

Comparing Semantics of Strategic Ability

Nils Bulling¹ (joint work with Wojtek Jamroga²)

¹TU Clausthal ²University of Luxembourg

August 2011

N. Bulling · Comparing Semantics of Strategic Ability

Clausthal, August 2011 1

1. Introduction

1 Introduction

N. Bulling · Comparing Semantics of Strategic Ability

- We study: Relationship between standard variants of the alternating-time temporal logics.
 - perfect recall / no memory
 - perfect / imperfect information
 - objective / subjective ability
- Focus is on the logics; i.e., on the level of valid sentences.
- Validities capture general properties of games.
- Same logics induce same kind of ability in games.

- We study: Relationship between standard variants of the alternating-time temporal logics.
 - perfect recall / no memory
 - perfect / imperfect information
 - objective / subjective ability
- Focus is on the logics; i.e., on the level of valid sentences.
- Validities capture general properties of games.
- Same logics induce same kind of ability in games.
- First step towards devising (practical) algorithms for satisfiability checking.

2. Reasoning about Strategic Ability

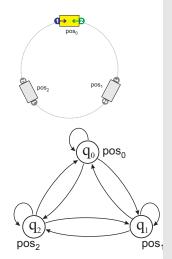
2 Reasoning about Strategic Ability

- Temporal Logic
- Strategic Logic
- Imperfect Information

2.1 Temporal Logic

LTL: Modelling linear time

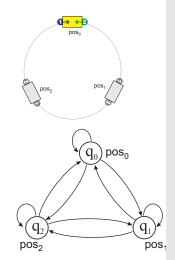
- computation: $q_0q_1q_2^{\omega}$
- "Some property p holds in some future state"

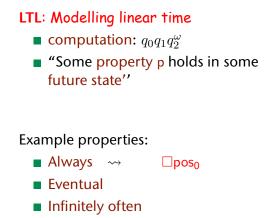


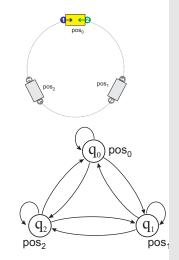
LTL: Modelling linear time

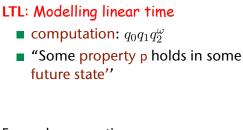
- computation: $q_0q_1q_2^{\omega}$
- "Some property p holds in some future state"

- Always
- Eventual
- Infinitely often

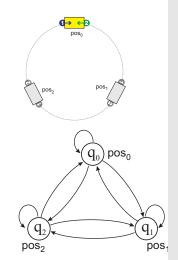


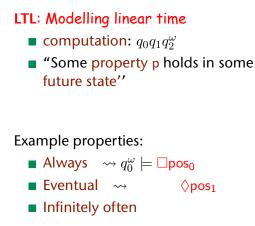


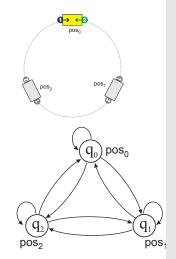




- Always $\rightsquigarrow q_0^{\omega} \models \Box \mathsf{pos}_0$
- Eventual
- Infinitely often

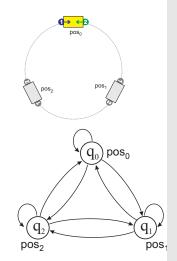






- computation: $q_0q_1q_2^{\omega}$
- "Some property p holds in some future state"

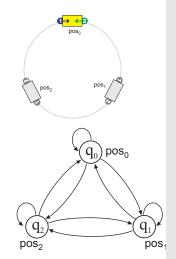
- Always $\rightsquigarrow q_0^{\omega} \models \Box \mathsf{pos}_0$
- Eventual $\rightsquigarrow q_0 q_1^{\omega} \models \Diamond \mathsf{pos}_1$
- Infinitely often



LTL: Modelling linear time

- computation: $q_0q_1q_2^{\omega}$
- "Some property p holds in some future state"

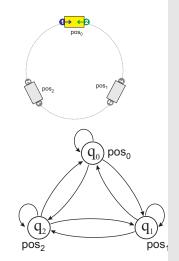
- Always $\rightsquigarrow q_0^{\omega} \models \Box \mathsf{pos}_0$
- Eventual $\rightsquigarrow q_0 q_1^{\omega} \models \Diamond \mathsf{pos}_1$
- Infinitely often \rightsquigarrow $\Box \Diamond pos_1$



LTL: Modelling linear time

- computation: $q_0q_1q_2^{\omega}$
- "Some property p holds in some future state"

- Always $\rightsquigarrow q_0^{\omega} \models \Box \mathsf{pos}_0$
- Eventual $\rightsquigarrow q_0 q_1^{\omega} \models \Diamond \mathsf{pos}_1$
- Infinitely often \rightsquigarrow $(q_0q_1q_2)^{\omega} \models \Box \Diamond \mathsf{pos}_1$



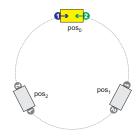
2.2 Strategic Logic

N. Bulling · Comparing Semantics of Strategic Ability

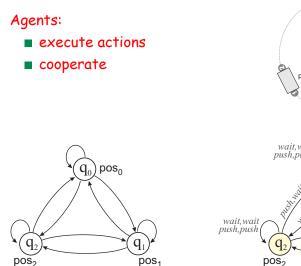
Strategic Logic and Multi-Agent Systems

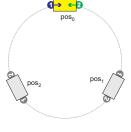
Agents:

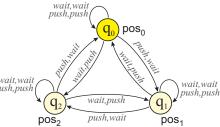
- execute actions
- cooperate



Strategic Logic and Multi-Agent Systems

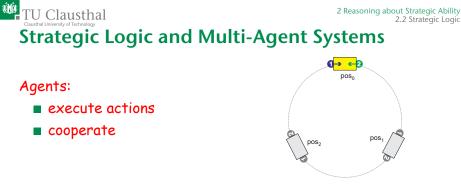




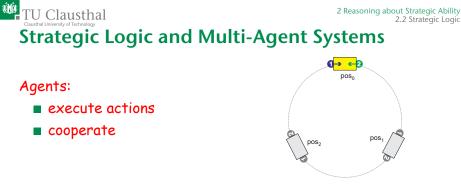


 $\blacksquare \langle\!\langle A \rangle\!\rangle \gamma$

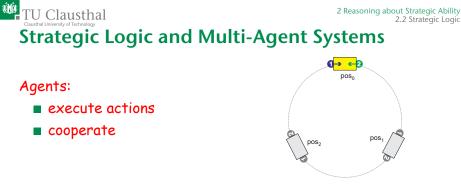
"Group A has a strategy to guarantee γ "



• $\langle\!\langle A \rangle\!\rangle \gamma$ • Group *A* has a strategy to guarantee γ " • $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \bigcirc \varphi \mid \langle\!\langle A \rangle\!\rangle \Box \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathcal{U} \varphi$



• $\langle\!\langle A \rangle\!\rangle \gamma$ • Group *A* has a strategy to guarantee γ'' • $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \bigcirc \varphi \mid \langle\!\langle A \rangle\!\rangle \Box \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathcal{U} \varphi$ • $\mathfrak{M}, q_0 \models \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$



• $\langle\!\langle A \rangle\!\rangle \gamma$ • Group *A* has a strategy to guarantee γ'' • $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \bigcirc \varphi \mid \langle\!\langle A \rangle\!\rangle \Box \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathcal{U} \varphi$ • $\mathfrak{M}, q_0 \models \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$ • $\mathfrak{M}, q_0 \not\models \langle\!\langle 1 \rangle\!\rangle \Diamond \mathsf{pos}_1$

N. Bulling · Comparing Semantics of Strategic Ability

- **Expressivity:** $\mathcal{L}_{ATL} \subsetneq \mathcal{L}_{ATL^*}$
- Temporal logic meets game theory
- Enforcement is understood in the game-theoretical sense: There is a winning strategy.

