MSO 201a: Probability and Statistics
 2019-20-II Semester
 Assignment-II
 Instructor: Neeraj Misra

1. Let D be the set of discontinuity points of a distribution function F. For each $n \in\{1,2, \ldots\}$, define $D_{n}=\left\{x \in \mathbb{R}: F(x)-F(x-) \geq \frac{1}{n}\right\}$. Show that each $D_{n}(n=1,2, \ldots)$ is finite. Hence show that a distribution function can not have uncountable number of discontinuities.
2. Do the following functions define distribution functions?

$$
\text { (i) } \quad F_{1}(x)=\left\{\begin{array}{ll}
0, & \text { if } x<0 \\
x, & \text { if } 0 \leq x \leq \frac{1}{2} ; \\
1, & \text { if } x>\frac{1}{2}
\end{array} \quad \text { (ii) } \quad F_{2}(x)=\left\{\begin{array}{cl}
0, & \text { if } x<0 \\
1-e^{-x}, & \text { if } x \geq 0
\end{array}\right.\right.
$$

and (iii) $F_{3}(x)=\frac{1}{2}+\frac{\tan ^{-1}(x)}{\pi},-\infty<x<\infty$.
3. Let X be a random variable with distribution function

$$
F(x)=\left\{\begin{array}{cl}
0, & \text { if } x<0 \\
\frac{2}{3}, & \text { if } 0 \leq x<1 \\
\frac{7-6 c}{6}, & \text { if } 1 \leq x<2 \\
\frac{4 c^{2}-9 c+6}{4}, & \text { if } 2 \leq x \leq 3 \\
1, & \text { if } x>3
\end{array}\right.
$$

where c is a real constant.
(i) Find the value of constant c;
(ii) Using the distribution function F, find $P(1<X<2) ; P(2 \leq X<3) ; ~ P(0<$ $X \leq 1) ; P(1 \leq X \leq 2) ; ~ P(X \geq 3) ; P\left(X=\frac{5}{2}\right)$ and $P(X=2)$;
(iii) Find the conditional probabilities $P(X=1 \mid 1 \leq X \leq 2)$ and $P(1 \leq X<2 \mid X>$ 1).
(iv) Show that X is a discrete r.v.. Find the support and the p.m.f. of X.
4. Let X be a random variable with distribution function $F(\cdot)$. In each of the following cases determine whether X is a discrete r.v. or a continuous r.v.. Also find the
p.d.f./p.m.f. of X :

$$
\text { (i) } F(x)=\left\{\begin{array}{cl}
0, & \text { if } x<-2 \\
\frac{1}{3}, & \text { if }-2 \leq x<0 \\
\frac{1}{2}, & \text { if } 0 \leq x<5 \\
\frac{3}{4}, & \text { if } 5 \leq x<6 \\
1, & \text { if } x \geq 6
\end{array} ; \quad \text { (ii) } F(x)=\left\{\begin{array}{cl}
0, & \text { if } x<0 \\
1-e^{-x}, & \text { if } x \geq 0
\end{array}\right.\right.
$$

5. Let the random variable X have the distribution function

$$
F(x)=\left\{\begin{array}{ll}
0, & \text { if } x<0 \\
\frac{x}{3}, & \text { if } 0 \leq x<1 \\
\frac{2}{3}, & \text { if } 1 \leq x<2 \\
1, & \text { if } x \geq 2
\end{array} .\right.
$$

(i) Show that X is neither a discrete r.v. nor a continuous r.v.;
(ii) Evaluate $P(X=1), P(X=2), P(X=1.5)$ and $P(1<X<2)$;
(iii) Evaluate the conditional probability $P(1 \leq X<2 \mid 1 \leq X \leq 2)$.
6. A random variable X has the distribution function

$$
F(x)=\left\{\begin{array}{cl}
0, & \text { if } x<2 \\
\frac{2}{3}, & \text { if } 2 \leq x<5 \\
\frac{7-6 k}{6}, & \text { if } 5 \leq x<9 \\
\frac{3 k^{2}-6 k+7}{6}, & \text { if } 9 \leq x<14 \\
\frac{16 k^{2}-16 k+19}{16}, & \text { if } 14 \leq x \leq 20 \\
1, & \text { if } x>20
\end{array}\right.
$$

where $k \in \mathbb{R}$.
(i) Find the value of constant k;
(ii) Show that X is a discrete r.v. and find its support;
(iii) Find the p.m.f. of X.
7. A discrete random variable X has the p.m.f.

$$
f(x)=\left\{\begin{array}{cl}
\frac{c}{(2 x-1)(2 x+1)}, & \text { if } x \in\{1,2,3, \ldots\} \\
0, & \text { otherwise }
\end{array}\right.
$$

where $c \in \mathbb{R}$.
(i) Find the value of constant c;
(ii) For positive integers m and n such that $m<n$, using the p.m.f. evaluate
$P(X<m+1), P(X \geq m), P(m \leq X<n)$ and $P(m<X \leq n)$;
(iii) Find the conditional probabilities $P(X>1 \mid 1 \leq X<4)$ and $P(1<X<6 \mid X \geq$ $3)$.
(iv) Determine the distribution function of X.
8. Let X be a random variable with distribution function

$$
F(x)=\left\{\begin{array}{ll}
0, & \text { if } x<0 \\
\frac{x^{2}}{2}, & \text { if } 0 \leq x<1 \\
\frac{x}{2}, & \text { if } 1 \leq x<2 \\
1, & \text { if } x \geq 2
\end{array} .\right.
$$

(i) Show that X is a continuous r.v.;
(ii) Using the distribution function, evaluate $P(X=1) ; ~ P(X=2) ; P(1<X<$ 2); $P(1 \leq X<2) ; P(1<X \leq 2) ; P(1 \leq X \leq 2)$ and $P(X \geq 1)$;
(iii) Find the p.d.f. of X;
(iv) Find the lower quartile, the median and the upper quartile of F.
9. Let X be an absolutely continuous type random variable with p.d.f.

$$
f(x)=\left\{\begin{array}{cl}
k-|x|, & \text { if }|x|<\frac{1}{2} \\
0, & \text { otherwise }
\end{array}\right.
$$

where $k \in \mathbb{R}$.
(i) Find the value of constant k;
(ii) Using the p.d.f., evaluate $P(X<0), P(X \leq 0), P\left(0<X \leq \frac{1}{4}\right), P\left(0 \leq X<\frac{1}{4}\right)$ and $P\left(-\frac{1}{8} \leq X \leq \frac{1}{4}\right)$;
(iii) Find the conditional probabilities $P\left(\left.X>\frac{1}{4}| | X \right\rvert\,>\frac{2}{5}\right)$ and $P\left(\left.\frac{1}{8}<X<\frac{2}{5} \right\rvert\, \frac{1}{10}<\right.$ $X<\frac{1}{5}$);
(iv) Find the distribution function F of X;
(v) Find the lower quartile, the median and the upper quartile of F.

