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Model-Theoretic Beginnings

Problem

Given a theory T , describe the structure of models of T .

Definition

A first-order theory T is said to be stable iff there are less than the
maximum possible number of types over T , up to equivalence.

Theorem (Shelah’s Main Gap Theorem)

If T is a first-order theory and is stable and . . . , then the class of models
looks like . . . . Otherwise, there’s no hope.
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Model-Theoretic Beginnings

Example

Let T be the theory of vector spaces over some infinite field. Then for
each uncountable cardinal κ, there is exactly one model of T , up to
isomorphism, with cardinality κ. Moreover, there are only countably many
countable models, and we know what they are.
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Model-Theoretic Beginnings

Definition

Let V be a vector space over R. A norm on V is a function | · | : V → R
satisfying the following:

1 For all x ∈ V , we have |x | ≥ 0.

2 If |x | = 0, then x = 0.

3 For all x ∈ V and all λ ∈ R we have |λx | = |λ| · |x |.
4 For all x , y ∈ V , we have |x + y | ≤ |x |+ |y |.
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Model-Theoretic Beginnings

Proposition

A first-order theory is said to be stable iff there is no definable infinite
linear ordering in any model.

Example

Let (V , | · |) be a normed vector space over R.Then define an equivalence
relation x ∼ y iff |x | = |y |, and order the classes by x∼ < y∼ iff |x | < |y |.
Thus, (V , | · |) is unstable, and the class of models of its first-order theory
is completely intractable.

Problem

Then how can we possibly think about Hilbert Spaces?
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Model-Theoretic Beginnings

Definition

A Banach Space is a normed vector space with the property that every
Cauchy sequence converges to a point of the space (i.e. a complete
normed vector space).

Example

Let p > 0, and define

||f ||p :=

(∫
|f |p
) 1

p

.

We define Lp(R) to be the set of all functions f : R→ R such that
||f ||p <∞, with pointwise addition and scaling and the norm || · ||p. Each
space Lp(R) is a Banach space.
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Model-Theoretic Beginnings

Definition

A Hilbert Space is a Banach space V with an additional binary operation
〈·, ·〉 : V 2 → R, called the inner product, such that

1 For all x , y , z ∈ V and all a, b ∈ R, we have
〈ax + by , z〉 = a〈x , z〉+ b〈y , z〉

2 For all x , y ∈ V , we have 〈x , y〉 = 〈y , x〉
3 For all x ∈ V , we have 〈x , x〉 ≥ 0, with equality holding if and only if

x = 0.

Example

Define 〈f , g〉 :=
(∫

fg
) 1

2 . Then L2, with this inner product, is a Hilbert
space.
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Model-Theoretic Beginnings

Several themes join together here:

1 Need a logic that describes ultraproduct and nonstandard hull
constructions in functional analysis.

1 Ideally, it would use natural analytic language.
2 Ideally, it would make at least some familiar structures stable.

2 How do we reason about probability?
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Continuous First-Order Logic

Roughly:

Truth values are on the closed unit interval.

Boolean connectives are exactly the continuous functions from the
closed unit interval to itself.

Quantifiers are sup and inf.
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Continuous First-Order Logic Semantics

Definition

A continuous signature is an object of the form L = (R,F ,G, n, d) where

1 R and F are disjoint and R is nonempty, and

2 n is a function associating to each member of R∪ F its arity

3 G has the form {δs,i : (0, 1]→ (0, 1] : s ∈ R ∪ F and i < ns}
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Continuous First-Order Logic Semantics

Definition

Let L = (R,F ,G, n) be a continuous signature. A continuous
L-pre-structure is an ordered pair M = (M, ρ), where M is a non-empty
set, and ρ is a function on R∪ F such that

1 To each function symbol f , the function ρ assigns a mapping
f M : Mn(f ) → M

2 To each relation symbol P, the function ρ assigns a mapping
f M : Mn(P) → [0, 1]

3 The function ρ assigns d to a pseudo-metric dM : M ×M → [0, 1]
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Continuous First-Order Logic Semantics

4. For each f ∈ F for each i < nf , and for each ε ∈ (0, 1], we have

∀ā, b̄, c , e
[
dM(c , e) < δf ,i ⇒ dM

(
f M(ā, c , b̄), f M(ā, e, b̄)

