
Countifiers

Kamal Lodaya
Joint work with A V Sreejith

50 years of IMSc



In the beginning

The axioms in Euclid’s book Elements, from approximately 300
BCE, do not axiomatize Euclidean geometry.

I Nikolai Ivanovich Lobachevsky (1792-1856), in the period
1820-1826, published in Vestnik Kazanskogo universiteta,
1829-30

I János Bolyai (1802-1860), in the period 1820-1823,
published by his father Farkas Bolyai (1775-1856) in 1832
as an appendix to his textbook

I Carl Friedrich Gauss (1777-1855), in the period
1820-1824, referred to in private correspondence but never
published

I Gauss and Farkas Bolyai were in correspondence, Gauss
praised his son’s work.

I Lobachevsky never communicated with the others, Gauss
read and praised his work.



A song by Tom Lehrer, 1953

Who made me the genius I am today,
The mathematician that others all quote,
Who’s the professor that made me that way?
The greatest that ever got chalk on his coat.

One man deserves the credit,
One man deserves the blame,
And Nikolai Ivanovich Lobachevsky is his name.
Ha! Nikolai Ivanovich Lobach- . . .

I am never forget the day I first meet the great Lobachevsky.
In one word he told me secret of success in mathematics:
Plagiarize!

Plagiarize,
Let no one else’s work evade your eyes,
Remember why the good Lord made your eyes,
So don’t shade your eyes,
But plagiarize, plagiarize, plagiarize - . . .



What are the numbers and what should they be?

I Richard Dedekind (1831-1916) in his monograph Was sind
und was sollen die Zahlen?, 1888

I Giuseppe Peano (1858-1932), in Formulario Mathematico,
1895, invited talk at the first ICM, Zürich, 1897

I Gave some axioms for arithmetic (notably induction)
I Gottlob Frege (1848-1925), over his books Begriffsschrift,

1879; Die Grundlagen der Arithmetik, 1884; Grundgesetze
der Arithmetik, 1893 and 1903

I Defined predicate logic as a formal language



Predicate logic

Syntax
FO[P1,P2, . . . ] with predicates P1,P2, . . . and a countable set
of variables
α ::= Pi(x1, . . . , xni ), i = 1,2, . . . | x = y atomic predicates

| ¬α | α1 ∨ α2 | α1 ∧ α2 boolean operations
| ∃x α | ∀x α quantifiers

Given a domain D and an interpretation PD
i ⊆ Dni :

I (D,PD
1 ,P

D
2 , . . . ) |= ∃xα(x) iff for some d ∈ D, using the

evaluation [x 7→ d ], (D,PD
1 ,P

D
2 , . . . ) |= α(.)

I (D,PD
1 ,P

D
2 , . . . ) |= ∀xα(x) iff for all d ∈ D, using the

evaluation [x 7→ d ], (D,PD
1 ,P

D
2 , . . . ) |= α(.)

I A formula is valid if it holds for all evaluations (and all
interpretations, if they are allowed to vary)

({barber , frege}, {(barber , frege), (barber ,barber)}) |=
∃x∀yShave(x , y) using the evaluation [x 7→ barber ]



A century ago

I Bertrand Russell (1872-1970) asked Frege in 1903: where
do the domains come from? For example, if "Shave" is a
binary predicate, and we talk about barbers who do not
shave themselves, how do we define the domain ?

I Russell and Alfred North Whitehead (1861-1947)
constructed in their book Principia Mathematica, 1910, the
numbers axiomatically from a “type hierarchy” consisting of
the empty set, sets containing other sets, sets containing
sets containing other sets and so on.

I This separated first-order logic, where one quantifies over
elements of the domain, from higher-order logics (also
called type theory), where one can quantify over sets
across the set hierarchy.



80 years ago

Theorem (Kurt Gödel, Monatshefte für Mathematik und
Physik, 1931)
Validity of Peano arithmetic FO[+,×] interpreted over N cannot
be completely axiomatized.

I In this paper Gödel (1906-1978) showed that
self-referential sentences (like “proofs of formulae which do
not prove the formulae themselves") can be coded in
FO[+,×].

