2}, then there is a q_{2} bisimilar to p_{2} such that q_{1} can make an a-move to q_{2}.

This is a recursive version of the definition of failure equivalence in the previous slide.

Right-linear grammars

$$
r::=0|X| a \cdot r_{1}\left|r_{1}+r_{2}\right| \mu X . r_{1}
$$

Theorem (Milner)

1. For all finite state machines there is a linear size right-linear grammar which describes their behaviour upto bisimulation.
2. The behaviour upto bisimulation of the machine below cannot be described by a rational expression.

$$
\begin{aligned}
& X=a Z+b Y \\
& Y=c X+d Z \\
& Z=e X+f Y
\end{aligned}
$$

Park bisimulation for finite systems (Milner 1984)

(Monoid)
(Comm)
(Idem)
(Assoc)
(LeftAbs)
(RightDistr)
(Guard)
(Fixpt)
(GuardInd)

$$
\begin{aligned}
& (e+f)+g=e+(f+g) ; e+0=e \\
& e+f=f+e \\
& e+e=e \\
& (e f) g=e(f g) \\
& 0 e=0 \\
& (e+f) g=e g+f g \\
& \mu X . e=\mu X .(X+e) \\
& \mu X . e=e[\mu X . e / X] \\
& \frac{f=e[f / X]}{f=\mu X \cdot e} \quad(\text { provided } X \text { guarded in } e)
\end{aligned}
$$

Theorem (Milner; Kanellakis, Smolka)
This axiomatization is sound and complete for bisimulation of mu-expressions. Bisimulation can be checked in polynomial time.

Extensions of rational expressions

$$
\begin{aligned}
& r::=a \in A\left|r_{1} ; r_{2}\right| r_{1}+r_{2}\left|r_{1}^{*}\right| r_{1} \cap r_{2} \mid \overline{r_{1}} \\
& \operatorname{Lang}\left(r_{1} \cap r_{2}\right)=\operatorname{Lang(r_{1})\cap \operatorname {Lang}(r_{2})} \\
& \operatorname{Lang}\left(\overline{r_{1}}\right)=\operatorname{Lang(r_{1})}
\end{aligned}
$$

- For an automaton for the expression $r_{1} \cap r_{2}$ we inductively assume automata M_{1} for r_{1} and M_{2} for r_{2} and perform a product construction. Its size will be $O\left(\left|M_{1}\right|\right) \times O\left(\left|M_{2}\right|\right)$. If there are many intersections, the size of the automaton constructed can be exponential in $\left|r_{1} \cap r_{2}\right|$.
- An automaton for $\overline{r_{1}}$ requires a subset construction. Its size is exponential in the size of the automaton for r_{1}. If there are many negations, the size of the automaton constructed can be a tower of exponentials in $\left|\overline{r_{1}}\right|$.

Shuffle with synchronization

(Campbell,Habermann 1974)

Concurrent composition of two automata can be thought of as a product on their common actions, and a shuffle of the other letters of the alphabet.

$$
\begin{aligned}
r:: a \in A\left|r_{1} ; r_{2}\right| r_{1}+r_{2} \mid & r_{1}{ }^{*} \mid \operatorname{SYNC} J \operatorname{IN}\left(r_{1}, r_{2}\right), J \subseteq A \\
P A R\left(r_{1}, r_{2}\right)= & \text { SYNC } \emptyset \operatorname{IN}\left(r_{1}, r_{2}\right) \\
\operatorname{Lang}\left(\operatorname{SYNC} J \operatorname{IN}\left(r_{1}, r_{2}\right)\right)= & \left\{w \mid w \text { is a shuffle of } w_{1}, w_{2}\right. \\
& \text { except that } w w_{1} \mid J=w_{2}\lceil J ; \\
& \left.w_{1} \in \operatorname{Lang}\left(r_{1}\right), w_{2} \in \operatorname{Lang}\left(r_{2}\right)\right\}
\end{aligned}
$$

Example

When j synchronizes aaja aaja and na jaao na jaao, you might get a word like aa na jaao naaaa jaaao.

Counting and state explosion

Example
$\operatorname{SYNC} j \operatorname{IN}\left((j ; j)^{*},(j ; j ; j)^{*}\right)$.
The first process does a loop of two j 's.
The second process does a loop of three j 's.
The j's synchronize.
Er ... which j's ?
Suppose the automata for r_{1} and r_{2} have n_{1} and n_{2} states respectively. The automaton construction for SYNC $\operatorname{jIN}\left(r_{1}, r_{2}\right)$ has complexity $O\left(n_{1} n_{2}\right)$.
Theorem (State explosion)
From a syntax of parallel products of rational expressions one can construct equivalent product systems (products of nondeterministic finite automata) of exponential size.

