
Collecting garbage concurrently

(but correctly)

Kamal Lodaya

The Institute of Mathematical Sciences, Chennai

Joint work

with Kalpesh Kapoor (IIT, Guwahati)

and Uday Reddy (U. Birmingham)

1

First order logic (Dedekind 1888, Frege 1893)

Terms are built up from variables and constant symbols using

function symbols (eg, numbers with +,×)

Atomic formulas have an n-ary predicate symbol applied to n terms

eg, the binary relational operators <,≤, >,≥, =, 6=

The constant, function and predicate symbols are called a signature.

Equality is always assumed to be in the signature

Formulas are built up from atomic formulas using the boolean

operations ∧,∨,¬ and quantifiers ∀x, ∃x

A model/structure/interpretation (D, I) is a nonempty set (domain),

and an interpretation of the symbols in the signature

eg, N = (N , plus, times), the natural numbers with the usual

addition and multiplication

2

Truth and validity

Let s be a state, a function assigning values in the domain to

variables

This inductively extends to ŝ assigning values to terms

eg, ŝ(t1 × t2) = ŝ(t1) times ŝ(t2)

This further extends to a satisfaction/truth definition (D, I), s |= p

(sometimes written (D, I) |= p[s])

eg, (D, I), s |= p ∧ q iff (D, I), s |= p and (D, I), s |= q

A formula is valid if it is true in all models and in all states.

(Sometimes validity is only defined for sentences—formulas without

free variables.)

Theorem 1 (Turing 1936) Validity of FO formulas is

undecidable.

3

Validity over interpretations

We can restrict to particular interpretations:

eg, FO(N) and FO(Z).

The sets of valid formulas of these interpretations are written

Th(N) and Th(Z).

If a formula p is valid in an interpretation I, we call it a

consequence of Th(I) and write Th(I) |= p.

Theorem 2 (Turing 1936) Th(N) and Th(Z) are not even

computably enumerable.

We can also restrict to particular signatures:

Theorem 3 (Presburger 1929) The set Th(N , plus) is

decidable.

4

Truth and proof

An axiom system gives syntactic ways of deriving validities or

consequences.

Let Γ be a set of premisses (eg, it could be Th(N)).

Here is an inference rule:
Γ ⊢ p, Γ ⊢ q

Γ ⊢ p ∧ q
and-intro

An axiom system is sound if it can only derive validities/

consequences; complete if it can derive all validities/consequences.

Theorem 4 (Completeness, Gödel 1930) There is a finite

axiomatization of FO. Hence its valid formulas are computably

enumerable/r.e.

Theorem 5 (Incompleteness, Gödel 1931) There is no finite

axiomatization for FO(N) and FO(Z).

5

Program assertions (Naur 1966, Floyd 1967)

Program variables hold values which are integers/reals/etc

We will assume a fixed interpretation FO(N , plus, times).

The satisfaction relation is just s |= p.

A formula is valid if it is true in all states.

We could define an “additive” proof theory like
s ⊢ p, s ⊢ q

s ⊢ p ∧ q

6

Logic of programs (Hoare 1969)

A logic of programs is a multi-modal logic with countably infinite

modalities {�x,ep | x ∈ V ar, e ∈ Exp}.

A logic of programs is a restricted multi-modal logic with formulae

{p ⊃ q, p ⊃ [x := e]q | x ∈ V ar, e ∈ Exp, p, q ∈ FO}.

A logic of programs has formulae of two kinds: implications p ⊃ q

and “correctness triples” {p}x:=e{q}.

The usual modal consequence

p ⊃ p′, q′ ⊃ q, p′ ⊃ �x,eq
′ ⊢ p ⊃ �x,eq) K+Necessitation

is written

Th(I) ⊢ p ⊃ p′, {p′}x:=e{q′}, Th(I) ⊢ q′ ⊃ q

{p}x:=e{q}
consequence

There is also one axiom:

{q[e/x]}x := e{q} assignment

7

Logic of programs (Hoare 1969)

To verify a structured program, we associate a correctness triple

{p} C {q} with every construct C in the program.

eg, {x > 0} x := x-1 {x ≥ 0}

The triple is valid (|= {p}C{q}) if

for all states s |= p, when sJCKt then t |= q

Structured programs

{q[e/x]}x := e{q} assignment

{p}C1{q}, {q}C2{r}

{p}C1; C2{r}
sequencing

{p ∧ b}C1{q}, {p ∧ ¬b}C2{q}

{p}if b then C1 else C2 end if {q}
if

{q ∧ b}C{q}

{q}while b do C{q ∧ ¬b}
while

8

Details

The proof theory is relative to an interpretation:

Th(I) ⊢ p ⊃ p′, {p′}C{q′}, Th(I) ⊢ q′ ⊃ q

{p}C{q}
consequence

Some structural rules are also needed:

{p1}C{q1}, {p2}C{q2}

{p1 ∧ p2}C{q1 ∧ q2}
conjunction

Dijkstra 1975 introduced the idea of weakest preconditions

Theorem 6 (Cook 1978) If Th(I) can express weakest

preconditions and loop invariants, then Hoare logic is relatively

complete wrt Th(I).

Also works for disjoint concurrency. Assume the proviso that for

processes i 6= j, write(Ci) ∩ free(pj , Cj , qj) = ∅.

{p1}C1{q1}, {p2}C2{q2}

{p1 ∧ p2}C1||C2{q1 ∧ q2}
disjoint parallel

9

Verification of programs with data structures

Data structures require treating the state as divided into many

parts

Burstall 1969 pointed out that you need inductive predicates over

the parts to state properties of the whole (eg, lists)

Manna and Waldinger 1985, 1990 present theories for inducting

over commonly used data types, and techniques which theorem

provers can employ to use them. For example, in proving programs

with lists, we might use the inductive predicate:

list ε i
def
= i = nil, and

list aV i
def
= head(i) = a ∧ list V tail(i)

10

Programs with pointers

A heap is a function from addresses to values. The addresses can be

computed inside a program. We let the set of addresses be N .

Given two disjoint heaps h1 and h2, h1 ◦ h2 is their fusion.

x := cons(e1, . . . , en) allocates n consecutive locations from the

heap and stores the values of the expressions in them

The expression [e] computes the value of e as a heap address, and

returns the record/field at that address

[e] := e′ computes the value of e as a heap address, and updates it

with the value of e′

dispose e computes the value of e as a heap address, and returns

that address to the heap

If the value of e in the last three commands is not a heap address,

the program aborts. A program is safe if it does not abort.

11

Logic of programs with pointers (Reynolds 2000)

Atomic formulas include a binary predicate symbol 7−→ and a

constant symbol emp

Formulas are built up from atomic formulas using the boolean

operations ∧,∨,¬ and quantifiers ∀x, ∃x,

and a binary operation ⋆

A state (s, h) consists of a stack and a heap

s, h |= emp iff dom(h) = ∅

s, h |= t1 7−→ t2 iff dom(h) = {ŝ(t1)} and h(ŝ(t1)) = ŝ(t2)

s, h |= p ⋆ q iff ∃h1, h2(h = h1 ◦ h2 and s, h1 |= p and s, h2 |= q)

A formula is valid if it is true in all states and heaps

The proof theory of heaps is “multiplicative”:
h1 ⊢ p, h2 ⊢ q

h1 ◦ h2 ⊢ p ⋆ q

12

Some formulae

Precise assertions

p is precise iff for all s, h, there is at most one h0 ⊆ h : s, h0 |= p

x 7−→ e

x 7−→ (e0, e1, . . . , en)
def
= (x 7−→ e0) ⋆ (x + 1 7−→

e1) ⋆ . . . ⋆ (x + n 7−→ en)

x 7−→
def
= ∃y(x 7−→ y) (don’t care)

Imprecise assertions

∃x(x 7−→ 10) (don’t know)

x −֒→ e
def
= (x 7−→ e) ⋆ true (dom(h) can have other elements)

(p1 ∧ p2) ⋆ q ⊃ (p1 ⋆ q) ∧ (p2 ⋆ q) is a valid formula.

(p1 ⋆ q) ∧ (p2 ⋆ q) ⊃ (p1 ∧ p2) ⋆ q is valid when q is precise.

Exercise: Compare x 7−→ (3, y) ⋆ y 7−→ (3, x) with

x 7−→ (3, y) ∧ y 7−→ (3, x) and x −֒→ (3, y) ∧ y −֒→ (3, x).

13

Axiom system (Reynolds 2000, Ishtiaq and O’Hearn 2001)

There are three axioms for the atomic statements.