I In the formal definition of Peano arithmetic we have to use
two ternary predicates Add(x , y , z) and Mult(x , y , z), but
we will continue to use ordinary mathematical notation
wherever possible.



Enter the computer

Theorem (Alan Turing, Proceedings of the London
Mathematical Society, 1936-37)
There is no algorithm1 to check the validity of FO[+,×] when
interpreted over N (or even initial segments of N).

I In this paper Turing (1912-1954) defined the machine
which is now named after him2 as a model of an algorithm,
and showed that there is a universal Turing machine which
can simulate all Turing machines.

I John von Neumann (1903-1957) used Turing’s ideas for
the architecture of a computer, First draft of a report on the
EDVAC, 1945, with hardware (a UTM) executing software
(programs like TMs). The EDVAC was built in 1949.

1A decision problem is undecidable if there is no algorithm to check it.
2Turing’s theorem goes through for other definitions of machines, for

example, “counter machines” or “register machines”



Weak fragments of addition and multiplication

Theorem (Raphael Robinson, Proceedings of the
American Mathematical Society, 1958)
There is no algorithm to check validity of
FO[x + 1,2x ,Red ,Blue, . . . ].

I Robinson (1911-1995) uses only a fragment of addition
(successor) and a fragment of multiplication (doubling) but
allows additional unary predicates3.

I All the undecidability proofs use both addition and
multiplication. What if we consider only one of them but not
both?

3In computer science this is called an alphabet.



The dangers of writing a long tedious proof

Theorem (Mojżesz Presburger, Comptes Rendus,
Congrès des Mathématiciens des pays slaves, 1929)
There is an algorithm to check the validity of an FO[+] formula.

Proof.
By quantifier elimination. Take an innermost formula ∃xα(x) (α
has no quantifiers itself) and replace it by an equivalent (but
exponentially larger) quantifier-free formula β. Work inside out.
Finally, there is an algorithm to check the validity of a
quantifier-free formula.

I The adviser of Mr Presburger (1904-1943)4 thought it
wasn’t worth a PhD and accepted it as a master’s thesis.

I Today this is the most cited decision procedure in
arithmetic.

I There is also a complete axiom system for FO[+].
4Alfred Tarski (1901-1983)



Other arithmetics

Theorem (Thoralf Skolem, Skrifter Vitenskapsakadamiet i
Oslo, 1931)
There is an algorithm to check the validity of an FO[×] formula.

Proof.
Five examples and the claim that they describe all cases.

I Dr Skolem (1887-1963) had his degree by the time the
paper was published.

I The first full proof was given by Andrzej Mostowski
(1913-1975) in Journal of Symbolic Logic, 1952.

I A complete axiom system for FO[×] was given by Patrick
Cégielski, Comptes Rendus, 1980.

So FO[+] (logic of integers as an ordered group with addition)
and FO[×] (logic of positive numbers as an ordered group with
multiplication) have nice properties, putting them together in
FO[+,×] (logic of integers as a ring) makes it go ballistic.



Counting with quantifiers

Now onwards we confine ourselves to initial segments of N.
For example FO[<,P1,P2, . . . ] where < is interpreted as a
finite linear order.

I FO[<,Red ] cannot express the property that the number
of red points is even.

I Neither can FO[<,+,×,Red ].
I Neither can FO[<,P1,P2, . . . ,Red ] where the Pi are

interpreted as any kind of numerical predicate over N.
I By saying that the last position x is even (which is certainly

a numerical predicate), we can say that the total number of
points is even. But not the number of red points.



