Primal infon logic: proof theory and efficient decidability

S P Suresh, Chennai Mathematical Institute¹

Seminar on Logic and Cognition Jadavpur University October 31, 2013

¹Joint work with A Baskar (IMSc), Prasad Naldurg (IBM Bangalore), and K R Raghavendra (IIIT Bangalore)

S P Suresh

Outline

- 1 Primal infon logic
- 2 Some proof theory
- 3 Algorithm for derivability

4 Complexity analysis

Outline

1 Primal infon logic

- 2 Some proof theory
- 3 Algorithm for derivability

4 Complexity analysis

Infon logic and authorization

- Infon logic: proposed by Yuri Gurevich and Itay Neeman of Microsoft Research.
- Part of the authorization system DKAL.
- In DKAL, principals use infon logic to derive consequences from their own knowledge and communications from other principals.

Infon logic and authorization ...

- If I have $[A \text{ said } (B \text{ can read file } X)] \rightarrow (B \text{ can read file } X)$ in my knowledge set and A communicates (B can read file X), I can grant access to B.
- If A tells B that C can read X provided C signs an agreement, it is modelled as C agrees $\rightarrow [A \text{ implied} (C \text{ can read } X)].$
- A implied x is less trusted than A said x: (A implied x) \rightarrow x may not hold even when (A said x) \rightarrow x.
- A said $x \rightarrow A$ implied x.

Infon logic: syntax

- Infon logic is the (Λ, \rightarrow) fragment of intuitionistic logic, with modalities.
- Syntax of the logic:

$$\Phi ::= p \mid x \land y \mid x \to y \mid \Box_a x \mid \blacksquare_a x$$

where $p \in Props$, $a \in Ag$, and $x, y \in \Phi$.

• $\Box_a x$ stands for *a* said *x* and $\blacksquare_a x$ stands for *a* implied *x*.

Infon logic: proof rules

$\overline{X, x \vdash x}^{ax}$	$\frac{X \vdash x}{X, X' \vdash x}$ weaken
$\frac{X\vdash x X\vdash y}{X\vdash x\land y}\land i$	$\frac{X \vdash x_0 \land x_1}{X \vdash x_i} \land e_i$
$\frac{X, x \vdash y}{X \vdash x \to y} \to i$	$\frac{X \vdash x X \vdash x \to y}{X \vdash y} \to e$
$\frac{X\vdash x}{\Box_a X\vdash \Box_a x} \Box_a$	$\frac{X, Y \vdash x}{\Box_a X, \blacksquare_a Y \vdash \blacksquare_a x} \blacksquare_a$

Problem of interest

The derivability problem: Given X and x, determine whether there is a proof of $X \vdash x$.

Example proofs

$$\frac{\overline{x, y \vdash x}^{ax} \quad \overline{x, y \vdash y}^{ax}}{x, y \vdash x \land y} \land i}_{\Box_a x, \blacksquare_a y \vdash \blacksquare_a (x \land y)} \blacksquare_a$$

Example proofs ...

$$\frac{\prod_{a}x \wedge \prod_{a}y \vdash \prod_{a}x \wedge \prod_{a}y \vdash \prod_{a}x \wedge \prod_{a}y}{\prod_{a}x \wedge \prod_{a}y \vdash \prod_{a}x \wedge \prod_{a}y + \prod_{a}x \wedge \prod_{a}x + \prod_{a}x \wedge \prod_{a}x + \prod_{a}x \wedge \prod_{a}x + \prod_{a}x +$$

Primal infon logic: proof theory and efficient decidability

SLC 2013 10 / 36

A case for the *cut* rule

- Proof search is difficult if arbitrarily large formulas can occur in all proofs of $X \vdash x$.
- The *cut* rule can help in handling chains of implications.

 $\frac{X\vdash x \quad Y\vdash y}{X,Y-x\vdash y} cut$

Does not add power:

$$\begin{array}{c} \pi_{1} & \vdots \\ \vdots & Y \vdash y \\ X \vdash x & \overline{Y \vdash x \to y} \\ \hline X, Y - x \vdash y \\ \hline \hline X, Y - x \vdash y \\ \hline \end{array} \rightarrow e$$

A proof with *cut*

Primal infon logic

- Statman 1979 proves that the derivability problem for intuitionistic logic (even the \rightarrow -fragment) is PSPACE-complete.
- The main culprit is the $\rightarrow i$ rule.
- A variant suggests itself primal implication:

 $\frac{X \vdash y}{X \vdash x \to y}$

- A form of weakening.
- Shades of encryption:

 $X \vdash t$

 $X \vdash sk(A) \rightarrow t$

Primal infon logic: proof rules

$\overline{X,x\vdash x}$ ax	$\frac{X \vdash x}{X, X' \vdash x}$ weaken
$\frac{X\vdash x X\vdash y}{X\vdash x\land y}\land i$	$\frac{X \vdash x_0 \land x_1}{X \vdash x_i} \land e_i$
$\frac{X \vdash y}{X \vdash x \to y} \to i$	$\frac{X \vdash x X \vdash x \to y}{X \vdash y} \to e$
$\frac{X \vdash x}{\Box_a X \vdash \Box_a x} \Box_a$	$\frac{X,Y\vdash x}{\Box_a X, \blacksquare_a Y\vdash \blacksquare_a x} \blacksquare_a$

 $\frac{X\vdash x \quad Y\vdash y}{X, Y-x\vdash y} cut$

Why the *cut* rule?