- **Expressivity:** $\mathcal{L}_{ATL} \subsetneq \mathcal{L}_{ATL^*}$
- Temporal logic meets game theory
- Enforcement is understood in the game-theoretical sense: There is a winning strategy.

Definition 1 (Language $\mathcal{L}_{ATL^*}[?]$ **)**

The language \mathcal{L}_{ATL^*} is given by all formulae generated by the following grammar:

$$\begin{split} \varphi ::= \mathsf{p} \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \gamma \quad \text{where} \\ \gamma ::= \varphi \mid \neg \gamma \mid \gamma \land \gamma \mid \gamma \mathcal{U} \gamma \mid \bigcirc \gamma, \end{split}$$

 $A \subseteq Agt$, and $p \in \Pi$. Formulae φ (resp. γ) are called state (resp. path) formulae.

Definition 2 (Language $\mathcal{L}_{ATL}[?]$ **)**

The language \mathcal{L}_{ATL} is given by all formulae generated by the following grammar:

 $\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\!\langle A \rangle\!\rangle \bigcirc \varphi \mid \langle\!\langle A \rangle\!\rangle \Box \varphi \mid \langle\!\langle A \rangle\!\rangle \varphi \mathcal{U} \varphi$

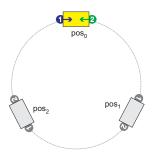
where $A \subseteq Agt$ and $p \in \Pi$.

Note: Every \mathcal{L}_{ATL} -formula is also a \mathcal{L}_{ATL*} -formula!

ATL Models: Concurrent Game Structures

Agents, actions, transitions, atomic propositions

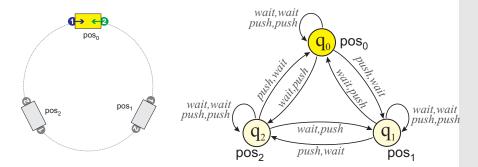
- Atomic propositions + interpretation
- Actions are abstract



ATL Models: Concurrent Game Structures

Agents, actions, transitions, atomic propositions

- Atomic propositions + interpretation
- Actions are abstract



Perfect Information Strategies

A **strategy** of agent *a* is a conditional plan that specifies what *a* is going to do in each situation.

Perfect Information Strategies

A **strategy** of agent *a* is a **conditional plan** that specifies what *a* is going to do in each situation.

Definition 3 (IR- and Ir-strategies)

A perfect information perfect recall strategy for agent a (*IR*-strategy for short) is a function

 $s_a: Q^+ \to Act$ such that $s_a(q_0q_1 \dots q_n) \in d_a(q_n)$.

Perfect Information Strategies

A **strategy** of agent *a* is a **conditional plan** that specifies what *a* is going to do in each situation.

Definition 3 (IR- and Ir-strategies)

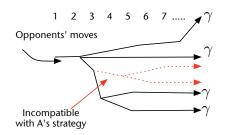
A perfect information perfect recall strategy for agent a (*IR*-strategy for short) is a function

 $s_a: Q^+ \to Act$ such that $s_a(q_0q_1 \dots q_n) \in d_a(q_n)$.

A perfect information memoryless strategy for agent a (*Ir*-strategy for short) is a function

 $s_a: Q \to Act$ where $s_a(q) \in d_a(q)$.

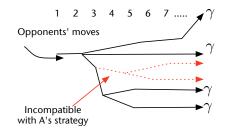
Outcome $out(q, s_A)$: set of all paths/executions possible if A follow s_A .



Outcome $out(q, s_A)$: set of all paths/executions possible if A follow s_A .

Semantics of ATL*

- $\mathfrak{M},q\models \langle\!\langle A\rangle\!\rangle\gamma \text{ iff }$
 - there is a collective strategy s_A such that,
 - for every path $\lambda \in out(q, s_A)$,
 - we have that $\mathfrak{M}, \lambda \models \gamma$.



$\mathfrak{M}, q \models_{\mathsf{Ix}} \langle\!\langle A \rangle\!\rangle \Phi$ iff there is a collective Ix -strategy s_A such that, for each path $\lambda \in out(q, s_A)$, we have $\mathfrak{M}, \lambda \models_{\mathsf{Ix}} \Phi$.

 $\mathfrak{M}, q \models_{\mathsf{lx}} \langle\!\langle A \rangle\!\rangle \Phi \quad \text{iff there is a collective } \mathbf{Ix}\text{-strategy } s_A \text{ such that, for each path } \lambda \in out(q, s_A)\text{, we have } \\ \mathfrak{M}, \lambda \models_{\mathsf{lx}} \Phi.$

$$\mathfrak{M}, \lambda \models_{\mathsf{Ix}} \bigcirc \varphi \quad \text{ iff } \mathfrak{M}, \lambda[\mathbf{1}, \infty] \models_{\mathsf{Ix}} \varphi;$$

 $\mathfrak{M}, q \models_{\mathsf{Ix}} \langle\!\langle A \rangle\!\rangle \Phi$ iff there is a collective Ix -strategy s_A such that, for each path $\lambda \in out(q, s_A)$, we have $\mathfrak{M}, \lambda \models_{\mathsf{Ix}} \Phi$.

 $\mathfrak{M}, \lambda \models_{\mathsf{Ix}} \bigcirc \varphi \\ \mathfrak{M}, \lambda \models_{\mathsf{Ix}} \Diamond \varphi$

 $\begin{array}{l} \text{iff } \mathfrak{M}, \lambda[1,\infty] \models_{\mathsf{Ix}} \varphi; \\ \text{iff } \mathfrak{M}, \lambda[i,\infty] \models_{\mathsf{Ix}} \varphi \text{ for some } i \geq 0; \end{array}$

 $\mathfrak{M}, q \models_{\mathsf{Ix}} \langle\!\langle A \rangle\!\rangle \Phi$ iff there is a collective Ix -strategy s_A such that, for each path $\lambda \in out(q, s_A)$, we have $\mathfrak{M}, \lambda \models_{\mathsf{Ix}} \Phi$.

 $\mathfrak{M}, \lambda \models_{\mathsf{Ix}} \bigcirc \varphi \\ \mathfrak{M}, \lambda \models_{\mathsf{Ix}} \Diamond \varphi \\ \mathfrak{M}, \lambda \models_{\mathsf{Ix}} \Box \varphi$

 $\begin{array}{l} \text{iff } \mathfrak{M}, \lambda[\mathbf{1}, \infty] \models_{\mathsf{lx}} \varphi; \\ \text{iff } \mathfrak{M}, \lambda[\mathbf{i}, \infty] \models_{\mathsf{lx}} \varphi \text{ for some } i \geq 0; \\ \text{iff } \mathfrak{M}, \lambda[\mathbf{i}, \infty] \models_{\mathsf{lx}} \varphi \text{ for all } i \geq 0; \end{array}$

 $\mathfrak{M}, q \models_{\mathsf{Ix}} \langle\!\langle A \rangle\!\rangle \Phi$ iff there is a collective Ix -strategy s_A such that, for each path $\lambda \in out(q, s_A)$, we have $\mathfrak{M}, \lambda \models_{\mathsf{Ix}} \Phi$.

$\mathfrak{M}, \lambda \models_{Ix}$	$\bigcirc \varphi$
$\mathfrak{M},\lambda\models_{Ix}$	$\Diamond \varphi$
$\mathfrak{M},\lambda\models_{Ix}$	$\Box \varphi$
$\mathfrak{M},\lambda\models_{Ix}$	$\varphi \mathcal{U} \psi$

 $\begin{array}{l} \text{iff }\mathfrak{M},\lambda[1,\infty]\models_{\mathsf{Ix}}\varphi;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{\mathsf{Ix}}\varphi \text{ for some }i\geq 0;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{\mathsf{Ix}}\varphi \text{ for all }i\geq 0;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{\mathsf{Ix}}\psi \text{ for some }i\geq 0, \text{ and}\\ \mathfrak{M},\lambda[j,\infty]\models_{\mathsf{Ix}}\varphi \text{ forall }0\leq j\leq i. \end{array}$

m

Definition 4 (Perfect information semantics) .