)
≤ ε
]

where lh(ā) = i and lh(ā) + lh(b̄) = nf − 1

5. For each P ∈ R for each i < nP , and for each ε ∈ (0, 1], we have

∀ā, b̄, c , e
[
dM(c , e) < δf ,i ⇒ |PM(ā, c , b̄)− PM(ā, e, b̄)| ≤ ε

]
where lh(ā) = i and lh(ā) + lh(b̄) = nP − 1.
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∀ā, b̄, c , e
[
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Continuous First-Order Logic Semantics

Definition

A continuous weak L-structure is a continuous L-pre-structure such that ρ
assigns to d a metric.

Definition

A continuous L-structure is a continuous L-pre-structure such that ρ
assigns to d a complete metric.
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Continuous First-Order Logic Semantics

Example

Bounded Hilbert space

Example

Let p ∈ (0, 1). Take a continuous signature with a single binary predicate,
and make the metric discrete. Now for each pair, set

R(a, b) =

{
p if a 6= b
0 otherwise

This is an Erdős-Renyi random graph.
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Continuous First-Order Logic Semantics

Definition

Let V denote the set of variables, and let σ : V → M. Let ϕ be a formula.

1 The interpretation under σ of a term t (written tM,σ) is defined by
replacing each variable x in t by σ(x).

2 Let ϕ be a formula. We then define the value of ϕ in M under σ
(written M(ϕ, σ)) as follows:

1 M(P(t̄), σ) := PM(tM,σ)
2 M(α .− β, σ) := max (M(α, σ)−M(β, σ), 0)
3 M(¬α, σ) := 1−M(α, σ)
4 M( 1

2α, σ) := 1
2M(α, σ)

5 M(supx α, σ) := sup
a∈M

M(α, σa
x), where σa

x is equal to σ except that

σa
x(x) = a.

3 We write (M, σ) |= ϕ exactly when M(ϕ, σ) = 0.
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Continuous First-Order Logic Semantics
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Let V denote the set of variables, and let σ : V → M. Let ϕ be a formula.

1 The interpretation under σ of a term t (written tM,σ) is defined by
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Continuous First-Order Logic Syntax

Definition

Let S0 be a set of distinct propositional symbols. Let S be freely
generated from S0 by the formal binary operation .− and the unary
operations ¬ and 1

2 . Then S is said to be a continuous propositional logic.
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Continuous First-Order Logic Syntax

Definition

Let S be a continuous propositional logic.
1 if v0 : S0 → [0, 1] is a mapping, we can extend v0 to a unique

mapping v : S → [0, 1] by setting

1 v(ϕ .− ψ) := max (v(ϕ)− v(ψ), 0)
2 v(¬ϕ) := 1− v(ϕ)
3 v( 1

2ϕ) = 1
2 vϕ)

We say that v is the truth assignment defined by v0.

2 We write v |= Σ for some Σ ⊆ S whenever v(ϕ) = 0 for all ϕ ∈ Σ.
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Continuous First-Order Logic Syntax

Proposition (Ben Yaacov–Berenstein–Henson–Usvyatsov)

Let f (x̄) : [0, 1]n → [0, 1] be continuous. Then f can be approximated by
something generated from .−,¬, and 1

2 .
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Continuous First-Order Logic Answer to the Challenge

Definition

A CFO theory is said to be stable if and only if there is a small set of types
which is dense in the metric topology.

Theorem (Ben Yaacov–Berenstein–Henson–Usvyatsov)

The following CFO theories are stable

Hilbert Spaces

Atomless Probability Spaces
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Continuous First-Order Logic But is it Model Theory?

Theorem (Compactness)

Let T be a CFO theory, and C a class of structures. Assume that T is
finitely satisfiable in C . Then there is an ultraproduct of structures from C
that is a model of T .
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Continuous First-Order Logic But is it Model Theory?

Definition

The density character of a topological space is the smallest cardinality of a
dense subset.

Theorem

Let κ be an infinite cardinal, and L a signature of smaller size. Let M be
an L-structure, and A ⊆ M a set with density character at most κ. Then
there is an elementary substructure N of M which contains A and has
density character at most κ.
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Continuous First-Order Logic But is it Model Theory?

