MSO201a: Probability and Statistics 2019-20-II Semester Assignment No. 6 Instructor: Neeraj Misra

1. Let X_{1}, X_{2}, \ldots be a sequence of r.v.s, such that $X_{n}, n=1,2, \ldots$, has the d.f.: $F_{n}(x)=0$, if $x<-n,=\frac{x+n}{2 n}$, if $-n \leq x<n$, and $=1$, if $x \geq n$. Does $F_{n}(\cdot)$ converge to a d.f., as $n \rightarrow \infty$?
2. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. r.v.s and let $X_{1: n}=\min \left\{X_{1}, \ldots, X_{n}\right\}$ and $Y_{n}=n X_{1: n}, n=1,2, \ldots$. Find the limiting distributions of $X_{1: n}$ and $Y_{n}($ as $n \rightarrow \infty)$ when (a) $X_{1} \sim \mathrm{U}(0, \theta), \theta>0$; (b) $X_{1} \sim \operatorname{Exp}(\theta), \theta>0$.
3. Let X_{1}, X_{2}, \ldots be a sequence of independent r.v.s with $P\left(X_{n}=x\right)=\frac{1}{2}$, if $x=$ $-n^{\frac{1}{4}}, n^{\frac{1}{4}}$, and $=0$, otherwise. Show that $\bar{X}_{n} \xrightarrow{P} 0$, as $n \rightarrow \infty$.
4. (a) If $X_{n} \xrightarrow{P} a$ and $X_{n} \xrightarrow{P} b$, then show that $a=b$.
(b) Let a and $r>0$ be real numbers. If $E\left(\left|X_{n}-a\right|^{r}\right) \rightarrow 0$, as $n \rightarrow \infty$, then show that $X_{n} \xrightarrow{P} a$.
5. (a) For $r>0$ and $t>0$, show that $E\left(\frac{|X|^{r}}{1+|X|^{r}}\right)-\frac{t^{r}}{1+t^{r}} \leq P(|X| \geq t) \leq \frac{1+t^{r}}{t^{r}} E\left(\frac{|X|^{r}}{1+|X|^{r}}\right)$.
(b) Show that $X_{n} \xrightarrow{P} 0 \Leftrightarrow E\left(\frac{\left|X_{n}\right|^{r}}{1+\left|X_{n}\right|^{r}}\right) \rightarrow 0$, for some $r>0$.
6. (a) If $\left\{X_{n}\right\}_{n \geq 1}$ are identically distributed and $a_{n} \rightarrow 0$, then show that $a_{n} X_{n} \xrightarrow{P} 0$.
(b) If $Y_{n} \leq X_{n} \leq Z_{n}, n=1,2, \ldots, Y_{n} \xrightarrow{P} a$ and $Z_{n} \xrightarrow{P} a$, then show that $X_{n} \xrightarrow{P} a$.
(c) If $X_{n} \xrightarrow{P} c$ and $a_{n} \rightarrow a$, then show that, as $n \rightarrow \infty, X_{n}+a_{n} \xrightarrow{P} c+a$ and $a_{n} X_{n} \xrightarrow{P} a c$.
(d) Let $X_{n}=\min \left(\left|Y_{n}\right|, a\right), n=1,2, \ldots$, where a is a positive constant. Show that $X_{n} \xrightarrow{P} 0 \Leftrightarrow Y_{n} \xrightarrow{P} 0$.
7. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. r.v.s with mean μ and finite variance. Show that:
(a) $\frac{2}{n(n+1)} \sum_{i=1}^{n} i X_{i} \xrightarrow{P} \mu$;
(b) $\frac{6}{n(n+1)(2 n+1)} \sum_{i=1}^{n} i^{2} X_{i} \xrightarrow{P} \mu$.
8. Let $X_{n}, n=1,2, \ldots$, have a negative binomial distribution with parameters n and $p_{n}=1-\frac{\theta}{n}$, i.e., X_{n} has the p.m.f. $P\left(X_{n}=x\right)=\binom{n+x-1}{x} p_{n}^{n}\left(1-p_{n}\right)^{x}, x=0,1,2, \ldots$; $n=1,2, \ldots$. Show that $X_{n} \xrightarrow{d} X \sim \operatorname{Poisson}(\theta)$.
9. (a) Let $X_{n} \sim \operatorname{Gamma}\left(\frac{1}{n}, n\right), n=1,2, \ldots$ Show that $X_{n} \xrightarrow{P} 1$.
(b) Let $X_{n} \sim N\left(\frac{1}{n}, 1-\frac{1}{n}\right), n=1,2, \ldots$ Show that $X_{n} \xrightarrow{d} Z \sim N(0,1)$.
10. (a) Let $f(x)=\frac{1}{x^{2}}$, if $1 \leq x<\infty$, and $=0$, elsewhere, be the p.d.f. of a r.v. X. Consider the random sample of size 72 from the distribution having p.d.f. $f(\cdot)$. Compute, approximately, the possibility that more than 50 of the items of the random sample are less than 3 .
(b) Let X_{1}, X_{2}, \ldots be a random sample from Poisson(3) distribution and let $Y=$ $\sum_{i=1}^{100} X_{i}$. Find, approximately, $P(100 \leq Y \leq 200)$.
(c) Let $X \sim \operatorname{Bin}(25,0.6)$. Find, approximately, $P(10 \leq X \leq 16)$. What is the exact value of this probability?
11. (a) Show that $\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\frac{1}{2}$.
(b) Show that $\lim _{n \rightarrow \infty} 2^{-n} \sum_{k=0}^{r_{n}}\binom{n}{k}=\frac{1}{2}$, where r_{n} is the largest integer $\leq \frac{n}{2}$.