- The *cut* rule ought to be admissible in any reasonable system.
- But it can be shown that there is no *cut*-free proof of $\Box_a x \land \Box_a y \vdash \Box_a (x \land y)$.
- Thus we add *cut* as an explicit rule.

Semantics

A Kripke structure for infon logic is a tuple (W, \leq, C, S, I) where

- (W, \leq) is a partially ordered set.
- $C: Props \rightarrow \wp(W)$ maps each $p \in Props$ to a cone.
- $S: a \mapsto S_a$ and $I: a \mapsto I_a$, where for all $a \in Ag$
 - $S_a \subseteq W \times W$ and $I_a \subseteq W \times W$.
 - $I_a \subseteq S_a$.
 - If $u \leq w$ and $wS_a v$ then $uS_a v$.
 - If $u \leq w$ and $wI_a v$ then $uI_a v$.

Semantics ...

We assign a cone C(z) to every formula z.

- $C(x \wedge y) = C(x) \cap C(y)$.
- $C(\Box_a x) = \{u \mid \forall v : uS_a v \Rightarrow v \in C(x)\}.$
- $C(\blacksquare_a x) = \{u \mid \forall v : uI_a v \Rightarrow v \in C(x)\}.$
- Full infon logic: $C(x \to y) = \{u \mid \forall v \ge u : v \in C(x) \Rightarrow v \in C(y)\}.$
- Primal infon logic: $C(x \rightarrow y)$ is an arbitrary cone *C* such that

 $C(y) \subseteq C \subseteq \{u \mid \forall v \ge u : v \in C(x) \Rightarrow v \in C(y)\}.$

Semantics ...

Theorem

For both full infon logic and primal infon logic, the following are equivalent for any sequent *s*.

- 1 s is provable.
- 🧿 s is valid.
- 3 Every finite Kripke structure models s.
- There is a proof of s that uses only subformulas of s.

Known results

- Full infon logic is PSPACE-complete. (Gurevich and Neeman (2009).)
- Primal constructive logic (PIL without the modalities) is solvable in linear time [GN09].
- Primal infon logic with only the □_a modalities is solvable in linear time [GN09].
- Primal infon logic extended with disjunctions is PSPACE-complete. Proved by Beklemishev and Gurevich (2012).
- Gurevich and Savateev (2011) have proved exponential lower bounds on proof size in primal infon logic.
- [BNRS13]: Primal infon logic is solvable in polynomial time ($O(N^3)$ algorithm).

Some proof theory

Outline

- 1 Primal infon logic
- 2 Some proof theory
- 3 Algorithm for derivability

4 Complexity analysis

Some proof theory

cut and subformula property

- The *cut* rule also renders proof search difficult, by violating the subformula property.
- Standard solution: prove that every provable sequent has a *cut*-free proof.
- But ...*cut* is not eliminable in PIL.
- What do we do?

Sequent calculus system for PIL

$\frac{1}{X,x \vdash x} ax$	$\frac{X \vdash x}{X, X' \vdash x}$ weaken
$\frac{X\vdash x X\vdash y}{X\vdash x\land y}\land r$	$\frac{X, x_i \vdash y}{X, x_0 \land x_1 \vdash y} \land \ell_i$
$\frac{X \vdash y}{X \vdash x \to y} \to r$	$\frac{X\vdash x X, y\vdash z}{X, x \to y\vdash z} \to \ell$
$\frac{X\vdash x}{\Box_a X\vdash \Box_a x}\Box_a$	$\frac{X,Y\vdash x}{\Box_a X, \blacksquare_a Y\vdash \blacksquare_a x} \blacksquare_a$

 $\frac{X \vdash x \quad Y \vdash y}{X, Y - x \vdash y} cut$

Some proof theory

Equivalence

Translate $\begin{array}{ccc} \pi_1 & \pi_2 \\ \vdots & \vdots \end{array}$ $\frac{X \vdash x \to y \quad X \vdash x}{X_1 \vdash y}$ $\longrightarrow \rho$ to

No new formulas!

Some proof theory

Equivalence

No new formulas!