{emp}x := cons(e1, . . . , en){x 7−→ (e1, . . . , en)} allocation

{e1 7−→ }[e1] := e2{e1 7−→ e2} mutation

{e 7−→ }dispose e{emp} deallocation

Ishtiaq and O’Hearn 2001 introduced a structural rule:

{p}C{q}, write(C) ∩ free(r) = ∅

{p ⋆ r}C{q ⋆ r}
frame rule

|= {p}C{q} if for all states and heaps s, h |= p,

C is safe at (s, h) and when (s, h)JCK(s′, h′), then s′, h′ |= q

With the proviso that for processes i 6= j,

write(Ci) ∩ free(pj, Cj , qj) = ∅:

{p1}C1{q1}, {p2}C2{q2}

{p1 ⋆ p2}C1||C2{q1 ⋆ q2}
disjoint parallel

14

List reversal: top level proof

⋆ has separation built-in, and we can define precise assertions:

list ε i
def
= i = nil and list aV i

def
= ∃j(i 7−→ (a, j) ⋆ list V j).

pre {list V i}

j := nil;

inv {∃W, X((list W i ⋆ list X j) ∧ V R = W RX)}

while i <> nil do

{∃a, W, X((list aW i ⋆ list X j) ∧ V R = (aW)RX)}

k := [i.next];

[i.next] := j;

j := i;

i := k

inv {∃W, X((list W i ⋆ list X j) ∧ V R = W RX)}

end while

post {list V R j}

15

List reversal: proof of loop body

pre {∃a, W, X((list aW i ⋆ list X j) ∧ V R = (aW)RX)}

{∃a, W, X, k((i 7−→ a, k ⋆ list W i ⋆ list X j) ∧ V R = (aW)RX)}

k := [i.next];

{∃a, W, X((i 7−→ a, k ⋆ list W k ⋆ list X j) ∧ V R = (aW)RX)}

[i.next] := j;

{∃a, W, X((i 7−→ a, j ⋆ list W k ⋆ list X j) ∧ V R = (aW)RX)}

{∃a, W, X((list W k ⋆ list aX i) ∧ V R = W RaX)}

{∃W, X((list W k ⋆ list X i) ∧ V R = W RX)}

j := i; i := k

inv {∃W, X((list W i ⋆ list X j) ∧ V R = W RX)}

16

Daring concurrency (O’Hearn 04)

x :=

cons(...);

[x] := ...

||

[y] :=

...;

dispose (y)

O’Hearn calls this daring —as opposed to the cautious concurrency

enforced by a programming discipline like a monitor.

There is potential aliasing between x and y, but when proving the

parallel program, we use the ⋆ operation to rule out race conditions.

The process which allocates owns the storage allocated by a

pointer. This ownership can be transferred by passing the pointer,

but guaranteeing single ownership allows use of the disjoint

concurrency rule. Ownership is determined by the assertions, not

by the program.

But what if we want to prove programs with race conditions?

17

Collecting garbage: Mutator

mutator
def
=

var k,j,f: unsigned;

do

true ⇒ delete left edge(k);

� true ⇒ delete right edge(k);

� true ⇒ modify left edge(k,j);

� true ⇒ modify right edge(k,j);

� true ⇒ get new left edge(k);

� true ⇒ get new right edge(k);

od

18

Collector (mark and sweep)

collector
def
=

var i: unsigned; c: (white,black);

do true ⇒

mark;

sweep

od

19

Marking

mark
def
=

blacken(ROOT); blacken(NIL);

i := 0;

do i ≤ N ⇒

if [i.colour] = white ⇒ i := i+1

� [i.colour] = black and

[[i.left].colour] = black and

[[i.right].colour] = black ⇒ i := i+1

� else ⇒ blacken(i.left); blacken(i.right);

blacken(i); i:= 0

fi

od

20

Sweeping

sweep
def
=

i := 0;

do i ≤ N ⇒

if [i.colour] = black ⇒ whiten(i); i:= i+1

� [i.colour] = white ⇒ collect white node(i);

i := i+1

fi

od

21

Collector proof outline

collector
def
=

var i: unsigned; c: (white,black);

do true ⇒ {no black nodes}

mark;

{all white nodes are garbage}

sweep

{no black nodes}

od

22

Concurrent garbage collector (Steele)

Two bits with every memory location, for “marked” and “swept”

Multiprocessing compactifying garbage collection,

by Guy L. Steele Jr.,

Comm.ACM (submitted Sep 74, published Sep 75)

ACM Student Award, 1st place

23

Implementation

mark
def
=

blacken(ROOT); blacken(NIL);

i := 0;

do i ≤ N ⇒

if [i.colour] = white ⇒ i := i+1

� [i.colour] = black and

[[i.left].colour] = black and

[[i.right].colour] = black ⇒ i := i+1

� else ⇒ blacken(i.left); blacken(i.right);

blacken(i); i:= 0

fi

od

24

Implementation questions

• How is the test supposed to be done atomically?