• • • .

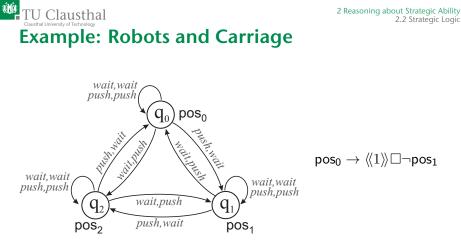
$\mathfrak{M}, q \models_{Ix} p \\ \mathfrak{M}, q \models_{Ix} \varphi \land \psi$	iff $\mathfrak{M}, q \models_{lx} \varphi$ and $\mathfrak{M}, q \models_{lx} \psi$;
$\mathfrak{M},q\models_{Ix}\langle\!\langle A\rangle\!\rangle\Phi$	iff there is a collective Ix-strategy s_A such that, for each path $\lambda \in out(q, s_A)$, we have $\mathfrak{M}, \lambda \models_{lx} \Phi$.
$\begin{array}{l}\mathfrak{M}, \lambda \models_{Ix} \bigcirc \varphi\\ \mathfrak{M}, \lambda \models_{Ix} \Diamond \varphi\\ \mathfrak{M}, \lambda \models_{Ix} \Box \varphi\\ \mathfrak{M}, \lambda \models_{Ix} \varphi \mathcal{U} \psi\end{array}$	$\begin{array}{l} \text{iff }\mathfrak{M},\lambda[1,\infty]\models_{Ix}\varphi;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{Ix}\varphi \text{ for some }i\geq 0;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{Ix}\varphi \text{ for all }i\geq 0;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{Ix}\psi \text{ for some }i\geq 0, \text{ and}\\ \mathfrak{M},\lambda[j,\infty]\models_{Ix}\varphi \text{ forall }0\leq j\leq i. \end{array}$

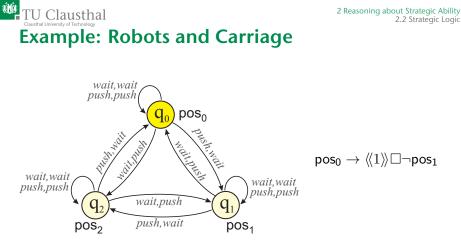
1

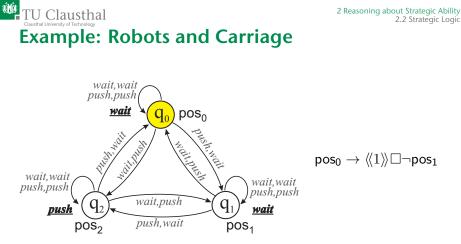
Definition 4 (Perfect information semantics)

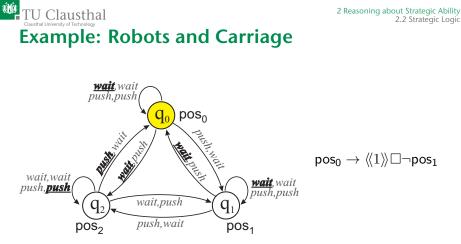
$\mathfrak{M}, q \models_{Ix} p \\ \mathfrak{M}, q \models_{Ix} \varphi \land \psi$	iff p is in $\pi(q)$; iff $\mathfrak{M}, q \models_{lx} \varphi$ and $\mathfrak{M}, q \models_{lx} \psi$;
$\mathfrak{M},q\models_{Ix}\langle\!\langle A\rangle\!\rangle\Phi$	iff there is a collective Ix-strategy s_A such that, for each path $\lambda \in out(q, s_A)$, we have $\mathfrak{M}, \lambda \models_{Ix} \Phi$.
$\mathfrak{M}, \lambda \models_{Ix} \bigcirc \varphi \\ \mathfrak{M}, \lambda \models_{Ix} \Diamond \varphi \\ \mathfrak{M}, \lambda \models_{Ix} \Box \varphi \\ \mathfrak{M}, \lambda \models_{Ix} \varphi \mathcal{U} \psi$	$\begin{array}{l} \text{iff }\mathfrak{M},\lambda[1,\infty]\models_{lx}\varphi;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{lx}\varphi \text{ for some }i\geq 0;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{lx}\varphi \text{ for all }i\geq 0;\\ \text{iff }\mathfrak{M},\lambda[i,\infty]\models_{lx}\psi \text{ for some }i\geq 0, \text{ and}\\ \mathfrak{M},\lambda[j,\infty]\models_{lx}\varphi \text{ forall }0\leq j\leq i. \end{array}$

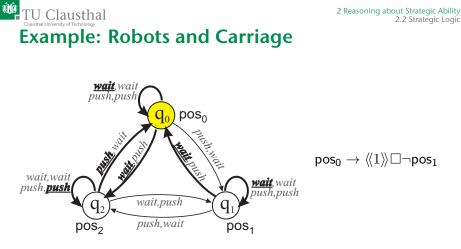
Note that temporal formulae and the Boolean connectives are handled as before.





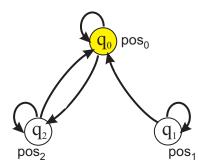






2 Reasoning about Strategic Ability 2.2 Strategic Logic

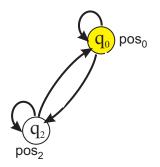
Example: Robots and Carriage



 $\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$

2 Reasoning about Strategic Ability 2.2 Strategic Logic

Example: Robots and Carriage



 $\mathsf{pos}_0 \to \langle\!\langle 1 \rangle\!\rangle \Box \neg \mathsf{pos}_1$

Definition 5 (ATL_{1x}, ATL_{1x}, ATL, ATL*)

We define the following logics:

- **ATL**_{*Ix*} is the set of valid sentences over $(\mathcal{L}_{ATL}, \models_{Ix})$
- **ATL**^{*}_{*lx*} is the set of valid sentences over $(\mathcal{L}_{ATL^*}, \models_{Ix})$

where $x \in \{r, R\}$, respectively.

Theorem 6

For \mathcal{L}_{ATL} , the perfect recall semantics is equivalent to the memoryless semantics under perfect information, i.e.,

 $\mathfrak{M}, q \models_{\mathsf{IR}} \varphi \mathsf{iff} \mathfrak{M}, q \models_{\mathsf{Ir}} \varphi.$

That is

 $ATL = ATL_{Ir} = ATL_{IR}.$

Both semantics are different for \mathcal{L}_{ATL^*} ; that is, $ATL^*_{Ir} \neq ATL^*_{IR}$.

Theorem 6

For \mathcal{L}_{ATL} , the perfect recall semantics is equivalent to the memoryless semantics under perfect information, i.e.,

 $\mathfrak{M}, q \models_{\mathsf{IR}} \varphi \mathsf{iff} \mathfrak{M}, q \models_{\mathsf{Ir}} \varphi.$

That is

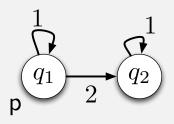
 $ATL = ATL_{Ir} = ATL_{IR}$.

Both semantics are different for \mathcal{L}_{ATL^*} ; that is, $ATL^*_{Ir} \neq ATL^*_{IR}$.

The property has been first observed in [?] but it follows from [?] in a straightforward way.