Theorem (Ben Yaacov)

Let T be a countable CFO theory. If T is categorical in some uncountable
cardinal, then it is categorical in all uncountable cardinals.
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Computation and Uncertainty Classical Computation

Definition

A Turing Machine consists of the following:

1 A bi-infinite “tape” divided into cells, each of which can contain a bit
of data,

2 A “head” which “sits on” a single cell of the tape, holds a bit of data
in its memory, and is capable of reading its cell, writing on its cell, or
moving in either direction, and

3 A “program” which instructs the head, given the memory state and
the state of its cell what it should do next.
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Computation and Uncertainty Probabilistic Computation

That’s not how we usually reason. Rather,

1 I’ll be talking to a group that contains computer scientists,
mathematicians, and philosophers.

2 The mathematicians all know what a vector space is.

3 The others might or might not.

4 Most of the people who know won’t mind if I define it.

5 Most of those who don’t know will probably be unhappy if I don’t.

6 So I probably should.
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Computation and Uncertainty Probabilistic Computation

Definition

Let 2ω be the set of infinite binary sequences.

1 A probabilistic Turing machine is a Turing machine equipped with an
oracle for an element of 2ω, called the random bits, with output in
{0, 1}.

2 We say that a probabilistic Turing machine M accepts n with
probability p if and only if P{x ∈ 2ω : Mx(n) ↓= 0} = p.

3 We say that a probabilistic Turing machine M rejects n with
probability p if and only if P{x ∈ 2ω : Mx(n) ↓= 1} = p.
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Computation and Uncertainty Probabilistic Computation

Definition

A set S ⊆ N is of class BPP iff there is a probabilistic Turing machine
which runs in polynomial time and gives the right answer to “n ∈ S?” at
least 3

4 of the time.
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Computation and Uncertainty Computable Structures

Definition

Let L be a computable continuous signature. Let M be a continuous
L-structure. Let L(M) be the expansion of L by a constant cm for each
m ∈ M (i.e. a unary predicate cm ∈ R where cM

m (x) := d(x ,m)).

Then
the continuous atomic diagram of M, written D(M) is the set of all pairs
(ϕ, p), where ϕ is a quantifier-free (i.e. sup- and inf-free) sentence in
L(M) and M(ϕ, σ) = p. The continuous elementary diagram D∗(M) is
the same, except that ϕ is not required to be quantifier-free.
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Computation and Uncertainty Computable Structures

Definition

We treat a first-order structure M as the set of Gödel codes for sentences
in its atomic diagram. In particular, M is said to be computable if and
only if that set is computable.

Definition

We say that a continuous pre-structure M is probabilistically computable
(respectively, probabilistically decidable) if and only if there is some
probabilistic Turing machine T such that, for every pair (ϕ, p) ∈ D(M)
(respectively, D∗(M)) the machine T accepts ϕ with probability p.
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Computation and Uncertainty Computable Structures

Example

Let p ∈ (0, 1). Take a continuous signature with a single binary predicate,
and make the metric discrete.

Now for each pair, set

R(a, b) =

{
p if a 6= b
0 otherwise

This is an Erdős-Renyi random graph.

With a random real oracle, it is a classical Erdős-Renyi random graph.
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Computation and Uncertainty Computable Structures

Example

Let p ∈ (0, 1). Take a continuous signature with a single binary predicate,
and make the metric discrete. Now for each pair, set

R(a, b) =

{
p if a 6= b
0 otherwise
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Computation and Uncertainty Computable Structures

Lemma (No Derandomization Lemma)

There is a probabilistically computable weak structure M such that the set
{(ϕ, p) ∈ D(M) : p ∈ D} is not classically computable.

Proof.