Synchronization on common letters

(Mazurkiewicz 1977)

LOCATIONS LOC $=\{1, \ldots, n\}$.
DIStributed alphabet $\Sigma \stackrel{\text { def }}{=} \Sigma_{1} \cup \ldots \cup \Sigma_{n}$, each Σ_{i} finite nonempty set of actions of agent i. When an action a is in
$\Sigma_{i} \cap \Sigma_{j}, i \neq j$, we think of it as a synchronization action between i and j. (There can be k-way synchronizations also.)
Let $\operatorname{loc}(a) \stackrel{\text { def }}{=}\left\{i \mid a \in \Sigma_{i}\right\}$.
PRODUCT WORD $\left(w_{1}, \ldots, w_{n}\right) \in\left(\Sigma^{*}\right)^{\text {Loc }}$, such that for some $w \in \Sigma^{*}$, every $w_{i}=w\left\lceil\Sigma_{i}\right.$.
Definition
PRODUCT SYSTEM $T S=(Q, \Rightarrow)$ over Σ, where

- $\widetilde{Q} \stackrel{\text { def }}{=} Q_{1} \times \cdots \times Q_{n}$
- Global transition function $\Rightarrow \subseteq Q \times \Sigma \times Q$: $\left(q_{1}, \ldots, q_{n}\right) \stackrel{a}{\Rightarrow}\left(q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right)$ iff for all $i \in \operatorname{loc}(a), q_{i}{ }_{i}{ }_{i} q_{i}^{\prime}$ and for all $j \notin \operatorname{loc}(a), q_{j}=q_{j}^{\prime}$.

Parallel product of regular expressions

Regular expressions with parallel
$r::=0|1| a\left|r_{1} \cdot r_{2}\right| r_{1}+r_{2}\left|r_{1}^{*}\right| r_{1}| | r_{2} \mid r_{1}+r_{2}$
Mu-EXPRESSIONS WITH PARALLEL
$r::=0|X| a \cdot r_{1}\left|r_{1}+r_{2}\right| \mu X . r_{1}\left|r_{1} \| r_{2}\right| r_{1}+r_{2}$
(Distr)

$$
p \|(q+r)=(p \| q)+(p \| r)
$$

(Expansion) $\quad a p \| b q=a(p \| b q)+b(a p \| q)+(a \mid b)(p \| q)$
(Monoid) $\quad(e+f)+g=e+(f+g) ; e+0=e$
(Comm) $\quad e+f=f+e$
(Idem) $\quad e+e=e$
Theorem (Milner; Bergstra and Klop)
Parallel product can be eliminated over term algebras to yield a sound and complete axiomatization.
This destroys locality.

Reasoning for products of rational expressions

For technical reasons (Zielonka 1989) we need a renaming operation.
By adding a few axioms for renaming (letter-to-letter substitution), we can characterize language and bisimulation behaviour of finite labelled product systems.
(Subst) $\quad \boldsymbol{a}[\sigma]=\sigma(a)$
(Comp) $\boldsymbol{e}\left[\sigma_{1}\right]\left[\sigma_{2}\right]=\boldsymbol{e}\left[\sigma_{1} \circ \sigma_{2}\right]$
(Distr) $\quad(p+q)[\sigma]=p[\sigma]+q[\sigma]$
(Distr) $\quad(p q)[\sigma]=p[\sigma] q[\sigma]$

Product temporal logic

$\Phi_{i}::=p|\neg \alpha| \alpha \vee \beta\left|\langle\mathbf{a}\rangle_{i} \alpha, \boldsymbol{a} \in \Sigma_{i}\right| \alpha \mathbf{U}_{i} \beta$
$\Phi::=\alpha @ i, \alpha \in \Phi_{i}|\neg \phi| \phi_{1} \vee \phi_{2}$
Let $\widehat{a} \stackrel{\text { def }}{=} \bigwedge_{i \in \operatorname{loc}(a)}\left(\langle a\rangle_{i}\right.$ True $) @ i$.
We now define the semantics of global formulas.
Frame $F=(\mathcal{T}, \delta)$, where \mathcal{T} is a product transition system Model $M=(F, V), V: Q \rightarrow \wp(A P), Q$ the set of all local states of the system. Thus, atomic propositions are evaluated at local states.

- $\boldsymbol{M} \models \alpha @ i$ iff $M_{i}, \mathbf{0}=\alpha$.
- $M \models \neg \phi$ iff $M \not \models \phi$.
- $M \models \phi_{1} \vee \phi_{2}$ iff $M \models \phi_{1}$ or $M \models \phi_{2}$.