2 Reasoning about Strategic Ability 2.2 Strategic Logic

Example 7 (ATL^{*}_{*IR*} \neq ATL^{*}_{*Ir*})



$$\varphi = \langle\!\langle a \rangle\!\rangle (\bigcirc p \land \bigcirc \bigcirc \neg p)$$

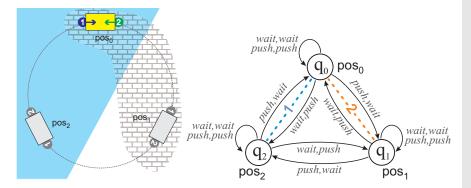
N. Bulling · Comparing Semantics of Strategic Ability

2.3 Imperfect Information

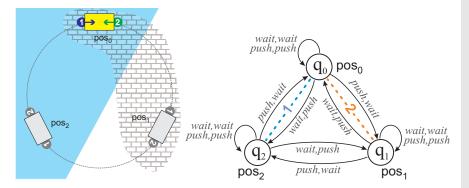
- We combine **ATL**^{*} and epistemic logic.
 - We extend CGSs with indistinguishability relations $\sim_a \subseteq Q \times Q$, one per agent. The relations are assumed to be equivalence relations.

- We combine **ATL**^{*} and epistemic logic.
 - We extend CGSs with indistinguishability relations $\sim_a \subseteq Q \times Q$, one per agent. The relations are assumed to be equivalence relations.
 - A concurrent epistemic game structure (CEGS) is a CGS enriched with indistinguishability relations.

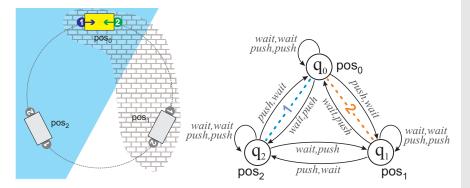
- We combine **ATL**^{*} and epistemic logic.
 - We extend CGSs with indistinguishability relations $\sim_a \subseteq Q \times Q$, one per agent. The relations are assumed to be equivalence relations.
 - A concurrent epistemic game structure (CEGS) is a CGS enriched with indistinguishability relations.
 - We interpret $\langle\!\langle A \rangle\!\rangle \gamma$ epistemically ($\rightsquigarrow \models_{iR}$ and \models_{ir}): Group A knows that they can enforce γ .



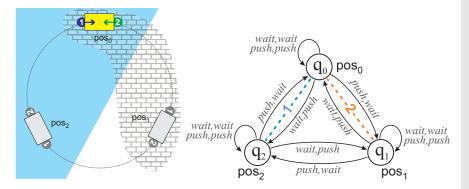
What about $\langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ in q_0 ? $\mathfrak{M}, q_0 \qquad \operatorname{Ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ $\mathfrak{M}, q_0 \qquad \operatorname{ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$



What about $\langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ in q_0 ? $\mathfrak{M}, q_0 \models \operatorname{Ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ $\mathfrak{M}, q_0 \quad \operatorname{ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$



What about $\langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ in q_0 ? $\mathfrak{M}, q_0 \models \operatorname{Ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ $\mathfrak{M}, q_0 \not\models \operatorname{ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$



What about $\langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ in q_0 ? $\mathfrak{M}, q_0 \models \mathbf{Ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$ $\mathfrak{M}, q_0 \not\models \mathbf{ir} \langle\!\langle \operatorname{Agt} \rangle\!\rangle \bigcirc \operatorname{pos}_1$

Strategies should be executable ~> uniform strategies

Definition 8 (Uniform strategy)

Strategy s_a is uniform iff it specifies the same choices for indistinguishable situations :

Memoryless strategies:

if $q \sim_a q'$ then $s_a(q) = s_a(q')$.

Definition 8 (Uniform strategy)

Strategy s_a is uniform iff it specifies the same choices for indistinguishable situations :

Memoryless strategies:

if $q \sim_a q'$ then $s_a(q) = s_a(q')$.

Perfect recall:

if $\lambda \approx_a \lambda'$ then $s_a(\lambda) = s_a(\lambda')$,

where $\lambda \approx_a \lambda'$ iff $\lambda[i] \sim_a \lambda'[i]$ for every *i*.

Definition 8 (Uniform strategy)

Strategy s_a is uniform iff it specifies the same choices for indistinguishable situations :

Memoryless strategies:

if $q \sim_a q'$ then $s_a(q) = s_a(q')$.

Perfect recall:

if $\lambda \approx_a \lambda'$ then $s_a(\lambda) = s_a(\lambda')$,

where $\lambda \approx_a \lambda'$ iff $\lambda[i] \sim_a \lambda'[i]$ for every *i*.

A collective uniform strategy for A contains a uniform strategy for each agent in A.

Imperfect Information Strategies

Definition 9 (IR- and Ir-strategies)

Imperfect information perfect recall strategy (*iR*-strategy):

= uniform IR-strategy.

Finally, we introduce **two variants** of **ability** under incomplete information.

N. Bulling · Comparing Semantics of Strategic Ability

Imperfect Information Strategies

Definition 9 (IR- and Ir-strategies)

Imperfect information perfect recall strategy (*iR*-strategy):

= uniform IR-strategy.

Imperfect information memoryless strategy (ir-strategy): = uniform Ir-strategy.

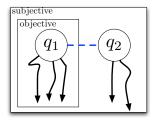
Finally, we introduce two variants of ability under incomplete information.

Objective vs. Subjective Semantics

There are two more characteristics of ability under imperfect infromation:

Objective ability (i_o): Only paths from the (real) current state are considered:

$$out^{i_0 \mathbf{y}}(q, s_A) = out(q, s_A) \text{ for } y \in \{r, R\}$$



÷.

J Clausthal

Objective vs. Subjective Semantics

ŧЙ)

Clausthal

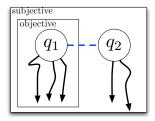
There are two more characteristics of ability under imperfect infromation:

Objective ability (i_o): Only paths from the (real) current state are considered:

$$out^{i_0 \mathbf{Y}}(q, s_A) = out(q, s_A) \text{ for } y \in \{r, R\}$$

Subjective ability (i_s): All paths from all indistinguishable states are taken into account:

$$out^{i_s \mathbf{y}}(q, s_A) = \bigcup_{q \sim_A q'} out(q', s_A) \text{ for } y \in \{r, R\}$$



Definition 10 (Imperfect information semantics)

 $\mathfrak{M}, q \models_{\mathsf{x}\mathsf{y}} \langle\!\langle A \rangle\!\rangle \varphi$ iff • there is a collective $\mathsf{x}\mathsf{y}$ -strategy s_A

where $x \in \{i_o, i_s\}$, $y \in \{r, R\}$ and $\sim_A := \cup_{a \in A} \sim_a$.

Definition 10 (Imperfect information semantics)

 $\mathfrak{M},q\models_{\mathsf{X}\mathsf{Y}} \langle\!\langle A\rangle\!\rangle \varphi \text{ iff }$

• there is a collective xy-strategy s_A

such that, for each path $\lambda \in out^{xy}(q', s_A)$,

where $x \in \{i_o, i_s\}$, $y \in \{r, R\}$ and $\sim_A := \cup_{a \in A} \sim_a$.

Definition 10 (Imperfect information semantics)

 $\mathfrak{M},q\models_{\mathbf{X}\mathbf{Y}} \langle\!\langle A\rangle\!\rangle \varphi \text{ iff }$

- there is a collective xy-strategy s_A
- such that, for each path $\lambda \in out^{xy}(q', s_A)$,
- we have $\mathfrak{M}, \lambda \models_{xy} \varphi$

where $x \in \{i_o, i_s\}$, $y \in \{r, R\}$ and $\sim_A := \cup_{a \in A} \sim_a$.

Definition 10 (Imperfect information semantics)

 $\mathfrak{M},q\models_{\mathsf{X}\mathsf{Y}} \langle\!\langle A\rangle\!\rangle \varphi \text{ iff }$

- there is a collective xy-strategy s_A
- such that, for each path $\lambda \in out^{xy}(q', s_A)$,
- we have $\mathfrak{M}, \lambda \models_{xy} \varphi$

where $x \in \{i_o, i_s\}$, $y \in \{r, R\}$ and $\sim_A := \cup_{a \in A} \sim_a$.