Let U be a computably enumerable set, and let S be the complement of
U. We construct a probabilistically computable function f such that

P(f σ(x) = 0) =
1

2

if and only if x ∈ S .
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Computation and Uncertainty Computable Structures

Proposition

For any probabilistically computable pre-structure M,

1 There is some (classically) computable function f , monotonically
increasing in the second variable, and

2 There is some (classically) computable function g, monotonically
decreasing in the second variable,

such that for any pair (ϕ, p) ∈ D(M), we have lim
s→∞

f (ϕ, s) = p and

lim
s→∞

g(ϕ, s) = p.
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such that for any pair (ϕ, p) ∈ D(M), we have lim
s→∞

f (ϕ, s) = p and

lim
s→∞

g(ϕ, s) = p.
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Completeness and Effective Completeness Decidable Theories

Definition

A first-order theory is said to be decidable iff there is a Turing machine
which, given any sentence ϕ will determine whether T ` ϕ.
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Completeness and Effective Completeness Decidable Theories

Definition

A real number x =
∞∑
i=1

xi10−i is said to be computable if and only if the

sequence of digits xi is computable.
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Completeness and Effective Completeness Decidable Theories

Definition (Ben Yaacov–Pedersen)

Let L be a continuous signature and Γ a set of formulas of L.

1 We define
ϕ◦Γ := sup {M(ϕ, σ) : (M, σ) |= Γ}.

2 If T is a complete continuous first-order theory, we say that T is
decidable if and only if there is a (classically) computable function f
such that f (ϕ) is an index for a computable real number equal to ϕ◦T .
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Completeness and Effective Completeness Completeness Theorem

Theorem (Ben Yaacov–Pedersen)

A continuous first-order theory is consistent if and only if there is a metric
structure which satisfies it.

Proof.

1 A consistent CFO theory must be satisfied by some pre-structure

2 Get a metric structure with exactly the same satisfaction properties
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Completeness and Effective Completeness Effective Completeness Theorem

Theorem

Let T be a decidable continuous first-order theory. Then there is a
probabilistically decidable continuous weak structure M such that M |= T .

Proof Outline.

1 Pass to a Henkin complete theory (witnesses for all sup’s).

2 Pass to a maximal consistent theory.

3 Build the model.
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Completeness and Effective Completeness Effective Completeness Theorem

How to build the model:
If we have a proof of ϕ .− k

2n , we make sure to accept ϕ with probability at

least 1− k
2n , by assigning some initial segments of the random string to

accept ϕ.

If we have a proof of k
2n

.− ϕ, then we do the opposite.
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Completeness and Effective Completeness Effective Completeness Theorem

Lemma

If we have proofs of both ϕ .− k1
2n and k2

2n
.− ϕ, then we have(

1− k1
2n

)
+ k2

2n ≤ 1.

Proof.

If not, then k2
2n

.− k1
2n = 0 so that k1 ≥ k2.

But also 2n − k1 + k2 > 1, so that k2  k1.
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Some Applications

Definition

Let Ω = (Ω, µ) be a measure space. Then a [0, 1]-valued random variable
on Ω is a measurable function Ω→ [0, 1].

Definition

Let A ⊆ [0, 1], and X a random variable. Then
P(X ∈ A) = µ{x : f (x) ∈ A}.
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Some Applications

We’d like to have a unified computational and model-theoretic way to talk
about random variables.
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Some Applications

Definition

We define a system for reals and functions of reals:

1 A name for a real number x is a decreasing sequence of closed
intervals with rational endpoints whose intersection is x .

2 A computable real function is a Turing functional that maps names of
reals to names of reals.

The real numbers aren’t that special here.
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Some Applications

Theorem

Let Ω be a measure space that doesn’t foil our efforts ([0, 1] is good). Let
X be a [0, 1]-valued random variable on Ω. Then the following are
equivalent:

1 X has the same distribution as a computable random variable.

2 The distribution of X is computable.

3 If M is a probabilistically computable structure containing a
quantifier-free copy of a dense subspace Ω′ ⊆ (Ω, µ) and of the
computable real numbers, then there is a probabilistically computable
expansion of M by X �Ω′ .

4 There is a probabilistically computable structure in which a copy of
X �Ω′ is quantifier-free definable, for some dense Ω′ ⊆ Ω.
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Some Applications

Example

There is a uniform collection of independent computable standard normal
random variables.

Example

There are computable Bernoulli, Binomial, Geometric, and Poisson random
variables.
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Some Applications

Example

There is a computable Wiener process.

Example

Stochastic integration in the sense of Itô (or of Stratonovich) is a
computable operator.
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