Countifier logic

Syntax
FOCOUNT[<,P1,P2, . . . ] with predicates P1,P2, . . . and a
countable set of variables
α ::= Pi(x1, . . . , xni ), i = 1,2, . . . | x = y | x < y |

¬α | α1 ∨ α2 | α1 ∧ α2 |
x = #y α countifier

Given a finite linear order (D, <) and an interpretation PD
i ⊆ Dni

for the predicates,
(D,PD

1 ,P
D
2 , . . . ) |= x = #yα(y) iff the value of x is the count

#{d | using the evaluation [y 7→ d ], (D,PD
1 ,P

D
2 , . . . ) |= α(.)}

I ∃yα(y) is definable as x = #yα(y) ∧ x > 0
I ∀yα(y) is definable as x = #y¬α(y) ∧ x = 0
I (x = #y Red(y)) ∧ ∃y(x = y + y) defines an even number

of red points



Counting can say a lot

Just addition: Divisibility by a constant k |x is definable as
∃q(q + q + · · ·+ q = x)

FOCOUNT over a linear order: Addition x + y = z is definable
as y = #b(x ≤ b ∧ b < z), more cryptically as
y = #y(x ≤ y ∧ y < z) without using an extra
variable, so FOCOUNT[<] and FOCOUNT[+] are the
same.

Multiplication: Divisibility x |y is of course definable as
∃z(x × z = y),
but then also “x is prime” is definable as
x > 1 ∧ ∀q(q|x ⇒ q = 1 ∨ q = x)

FOCOUNT with multiplication: Define #x(prime(x) ∧ x < n)
and formulate the prime number theorem.

So one can express more with counting quantifiers. What is the
price one has to pay?



Two-variable counting is already hard

Syntax
FOk stands for first-order logic with k variables (instead of
countably many in FO).

Theorem (Erich Grädel, Martin Otto and Eric Rosen,
Stacs 1997)
There is no algorithm to check validity of
FO2COUNT[<, x + 1,Red ,Blue,Green,Yellow ].

Proof.
Let Red stand for “increment” and Blue for “decrement”, Green
and Yellow the same with another counter. Now simulate the
run of a two-counter machine. The formula

y = #y(y < x ∧ Red(y)) ∧ y = #y(y < x ∧ Blue(y))

is true at point x only if the value of the first counter is zero.



Two-variable addition is bad enough

Theorem
There is no algorithm to check validity of
FO2[x + 1,2x ,Red ,Blue, . . . ].

Proof.
I Simulate in this restricted logic checking the emptiness of a

halting Turing machine which uses space n. (Since it halts,
there must be such an n.)

I Let positions n + 1,n + 2, . . . ,2n contain the initial
configuration of the Turing machine (coded using colours).

I Let positions 2n + 2,2n + 4, . . . ,4n have the next
configuration, the inbetween positions are filled up with
suitable junk.

I Let positions 4n + 4,4n + 8, . . . ,8n have the next
configuration.

I The halting configuration is marked by a special colour.



On two-variable addition

I In the last proof, we used the predicates:
Successor(x , y) def

= y = x + 1 and
Double(x , y) def

= y = x + x
I Both of these are definable from addition using just two

variables. That is, instead of using a ternary addition
predicate Add(x , y , z) we restricted addition to whatever
can be done using two variables.

I So the proof shows that when additional unary predicates
(like Red ,Blue, . . . ) are allowed, even two-variable
Presburger arithmetic is undecidable, a strengthening of
Raphael Robinson’s result of 1958.

I Now onwards we will also disallow these additional unary
predicates5 and consider a single ternary predicate
Add(x , y , z) interpreted over initial segments of N.

5Alternately the alphabet is of size 1



Countifiers with addition

Theorem (Nicole Schweikardt, ACM Transactions on
computational logic, 2005)
There is an algorithm to translate an FOCOUNT[+] formula over
N to an FO[+] formula.

Proof.
Using back-and-forth games devised by Andrzej Ehrenfeucht in
Fundamenta Mathematicae, 1961. Earlier work by Roland
Fraïssé (1920-2008), Comptes Rendus, 1950; Publications
Scientifiques de l’Université d’Alger, 1954.

I So validity of FOCOUNT[+] is checkable.
I Presburger, Skolem and Schweikardt’s algorithms have

nonelementary complexity. Can we do better?



David Cooper, in Machine Intelligence, 1972

Consider the formula with the constraints
∃x(2x < 2y +3z+5w , 3y +5z+2w < 3x , 5x < 5y +2z+3w).

I Here negations have been driven in as far as possible,
equalities have been taken out, negations of equalities,
replaced by inequalities, and only < and modulo
constraints remain.