Remark 11

This definition models that "everybody in A knows that φ ".

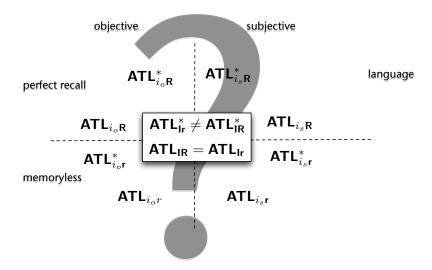
3 Comparing Semantics

3. Comparing Semantics

3 Comparing Semantics

- Perfect vs. Imperfect Information
- Perfect vs. Imperfect Recall
- Subjective vs. Objective Ability

How does the picture look?



Comparing Validities

Recall our motivation:

- Relationship between standard variants of ATL* on the level of valid sentences
- Logic = set of validities
- Validities capture general properties of games under consideration
- If two logics over L_{ATL*} generate the same valid sentences then the underlying notions of ability induce the same kind of games

Comparing Validities

Recall our motivation:

- Relationship between standard variants of ATL* on the level of valid sentences
- Logic = set of validities
- Validities capture general properties of games under consideration
- If two logics over L_{ATL*} generate the same valid sentences then the underlying notions of ability induce the same kind of games
- First step towards devising algorithms for satisfiability checking

Memory of agents: Perfect recall (R) vs. imperfect recall strategies (r)

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Success of strategies:

Objectively (i_o) vs. subjectively successful strategies (i_s)

Memory of agents:

Perfect recall (R) vs. imperfect recall strategies (r)

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Success of strategies: ■ Objectively (i_o) vs. subjectively successful strategies (i_s)

Memory of agents:

Perfect recall (R) vs. imperfect recall strategies (r)

Available information:

Perfect information (I) vs. imperfect information strategies (i)

Success of strategies:

Objectively (i_o) vs. subjectively successful strategies (i_s)

 $\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

- **Invalid** in all variants with imperfect information.
- Valid for perfect information and perfect recall.

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information.

Valid for perfect information and perfect recall.

 $\blacksquare \langle\!\langle a \rangle\!\rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle\!\langle a \rangle\!\rangle \Diamond ((\mathsf{p}_1 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_2) \lor (\mathsf{p}_2 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_1))$

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information.

Valid for perfect information and perfect recall.

$\blacksquare \langle\!\langle a \rangle\!\rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle\!\langle a \rangle\!\rangle \Diamond ((\mathsf{p}_1 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_2) \lor (\mathsf{p}_2 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_1))$

- Invalid for imperfect information
- Valid for perfect information and perfect recall

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information.

- Valid for perfect information and perfect recall.
- $\blacksquare \ \langle\!\langle a \rangle\!\rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle\!\langle a \rangle\!\rangle \Diamond ((\mathsf{p}_1 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_2) \lor (\mathsf{p}_2 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_1))$
 - Invalid for imperfect information
 - Valid for perfect information and perfect recall

$\blacksquare \neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg \mathsf{p} \leftrightarrow \langle\!\langle \operatorname{Agt} \rangle\!\rangle \Box \mathsf{p}$

$\blacksquare \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \leftrightarrow \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$

Invalid in all variants with imperfect information.

- Valid for perfect information and perfect recall.
- $\blacksquare \langle\!\langle a \rangle\!\rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle\!\langle a \rangle\!\rangle \Diamond ((\mathsf{p}_1 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_2) \lor (\mathsf{p}_2 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_1))$
 - Invalid for imperfect information
 - Valid for perfect information and perfect recall

$\blacksquare \neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg \mathsf{p} \leftrightarrow \langle\!\langle \mathbb{A} \mathrm{gt} \rangle\!\rangle \Box \mathsf{p}$

Invalid for subjective ability

Valid for perfect information and perfect recall

3.1 Perfect vs. Imperfect Information

Subjective incomplete information vs. perfect information.

Proposition 12

 $\mathit{Val}(\text{ATL}_{i_s\text{r}}) \subsetneq \mathit{Val}(\text{ATL}_{\text{Ir}})$

Subjective incomplete information vs. perfect information.

Proposition 12

 $Val(\mathsf{ATL}_{i_sr}) \subsetneq Val(\mathsf{ATL}_{Ir})$

Inclusion: Every CGS can be seen as a special CEGS

Subjective incomplete information vs. perfect information.

Proposition 12

 $Val(\mathsf{ATL}_{i_sr}) \subsetneq Val(\mathsf{ATL}_{Ir})$

Inclusion: Every CGS can be seen as a special CEGS

 $\mathfrak{M}, q_0 \not\models_{\mathbf{i}_{\mathrm{s}}r} (\mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}) \to \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}$

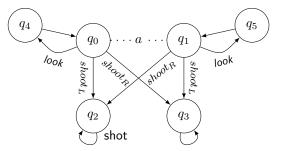
Subjective incomplete information vs. perfect information.

Proposition 12

 $Val(\mathsf{ATL}_{i_s r}) \subsetneq Val(\mathsf{ATL}_{Ir})$

Inclusion: Every CGS can be seen as a special CEGS

 $\mathfrak{M}, q_0 \not\models_{\mathbf{i}_{\mathrm{s}}r} (\mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}) \to \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}$



Subjective incomplete information vs. perfect information.

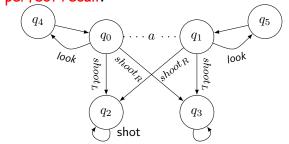
Proposition 12

 $Val(\mathsf{ATL}_{i_s r}) \subsetneq Val(\mathsf{ATL}_{Ir})$

Inclusion: Every CGS can be seen as a special CEGS

 $\mathfrak{M}, q_0 \not\models_{\mathbf{i}_{\mathrm{s}}r} (\mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}) \to \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}$

And with perfect recall?



Objective incomplete information vs. **perfect** information.

Proposition 13

 $Val(\mathsf{ATL}_{i_or}) \subsetneq Val(\mathsf{ATL}_{Ir})$

Objective incomplete information vs. **perfect** information.

Proposition 13

$\mathit{Val}(\mathsf{ATL}_{i_or}) \subsetneq \mathit{Val}(\mathsf{ATL}_{Ir})$

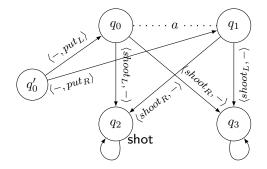
 $\mathfrak{M}, q'_0 \not\models_{\mathbf{i}_o r} (\mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}) \to \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}$

Objective incomplete information vs. **perfect** information.

Proposition 13

$\mathit{Val}(\mathsf{ATL}_{i_or}) \subsetneq \mathit{Val}(\mathsf{ATL}_{Ir})$

$$\mathfrak{M}, q'_0 \not\models_{\mathbf{i}_0 r} (\mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}) \to \langle\!\langle a \rangle\!\rangle \diamondsuit \mathsf{shot}$$



Objective incomplete information vs. **perfect** information under **perfect recall**.

By the same reasoning as above:

Corollary 14

 $\mathit{Val}(\mathsf{ATL}_{i_o\mathsf{R}}) \subsetneq \mathit{Val}(\mathsf{ATL}_{\mathsf{IR}})$

Subjective ability and incomplete information vs. perfect information.

Proposition 15

 $\mathit{Val}(\mathsf{ATL}_{i_s\mathsf{R}}) \subsetneq \mathit{Val}(\mathsf{ATL}_{\mathsf{IR}})$

Subjective ability and incomplete information vs. perfect information.