Cut elimination for PIL in sequent calculus form

- Proof is along standard lines.
- Immediately implies the subformula property.
- $\Box_a x \land \Box_a y \vdash \Box_a (x \land y)$ is proved as follows:

$$\frac{\overline{x, y \vdash x}^{ax} \overline{x, y \vdash y}^{ax}}{x, y \vdash x \land y} \wedge r$$

$$\frac{\overline{a, y \vdash x \land y}}{\overline{a_a x, \Box_a y \vdash \Box_a (x \land y)}} \wedge l_a$$

$$\frac{\overline{a_a x \land \Box_a y, \Box_a y \vdash \Box_a (x \land y)}}{\overline{a_a x \land \Box_a y \vdash \Box_a (x \land y)}} \wedge l_2$$

Subformula property for PIL

- If $X \vdash_{nd} x$ then $X \vdash_{sc} x$.
- If $X \vdash_{sc} x$ then there is a cut-free sequent calculus proof of $X \vdash x$.
- All formulas occurring in any cut-free sequent calculus proof of $X \vdash x$ belong to $sf(X \cup \{x\})$.
- This last proof can be translated to a natural deduction proof respecting the subformula property.

Outline

- 1 Primal infon logic
- 2 Some proof theory
- 3 Algorithm for derivability

4 Complexity analysis

Setting it up

- Given X_0 and x_0 , to check if $X_0 \vdash x_0$.
- Let $Y_0 = sf(X_0 \cup \{x_0\})$.
- Let $|Y_0| = N$.
- $closure'(X) = \{x \mid X \vdash x \text{ without using the modality rules}\}.$
- For $X \subseteq Y_0$, *closure*'(X) computable in O(N) time.
- $closure(X) = \{x \mid X \vdash x\}.$

Setting it up ...

- Let \mathscr{C} be the set of modal contexts in Y_0 .
- For each $\sigma \in \mathscr{C}$ define $f_{\sigma} : \wp(Y_0) \to \wp(Y_0)$ and $g_{\sigma} : \wp(Y_0) \to \wp(Y_0)$.
- f_{σ} handles applications of the *cut* rule.
- + g_σ handles one application of each of the modality rules.
- Mutually recursive procedures.

Theorem For all $X \subseteq Y_0$, $f_{\varepsilon}(X) = closure(X)$.

Computing *closure*(*X*)

function $f_{\sigma}(X)$ if $(\sigma \notin \mathscr{C} \text{ or } X = \emptyset)$ then return \emptyset end if $Y \leftarrow X$ while $Y \neq g_{\sigma}(Y)$ do $Y \leftarrow g_{\sigma}(Y)$ end while return Yend function

Computing *closure*(*X*)

 $\begin{aligned} & \text{function } g_{\sigma}(X) \\ & \text{for all } a \in Ag : Y_a \leftarrow \Box_a f_{\sigma \Box_a}(\Box_a^{-1}(X)) \\ & \text{for all } a \in Ag : Z_a \leftarrow \blacksquare_a f_{\sigma \blacksquare_a}(\Box_a^{-1}(X) \cup \blacksquare_a^{-1}(X)) \\ & \text{return } closure'(X \cup \bigcup_{a \in Ag}(Y_a \cup Z_a)) \\ & \text{end function} \end{aligned}$

Outline

- 1 Primal infon logic
- 2 Some proof theory
- 3 Algorithm for derivability
- 4 Complexity analysis

Number of distinct recursive calls

With respect to the run of $f_{\varepsilon}(X_0)$

- $(\sigma, X) \rightarrow_f (\tau, Y)$ if $f_{\sigma}(X)$ is an (temporally) earlier recursive call than $f_{\tau}(Y)$.
- $(\sigma, X) \rightarrow_g (\tau, Y)$ if $g_{\sigma}(X)$ is an (temporally) earlier recursive call than $g_{\tau}(Y)$.

Lemma

Suppose $\sigma \in \mathcal{C}$, and $X, Y \subseteq Y_0$.

- $If (\sigma, X) \to_f (\sigma, Y) then f_{\sigma}(X) \subseteq Y.$
- **2** If $(\sigma, X) \rightarrow_g (\sigma, Y)$ then $g_{\sigma}(X) \subseteq Y$.

Computing *closure*(*X*) with memoization

```
Initialization: for all \sigma \in \mathscr{C} : G_{\sigma} \leftarrow \emptyset
```

```
function f(\sigma, X)
      if \sigma \notin \mathscr{C} or X = \emptyset then
             return 💋
      end if
      Y \leftarrow X
      while Y \neq G_{\sigma} do
                                                      \triangleright G_{\sigma} = g(\sigma, G_{\sigma}) before the start of the loop.
             G_{\sigma} \leftarrow Y
             Y \leftarrow g(\sigma, Y)
      end while
                                                               \triangleright G_{\sigma} = g(\sigma, G_{\sigma}) at the end of the loop.
      return G_{\sigma}
end function
```

$O(N^3)$ complexity

- At most *N* modal contexts.
- For each context σ , across all calls to f_{σ} , at most N recursive calls to g_{σ} .
- At most N^2 calls to g_{σ} , across all σ .
- Each g_{σ} makes a constant number of recursive calls to f_{τ} 's.
- Each g_{σ} takes O(N) time to compute *closure*'.
- Overall time: $O(N^3)$.

Thank you!