I The lcm of the coefficients of x is 30. Rewrite the formula
to make the coefficient of x equal to 30 everywhere and
then replace 30x by x ′:
∃x ′( x ′ ≡ 0 mod 30,

x ′ < 30y + 45z + 75w , x ′ < 30y + 12z + 18w ,
30y + 50z + 20w < x ′)

I The lcm of the modulo quotients is 30. Cooper’s theorem
eliminates the quantifier and rewrites the formula to:∨30

j=1( 30y + 50z + 20w + j ≡ 0 mod 30,
30y + 50z + 20w + j < 30y + 45z + 75w ,
30y + 50z + 20w + j < 30y + 12z + 18w)



A chase from 40 years ago

I Cooper’s algorithm to check validity of FO[+] searches for
solutions separately among the congruence classes and
avoids the repeated conversions to disjunctive normal form
(DNF) in Presburger’s algorithm.

I Derek Oppen (STOC 1973) showed that the complexity of
Cooper’s algorithm is 3EXPTIME.

I Michael Fischer and Michael Rabin (SIAM-AMS
Symposium on Complexity of Computations, 1974)
showed that there is a lower bound of 2EXPTIME for
checking the validity of FO[+] formulae over N.

I Jeanne Ferrante and Charles Rackoff (SIAM Journal on
Computing, 1975) gave an upper bound of 2EXPSPACE.

I Leonard Berman (FOCS 1977) showed lower and upper
bounds of ATIME[22O(n)

,O(n)]6, alternating double
exponential time with a linear number of alternations.

62EXPTIME⊆ ATIME[22O(n)
,O(n)]⊆ 2EXPSPACE⊆ 3EXPTIME



Revisiting Cooper for countifier elimination

Suppose now that n is to count solutions to the constraints
#x(2x < 2y+3z+5w , 3y+5z+2w < 3x , 5x < 5y+2z+3w).

I By following Cooper’s algorithm, we get:
n = #x ′( x ′ ≡ 0 mod 30,

x ′ < 30y + 12z + 18w , x ′ < 30y + 12z + 18w ,
30y + 50z + 20w < x ′)

I To generalize Cooper’s theorem to counting, we have to
choose one of the terms to be a greatest lower bound for
x ′ and one of the terms to be a least upper bound.∨30

j=1 [ 30y + 50z + 20w + j ≡ 0 mod 30,
( 30y + 50z + 20w + j < 30y + 12z + 18w ,

30y + 12z + 18w < 30y + 45z + 75w ,
n = b(−38z − 2w − 1)/30c)

∨ (30y + 50z + 20w + j < 30y + 45z + 75w ,
30y + 45z + 75w ≤ 30y + 12z + 18w ,
n = b(−5z − 55w − 1)/30c)]



Complexity questions

Considering all the cases is a bit involved, but we think Oppen’s
technique works.

Conjecture
The validity of FOCOUNT[+] is checkable in elementary time.
We are not sure of the exact complexity, we think it is
3EXPTIME7.

Question
Can we confirm this? Can we do better?

7Recall ATIME[22O(n)
,O(n)]⊆ 2EXPSPACE⊆ 3EXPTIME



A weaker logic

Syntax
FOMOD allows only the restricted comparison
#yα(y) ≡ r mod q (that is, count the α’s and immediately
compare, instead of the general syntax x = #yα(y) in
FOCOUNT which allows storing the count in a variable x).

I This is sufficient to add some of the counting capability
lacking in first-order logic.

I #yRed(y) ≡ 0 mod 2: an even number of red points.

Theorem
The validity of FOMOD[+] is in 2EXPSPACE.

Proof.
Ferrante and Rackoff’s idea of refining an Ehrenfeucht-Fraïssé
game.

Question
Can we do better?



In conclusion

Moral Countifiers are expressive and at the level of
Presburger arithmetic, their price doesn’t seem to
be too high.

Aside Counting complexity is an important area of
computer science. For example, we do not know if
solving a counting problem in polynomial time has
the same complexity as solving a decision
problem in polynomial time (more precisely,
FPTIME= #PTIME).

Side story Hope you enjoyed the history of how
mathematicians communicate their results to
others.

Thank you for your attention.