Proposition 15

 $\mathit{Val}(\textbf{ATL}_{i_s\textbf{R}}) \subsetneq \mathit{Val}(\textbf{ATL}_{\textbf{IR}})$

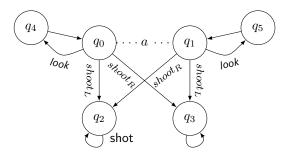
 $\mathfrak{M}, q_4 \not\models_{\mathbf{i}_{\mathrm{s}} \mathbf{R}} \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{shot} \to (\mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{shot})$

Subjective ability and incomplete information vs. perfect information.

Proposition 15

 $\mathit{Val}(\mathsf{ATL}_{i_{s}\mathsf{R}}) \subsetneq \mathit{Val}(\mathsf{ATL}_{\mathsf{IR}})$

 $\mathfrak{M}, q_4 \not\models_{\mathbf{i}_{\mathrm{s}} \mathsf{R}} \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{shot} \to (\mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{shot})$



3.2 Perfect vs. Imperfect Recall

Now we compare **memoryless** and **perfect recall strategies**.

Is one class of strategies more powerful than the other?

Definition 16 (Tree-like CGS)

Let \mathfrak{M} be a CGS and q be a state in it. M is called **tree-like** iff there is a state q (the root) such that for every q' there is a unique finite sequence of states leading from q to q'.

Now we compare **memoryless** and **perfect recall strategies**.

Is one class of strategies more powerful than the other?

Definition 16 (Tree-like CGS)

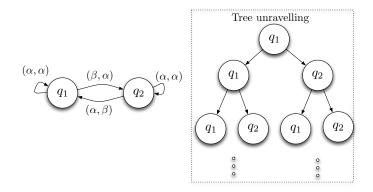
Let \mathfrak{M} be a CGS and q be a state in it. M is called **tree-like** iff there is a state q (the **root**) such that for every q' there is a **unique** finite sequence of states leading from q to q'.

Lemma 17

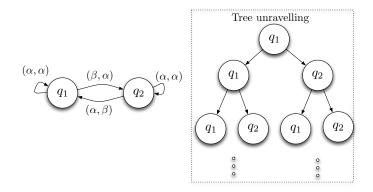
For every **tree-like** CGS \mathfrak{M} , state q in \mathfrak{M} , and \mathcal{L}_{ATL^*} -formula φ , we have: $\mathfrak{M}, q \models_{I\!r} \varphi$ iff $\mathfrak{M}, q \models_{I\!R} \varphi$.

Proof idea: The path to a state is unique. No state is visited a second time.

Idea: Fix a state and unravel the model to an infinite tree.



Idea: Fix a state and unravel the model to an infinite tree.



Idea: Fix a state and unravel the model to an infinite tree.

Definition 18 (Tree unfolding)

Let $\mathfrak{M} = (Agt, Q, \Pi, \pi, Act, d, o)$ be a CGS and q be a state in it. The tree-unfolding of \mathfrak{M} starting from state q denoted $T(\mathfrak{M}, q)$ is defined as $(Agt, Q', \Pi, \pi', Act, d', o')$ where

- $Q' := \Lambda_{\mathfrak{M}}^{fin}(q)$, (i.e. states correspond to finite histories)
- $\label{eq:distribution} {\scriptstyle \blacksquare} \ d'(a,h) := d(a,last(h)) \text{,}$

•
$$o'(h, \vec{\alpha}) := h \circ o(last(h), \vec{\alpha})$$
, and

 $\ \ \, \blacksquare \ \pi'(h):=\pi(last(h)).$

Proposition 19

$Val(\mathsf{ATL}^*_{\mathsf{Ir}}) \subsetneq Val(\mathsf{ATL}^*_{\mathsf{IR}})$ (Even: $Val(\mathsf{ATL}^+_{\mathsf{Ir}}) \subsetneq Val(\mathsf{ATL}^+_{\mathsf{IR}})$)

Proposition 19

$Val(\mathsf{ATL}_{\mathsf{Ir}}^*) \subsetneq Val(\mathsf{ATL}_{\mathsf{IR}}^*)$ (Even: $Val(\mathsf{ATL}_{\mathsf{Ir}}^+) \subsetneq Val(\mathsf{ATL}_{\mathsf{IR}}^+)$)

Membership: If $\models_{Ir} \varphi$ then *Treemodels* $\models_{Ir} \varphi$ then *Treemodels* $\models_{IR} \varphi$ then $\models_{IR} \varphi$

Proposition 19

 $Val(\mathsf{ATL}^*_{\mathsf{Ir}}) \subsetneq Val(\mathsf{ATL}^*_{\mathsf{IR}})$ (Even: $Val(\mathsf{ATL}^+_{\mathsf{Ir}}) \subsetneq Val(\mathsf{ATL}^+_{\mathsf{IR}})$)

Membership: If $\models_{Ir} \varphi$ then *Treemodels* $\models_{Ir} \varphi$ then *Treemodels* $\models_{IR} \varphi$ then $\models_{IR} \varphi$ **Strict inclusion:**

 $\mathfrak{M}, q_0 \not\models_{Ir} \langle\!\langle a \rangle\!\rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle\!\langle a \rangle\!\rangle \Diamond ((\mathsf{p}_1 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_2) \lor (\mathsf{p}_2 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_1)).$

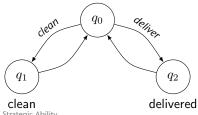
Proposition 19

 $Val(\mathsf{ATL}^*_{\mathsf{Ir}}) \subsetneq Val(\mathsf{ATL}^*_{\mathsf{IR}})$ (Even: $Val(\mathsf{ATL}^+_{\mathsf{Ir}}) \subsetneq Val(\mathsf{ATL}^+_{\mathsf{IR}})$)

Membership: If $\models_{Ir} \varphi$ then *Treemodels* $\models_{Ir} \varphi$ then *Treemodels* $\models_{IR} \varphi$ then $\models_{IR} \varphi$ **Strict inclusion:**

 $\mathfrak{M}, q_0 \not\models_{Ir} \langle\!\langle a \rangle\!\rangle (\Diamond \mathsf{p}_1 \land \Diamond \mathsf{p}_2) \leftrightarrow \langle\!\langle a \rangle\!\rangle \Diamond ((\mathsf{p}_1 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_2) \lor (\mathsf{p}_2 \land \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}_1)).$

- $\mathsf{p}_1 = \mathsf{clean}$
- $p_2 = delivered$



N. Bulling · Comparing Semantics of Strategic Ability

The case of **objective ability** under incomplete information is similar we only have to take into account epistemic relations in the tree:

 $h \sim_{a}^{T_{i_0 \mathbf{R}}(\mathfrak{M},q)} h' \text{ iff } h \approx_{a}^{\mathfrak{M}} h'$

Again, memory does not matter:

Lemma 20

For every **tree-like CEGS** \mathfrak{M} , state q in \mathfrak{M} , and \mathcal{L}_{ATL^*} -formula φ , we have that $\mathfrak{M}, q \models_{i_0 r} \varphi$ iff $\mathfrak{M}, q \models_{i_0 R} \varphi$.

Again, memory does not matter:

Lemma 20

For every **tree-like CEGS** \mathfrak{M} , state q in \mathfrak{M} , and \mathcal{L}_{ATL^*} -formula φ , we have that $\mathfrak{M}, q \models_{i_0 r} \varphi$ iff $\mathfrak{M}, q \models_{i_0 R} \varphi$.

The tree unraveling preserves truth.