Product temporal induction

Usual temporal induction for reachability:
$\underline{G I \Longrightarrow \alpha \wedge \bigodot(G I)}$
GI $\Longrightarrow \square \alpha$
Product generalization is too weak:
$\bigwedge L I @ k \Longrightarrow \alpha @ i \wedge \bigodot_{j} L I @ j$
k
$\bigwedge L / @ k \Longrightarrow\left(\square_{i} \alpha\right) @ i$
Combination of LIs can specify global states which are not reachable.
Product induction:
$\widehat{b} \wedge \bigwedge$ Pre@ $k \Longrightarrow\left([b]_{j}\right.$ Post $) @ j, j \in \operatorname{loc}(b)$
$\bigwedge_{k \notin \operatorname{loc}(b)}^{k} \operatorname{Pre@} k \wedge \bigwedge_{j \in \operatorname{loc}(b)} \operatorname{Post} @ j \Longrightarrow G I$

Global axiomatization, part 1

(A0) $\quad(\neg \alpha) @ i \equiv \neg \alpha @ i$
(A1) $\quad(\alpha \vee \beta) @ i \equiv(\alpha @ i \vee \beta @ i)$
(A2) $\bigvee \hat{a}$
$a \in \Sigma$
(MP) $\frac{\alpha, \alpha \Longrightarrow \beta}{\beta}$
(GG) $\frac{\vdash_{i} \alpha}{\alpha @ i}$
(GM) $\frac{i \in \operatorname{loc}(a)}{\bigwedge_{i \in \operatorname{loc}(a)}\left(\langle a\rangle_{i} \alpha_{i}\right) @ i \Longrightarrow \bigvee_{j \notin \operatorname{loc}(a)} \alpha_{j} @ j}$

Global axiomatization, synchronization

Let $m>0$ and $\alpha_{1}, \ldots, \alpha_{m}$ be formulas such that for all
$I \in\{1, \ldots, m\}, \alpha_{l}$ is of the form $\bigwedge_{k \in \operatorname{Loc}} \alpha_{l}(k) @ k$. Let $\gamma \stackrel{\text { def }}{=} \bigvee_{l=1}^{m} \alpha_{l}$.

$\gamma \Longrightarrow\left([a]_{i}\right.$ False $) @ i$, for $i \in \operatorname{loc}(a)$

Gloabl axiomatization, the until operator

$$
\begin{aligned}
\left(\mathrm{Un}_{m}\right) \quad & \gamma \Longrightarrow \bigwedge_{I} @ i \\
& \left.\bigwedge_{I \in\{1, \ldots, m\}}\left(\alpha_{I} \Longrightarrow\left(\bigwedge_{b \in \Sigma}\left(\widehat{b} \Longrightarrow \bigwedge_{j \in \operatorname{loc}(b)}\left([b]_{j} \beta(I, \ldots, m\}, j\right)\right) @ j\right)\right)\right) \\
& \bigwedge_{b \in \Sigma}\left(\left(\bigwedge_{k \notin \operatorname{loc}(b)} \alpha_{l}(k) @ k \bigwedge_{j \in \operatorname{loc}(b)} \beta(I, b, j) @ j\right) \Longrightarrow \gamma\right)
\end{aligned}
$$

$$
\gamma \Longrightarrow \neg\left(\gamma_{1} \mathbf{U}_{i} \gamma_{2}\right) @ i
$$

Theorem
The local and global axiomatizations, put together, are sound and complete.

Equivalence of products of rational expressions

Consider $X\left\|Y=(a+b a)^{*}\right\|(a b)^{*}$.
By fixpoint expansion:
$X\left\|Y=1+a\left(1+(a+b a)(a+b a)^{*}\right)+b a(a+b a)^{*}\right\| 1+a b(a b)^{*}$.
Distributing and eliminating useless actions:
$X\left\|Y=1+a b a(a+b a)^{*}\right\| 1+a b(a b)^{*}=1+a b a X \| 1+a b Y$
By product induction and fixpoint expansion:
$X\left\|Y=(a b a)^{*}\right\|(a b)^{*}=1+a b a(a b a)^{*} \| 1+a b(a b)^{*}$.
Continuing in this way:
$W\left\|Z=a(a b a)^{*}\right\|(a b)^{*}=a e \| b f$, for some e, f.
Eliminating useless actions, $W\|Z=0 \mid\| 0$.
Hence $X \| Y=1| | 1$.

Questions open

A question from me:
Is there a sound and complete axiomatization of language equivalence of products of rational expressions which does not reduce parallel product to interleaving?