• What if mutator is modifying while collector is blackening?

Dijkstra, EWD 492, Apr 75 introduced the idea of an intermediate

gray colour. He says:

A.J.Martin and E.F.M.Steffens selected and formulated the

. . . problem and did most of the preliminary investigations.

I arrived at its solution during a discussion with the latter,

W.H.Feijen and M.Rem.

It is a pleasure to acknowledge their share in its discovery.

25

Bug (Stenning 75)

addleft(p,q):

{∃U : reachGraph(U) ∧ p −֒→ (l, m,) ∧ p 6= nil ∧ q ∈ U}

〈atleastgrey(q); 〉

〈[p.left] := q 〉

{∃U : reachGraph(U) ∧ p −֒→ (q, m,) ∧ q ∈ U}

〈C〉 says the commands in C have to be done as an atomic action.

reachGraph(U) says U is the set of nodes reachable from root.

p −֒→ (l, m, c) is [p.left] = l ∧ [p.right] = m ∧ [p.colour] = c.

26

Fix

The bug is fixed by greying the node after the mutation.

addleft(p,q):

{∃U : reachGraph(U)∧p −֒→ (l, m,)∧p 6= nil∧q ∈ U ∧mod =

nil}

〈[p.left] := q; mod:= p; 〉

{∃U : reachGraph(U)∧p −֒→ (q, m,)∧q ∈ U ∧mod = p 6= nil}

〈atleastgrey(q); mod:= NIL 〉

{∃U : reachGraph(U) ∧ p −֒→ (q, m,) ∧ q ∈ U ∧ mod = nil}

27

Different kinds of proof

DLMSS proof: global invariant proof, insightful but informal and

known to be unreliable.

Gries proof: non-interference proof, which is formal, hence

mechanizable, but not compositional.

Our proof: global invariant proof, formal, compositional, hence

easier to comprehend.

Another approach

Vafeiadis and Parkinson 07 use a rely-guarantee proof system

which is also formal and compositional. We have not proved this

program using their proof system.

28

Global invariants for shared store (O’Hearn 04)

The basic idea is to treat every atomic command as “grabbing” the

shared variables that it requires, assuming that a resource invariant

holds in the beginning and re-establishing at the end. This is

described by the rule:

{p ⋆ RI}C{q ⋆ RI}

RI ⊢ {p} < C > {q}
atomic share

where C is an atomic command and the free variables of p or q are

not modified in other processes. (But the free variables of RI can

be.)

RI ⊢ {p1}C1{q1}, . . . , RI ⊢ {pn}Cn{qn}

RI ⊢ {p1 ⋆ . . . ⋆ pn}C1|| . . . ||Cn{q1 ⋆ . . . ⋆ qn}
, shared parallel

where no local variable free in pi or qi is changed in Cj , for i 6= j in

{1, . . . , n}. (But the free variables of RI can be.)

29

Permission algebra (Bornat, Calcagno, O’Hearn, Parkinson 05)

Full permission (for reading as well as writing on a heap location) is

denoted 1, read access permission is denoted R, and the

complement of a read permission is denoted −R. A read permission

and its complement can be combined to obtain a full permission

R ⋆ (−R) = 1. Both R and −R permissions allow reading, but only

1 allows writing (in addition to reading).

The axioms for reading and writing heap locations are:

{e
p

7−→ e′}x := [e]{e
p

7−→ e′ ∧ x = e′} read

{e
1

7−→ }[e] := e′{e
1

7−→ e′} mutation

where p is either R or −R.

Using the frame rule of separation logic, we can also conclude

{e
1

7−→ e′}x := [e]{e
1

7−→ e′ ∧ x = e′}.

30

Permissions with a resource invariant

In addition to the processes themselves, permissions are also

deposited in the resource invariant.

When accessing a resource (shared storage), a process grabs the

heap cells described by the invariant along with their permissions:

the conjunction (i
p

7−→ j) ⋆ (i
q

7−→ j) is equivalent to providing

access i
p ⋆ q
7−→ j.

Explaining the resource invariant would take several slides, but

different parts of it can be modularly understood. The proof

outlines involve detailed combinatorial reasoning.

The original program with the bug cannot be proved correct.

31