Lemma 21

For every node h in $T_{\mathbf{i}_0\mathbf{R}}(\mathfrak{M},q_0)$ it holds that

 $T_{\mathbf{i}_{\mathrm{o}}\mathsf{R}}(\mathfrak{M},q_{0}),h\models_{\mathbf{i}_{\mathrm{o}}\mathsf{R}}\varphi \text{ iff }\mathfrak{M}, last(h)\models_{\mathbf{i}_{\mathrm{o}}\mathsf{R}}\varphi.$

Proposition 22

 $Val(\mathsf{ATL}_{i_o}\mathsf{r}) \subsetneq Val(\mathsf{ATL}_{i_o}\mathsf{R}).$

42

Proposition 22

- $Val(\mathsf{ATL}_{i_o \mathsf{r}}) \subsetneq Val(\mathsf{ATL}_{i_o \mathsf{R}}).$
- Recall: $\neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg p \leftrightarrow \langle\!\langle Agt \rangle\!\rangle \Box p$ for perfect recall.

Proposition 22

 $Val(\mathsf{ATL}_{i_o \mathsf{r}}) \subsetneq Val(\mathsf{ATL}_{i_o \mathsf{R}}).$

Recall: $\neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg \mathsf{p} \leftrightarrow \langle\!\langle Agt \rangle\!\rangle \Box \mathsf{p}$ for perfect recall.

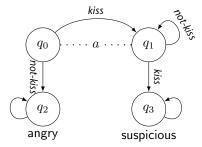
 $\mathfrak{M}, q_0 \not\models_{\mathbf{i}_0 \mathbf{r}} \neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg (\neg \mathsf{suspicious} \lor \neg \mathsf{angry}) \rightarrow \langle\!\langle a \rangle\!\rangle \Box (\neg \mathsf{suspicious} \lor \neg \mathsf{angry})$

Proposition 22

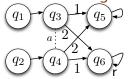
 $Val(\mathsf{ATL}_{i_o \mathsf{r}}) \subsetneq Val(\mathsf{ATL}_{i_o \mathsf{R}}).$

Recall: $\neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg p \leftrightarrow \langle\!\langle Agt \rangle\!\rangle \Box p$ for perfect recall.

 $\mathfrak{M}, q_0 \not\models_{\mathbf{i}_0 \mathbf{r}} \neg \langle\!\langle \emptyset \rangle\!\rangle \Diamond \neg (\neg \mathsf{suspicious} \lor \neg \mathsf{angry}) \rightarrow \langle\!\langle a \rangle\!\rangle \Box (\neg \mathsf{suspicious} \lor \neg \mathsf{angry})$

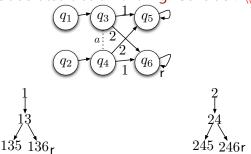


N. Bulling · Comparing Semantics of Strategic Ability



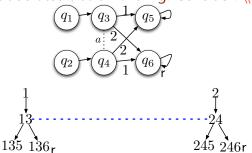
3 Comparing Semantics 3.2 Perfect vs. Imperfect Recall

Comparing ATL_{i_sr} vs. ATL_{i_sR}



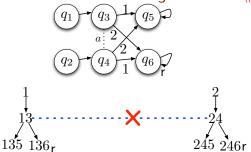
3 Comparing Semantics 3.2 Perfect vs. Imperfect Recall

Comparing ATL_{i_sr} vs. ATL_{i_sR}



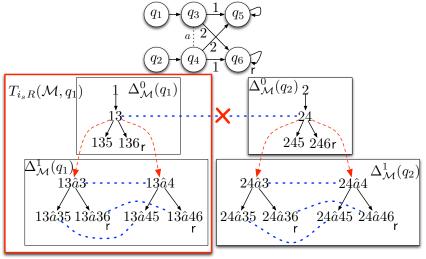
3 Comparing Semantics 3.2 Perfect vs. Imperfect Recall

Comparing ATL_{i_sr} vs. ATL_{i_sR}



Comparing ATL_{i_sr} vs. ATL_{i_sR}

In the case of subjective ability under incomplete information we need a more elaborated tree unraveling. Consider: $\langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \diamond r$



N. Bulling · Comparing Semantics of Strategic Ability

We have the same results as before.

Memory does not matter in trees:

Lemma 23

For every CEGS \mathfrak{M} , state q in \mathfrak{M} , and **ATL**^{*} formula φ , it holds that

 $T_{i_s R}(\mathfrak{M},q), h \models_{i_s r} \varphi \text{ iff } T_{i_s R}(\mathfrak{M},q), h \models_{i_s R} \varphi.$

We have the same results as before.

Memory does not matter in trees:

Lemma 23

For every CEGS \mathfrak{M} , state q in \mathfrak{M} , and **ATL**^{*} formula φ , it holds that

 $T_{i_s R}(\mathfrak{M},q), h \models_{i_s r} \varphi \text{ iff } T_{i_s R}(\mathfrak{M},q), h \models_{i_s R} \varphi.$

The i_s -tree unraveling preserves truth:

Lemma 24

For every node h in $T_{i_s R}(\mathfrak{M}, q_0)$ it holds that

 $T_{i_sR}(\mathfrak{M},q_0),h\models_{\mathbf{i}_s\mathsf{R}}\varphi \text{ iff }\mathfrak{M}, last(h)\models_{\mathbf{i}_s\mathsf{R}}\varphi.$

 $\mathit{Val}(\mathsf{ATL}_{i_{s}\mathsf{r}}) \subsetneq \mathit{Val}(\mathsf{ATL}_{i_{s}\mathsf{R}})$

 $\mathit{Val}(\mathsf{ATL}_{i_s \mathsf{r}}) \subsetneq \mathit{Val}(\mathsf{ATL}_{i_s \mathsf{R}})$

Inclusion: $\models_{i_s r} \varphi$ then *Treemodels* $\models_{i_s r} \varphi$ then *Treemodels* $\models_{i_s R} \varphi$ then $\models_{i_s R} \varphi$

 $\mathit{Val}(\mathsf{ATL}_{i_s r}) \subsetneq \mathit{Val}(\mathsf{ATL}_{i_s R})$

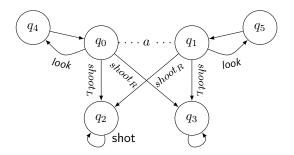
Inclusion: $\models_{i_s r} \varphi$ then *Treemodels* $\models_{i_s r} \varphi$ then *Treemodels* $\models_{i_s R} \varphi$ then $\models_{i_s R} \varphi$ Strict inclusion:

 $\mathfrak{M}, \underline{q_0} \not\models_{\mathbf{i_sr}} \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \to \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}.$

 $\mathit{Val}(\textbf{ATL}_{i_s\textbf{r}}) \subsetneq \mathit{Val}(\textbf{ATL}_{i_s\textbf{R}})$

Inclusion: $\models_{i_s r} \varphi$ then *Treemodels* $\models_{i_s r} \varphi$ then *Treemodels* $\models_{i_s R} \varphi$ then $\models_{i_s R} \varphi$ Strict inclusion:

 $\mathfrak{M}, \underline{q_0} \not\models_{\mathbf{i_sr}} \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \to \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}.$



3.3 Subjective vs. Objective Ability

$Val(\mathsf{ATL}_{i_o \mathbf{X}}) \not\subseteq Val(\mathsf{ATL}_{i_s \mathbf{Y}}) \text{ for } x, y \in \{r, R\}.$

 $Val(\mathsf{ATL}_{i_o \mathbf{X}}) \not\subseteq Val(\mathsf{ATL}_{i_s \mathbf{Y}}) \text{ for } x, y \in \{r, R\}.$

Formula $\Phi_2 \equiv \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p} \to \mathsf{p} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{p}$ is valid in $Val(\mathsf{ATL}_{i_o \mathsf{x}})$

 $Val(\mathsf{ATL}_{i_o \mathsf{x}}) \not\subseteq Val(\mathsf{ATL}_{i_s \mathsf{y}}) \text{ for } x, y \in \{r, R\}.$

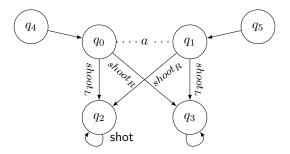
Formula $\Phi_2 \equiv \langle\!\langle a \rangle\!\rangle \Diamond p \rightarrow p \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond p$ is valid in $Val(\mathsf{ATL}_{i_o \mathbf{x}})$ but invalid in $Val(\mathsf{ATL}_{i_o \mathbf{x}})$.

 $\mathfrak{M}, q_4 \not\models_{\mathbf{i}_{\mathsf{s}}\mathsf{R}} \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{shot} \to \mathsf{shot} \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond \mathsf{shot}$

 $Val(\mathsf{ATL}_{i_o \mathbf{x}}) \not\subseteq Val(\mathsf{ATL}_{i_s \mathbf{y}}) \text{ for } x, y \in \{r, R\}.$

Formula $\Phi_2 \equiv \langle\!\langle a \rangle\!\rangle \Diamond p \to p \lor \langle\!\langle a \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \Diamond p$ is valid in $Val(\mathsf{ATL}_{i_o x})$ but invalid in $Val(\mathsf{ATL}_{i_o y})$.

 $\mathfrak{M}, q_4 \not\models_{\mathbf{i}_{\mathsf{s}}\mathsf{R}} \langle\!\!\langle a \rangle\!\!\rangle \Diamond \mathsf{shot} \to \mathsf{shot} \lor \langle\!\!\langle a \rangle\!\!\rangle \bigcirc \langle\!\!\langle a \rangle\!\!\rangle \Diamond \mathsf{shot}$



$Val(\mathsf{ATL}_{i_{s}\mathsf{x}}) \not\subseteq Val(\mathsf{ATL}_{i_{o}\mathsf{y}}) \text{ for } x, y \in \{r, R\}.$

48

 $Val(\mathsf{ATL}_{i_s \mathbf{x}}) \not\subseteq Val(\mathsf{ATL}_{i_o \mathbf{y}}) \text{ for } x, y \in \{r, R\}.$

 $\Phi_6 \equiv \langle\!\langle a \rangle\!\rangle \mathsf{N} \langle\!\langle c \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \bigcirc \mathsf{p} \to \langle\!\langle a, c \rangle\!\rangle \Diamond \mathsf{p} \text{ is valid in } \mathsf{ATL}_{i_s \mathsf{x}}$

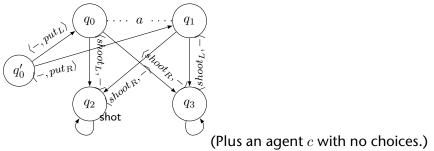
 $Val(\mathsf{ATL}_{i_o \mathsf{X}}) \not\subseteq Val(\mathsf{ATL}_{i_o \mathsf{Y}}) \text{ for } x, y \in \{r, R\}.$

 $\Phi_6 \equiv \langle\!\langle a \rangle\!\rangle \mathsf{N} \langle\!\langle c \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \bigcirc \mathsf{p} \to \langle\!\langle a, c \rangle\!\rangle \Diamond \mathsf{p} \text{ is valid in ATL}_{i_{sx}} \text{ but } \\ \mathbf{Invalid in ATL}_{i_{oy}} \text{ where N ("now") as N} \varphi \equiv \varphi \mathcal{U} \varphi.$

 $Val(\mathsf{ATL}_{i_o \mathbf{X}}) \not\subseteq Val(\mathsf{ATL}_{i_o \mathbf{Y}}) \text{ for } x, y \in \{r, R\}.$

 $\Phi_6 \equiv \langle\!\langle a \rangle\!\rangle \mathsf{N} \langle\!\langle c \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \bigcirc \mathsf{p} \to \langle\!\langle a, c \rangle\!\rangle \Diamond \mathsf{p} \text{ is valid in ATL}_{i_s \mathsf{x}} \text{ but } \\ \mathbf{Invalid in ATL}_{i_o \mathsf{y}} \text{ where } \mathsf{N} \text{ ("now") as } \mathsf{N} \varphi \equiv \varphi \mathcal{U} \varphi.$

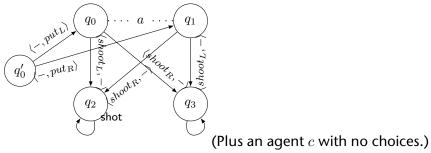
 $\mathfrak{M}, q'_0 \not\models_{\mathbf{i}_0 \mathbf{R}} \langle\!\!\langle a \rangle\!\!\rangle \mathsf{N} \langle\!\!\langle c \rangle\!\!\rangle \bigcirc \langle\!\!\langle a \rangle\!\!\rangle \bigcirc \mathsf{p} \to \langle\!\!\langle a, c \rangle\!\!\rangle \Diamond \mathsf{p}$



 $Val(\mathsf{ATL}_{i_o \mathbf{X}}) \not\subseteq Val(\mathsf{ATL}_{i_o \mathbf{Y}}) \text{ for } x, y \in \{r, R\}.$

 $\Phi_6 \equiv \langle\!\langle a \rangle\!\rangle \mathsf{N} \langle\!\langle c \rangle\!\rangle \bigcirc \langle\!\langle a \rangle\!\rangle \bigcirc \mathsf{p} \to \langle\!\langle a, c \rangle\!\rangle \Diamond \mathsf{p} \text{ is valid in ATL}_{i_{s_X}} \text{ but } \\ \underline{\mathsf{Invalid}} \text{ in ATL}_{i_{o_Y}} \text{ where } \mathsf{N} \text{ ("now") as } \mathsf{N} \varphi \equiv \varphi \mathcal{U} \varphi.$

 $\mathfrak{M}, q'_0 \not\models_{\mathbf{i}_0 \mathbf{R}} \langle\!\!\langle a \rangle\!\!\rangle \mathsf{N} \langle\!\!\langle c \rangle\!\!\rangle \bigcirc \langle\!\!\langle a \rangle\!\!\rangle \bigcirc \mathsf{p} \to \langle\!\!\langle a, c \rangle\!\!\rangle \Diamond \mathsf{p}$



So, we have: $Val(ATL_{i_sy})$ and $Val(ATL_{i_oz})$ are incomparable for every $y, z \in \{R, r\}$.

N. Bulling · Comparing Semantics of Strategic Ability

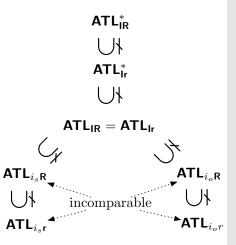
4 Conclusions

4. Conclusions

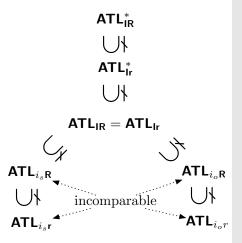
4 Conclusions

N. Bulling · Comparing Semantics of Strategic Ability

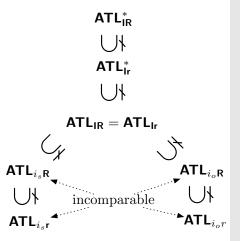
 "All" semantic variants are different on the level of general properties; before our study, it was by no means obvious.



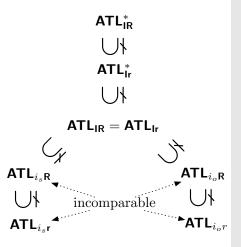
- "All" semantic variants are different on the level of general properties; before our study, it was by no means obvious.
- Strong pattern of subsumption (memory and information)



- "All" semantic variants are different on the level of general properties; before our study, it was by no means obvious.
- Strong pattern of subsumption (memory and information)
- Very natural when you see it (not obvious before).
- Some proofs are nontrivial



- "All" semantic variants are different on the level of general properties; before our study, it was by no means obvious.
- Strong pattern of subsumption (memory and information)
- Very natural when you see it (not obvious before).
- Some proofs are nontrivial
- In particular: non-validities are interesting.



Thank you for your attention!

Questions?

N. Bulling · Comparing Semantics of Strategic Ability