12. (a) If $T_{n}=\max \left(\left|X_{1}\right|, \ldots,\left|X_{n}\right|\right) \xrightarrow{P} 0$, as $n \rightarrow \infty$, then show that $\bar{X}_{n} \xrightarrow{P} 0$. Is the conclusion true if only $S_{n}=\max \left(X_{1}, \ldots, X_{n}\right) \xrightarrow{P} 0$.
(b) If $\left\{X_{n}\right\}_{n \geq 1}$ are i.i.d. $U(0,1)$ r.v.s. and $Z_{n}=\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}}, n=1,2, \ldots$. Find a real α such that $Z_{n} \xrightarrow{P} \alpha$.
13. Let $\left\{E_{n}\right\}_{n \geq 1}$ be a sequence of i.i.d. $\operatorname{Exp}(1)$ r.v.s.
(a) Show that $T_{n} \equiv \sum_{i=1}^{n} E_{i} \sim \operatorname{Gamma}(n, 1), n=1,2, \ldots$..
(b) For any real number x, show that $\lim _{n \rightarrow \infty} \int_{0}^{n+x \sqrt{n}} \frac{e^{-t} t^{n-1}}{\Gamma(n)} d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t$.
(c) For large values of n, show that an approximation (called the Stirling approximation) to the gamma function is: $\Gamma n \approx \sqrt{2 \pi} e^{-n} n^{n-\frac{1}{2}}$.
14. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. r.v.s having the common Cauchy p.d.f. $f(x)=$ $\frac{1}{\pi} \cdot \frac{1}{1+x^{2}},-\infty<x<\infty$.
(a) For any $\alpha \in(0,1)$, show that $Y=\alpha X_{1}+(1-\alpha) X_{2}$ again has a Cauchy p.d.f. $f(\cdot)$.
(b) Note that $\bar{X}_{n+1}=\frac{n}{n+1} \bar{X}_{n}+\frac{1}{n+1} X_{n+1}$ and hence, using induction, conclude that \bar{X}_{n} has the same distribution as X_{1}.
(c) Show that \bar{X}_{n} does not converge in probability to any constant. (Note that $E\left(X_{1}\right)$ does not exist and hence the WLLN is not guaranteed).
15. Let $X_{n} \sim \operatorname{Poisson}(4 n), n=1,2, \ldots$, and let $Y_{n}=\frac{X_{n}}{n}, n=1,2, \ldots$.
(a) Show that $Y_{n} \xrightarrow{P} 4$;
(b) Show that $Y_{n}^{2}+\sqrt{Y_{n}} \xrightarrow{P} 18$;
(c) Show that $\frac{n^{2} Y_{n}^{2}+n Y_{n}}{n Y_{n}+n^{2}} \xrightarrow{P} 16$.
16. Let \bar{X}_{n} be the sample mean computed from a random sample of size n from a distribution with mean $\mu(-\infty<\mu<\infty)$ and variance $\sigma^{2}(0<\sigma<\infty)$. Let $Z_{n}=\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma}$.
(a) If $Y_{n} \xrightarrow{P} 4$, show that: $\frac{4 Z_{n}}{Y_{n}} \xrightarrow{d} Z \sim N(0,1) ; \frac{16 Z_{n}^{2}}{Y_{n}^{2}} \xrightarrow{d} U \sim \chi_{1}^{2}$; and $\frac{\left(4 n+Y_{n}\right) Z_{n}}{\left(n Y_{n}+Y_{n}^{2}\right)} \xrightarrow{d}$
$Z \sim N(0,1)$.
(b) If $\sigma=1$ and $\mu>0$, show that: $\sqrt{n}\left(\ln \bar{X}_{n}-\ln \mu\right) \xrightarrow{d} V \sim N\left(0, \frac{1}{\mu^{2}}\right)$;
(c) Show that $\frac{n^{\delta}\left(\bar{X}_{n}-\mu\right)}{\sigma} \xrightarrow{P} 0$, for any $\delta<0.5$.
(d) Find the asymptotic distributions of: (i) $\sqrt{n}\left(\bar{X}_{n}^{2}-\mu^{2}\right)$; (ii) $n\left(\bar{X}_{n}-\mu\right)^{2}$ and (iii) $\sqrt{n}\left(\bar{X}_{n}-\mu\right)^{2}$.
17. Let X_{1}, X_{2}, \ldots be i.i.d. r.v.s having $\operatorname{Exp}(\theta)(\theta>0)$ distribution and let $\bar{X}_{n}=$ $\frac{\sum_{i=1}^{n} X_{i}}{n}, n=1,2, \ldots$ Show that: $\sqrt{n}\left(\frac{1}{\bar{X}_{n}}-\frac{1}{\theta}\right) \xrightarrow{d} N\left(0, \frac{1}{\theta^{2}}\right)$, as $n \rightarrow \infty$.
18. Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. $U(0,1)$ r.v.s. For the sequence of geometric means $G_{n}=\left(\prod_{i=1}^{n} X_{i}\right)^{\frac{1}{n}}, n=1,2, \ldots$, show that $\sqrt{n}\left(G_{n}-\frac{1}{e}\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$, for some $\sigma^{2}>0$. Find σ^{2}.
19. Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ be a sequence of independent bivariate random vectors having the same joint p.d.f. Let $E\left(X_{1}\right)=\mu, E\left(Y_{1}\right)=\nu, \operatorname{Var}\left(X_{1}\right)=\sigma^{2}, \operatorname{Var}\left(Y_{1}\right)=$ τ^{2} and $\operatorname{Corr}\left(X_{1}, Y_{1}\right)=\rho$. Let $Q_{n}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)}{n-1}, S_{n}^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}}{n-1}, T_{n}^{2}=$ $\frac{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}{n-1}$ and $R_{n}=\frac{Q_{n}}{S_{n} T_{n}}$.
(a) Show that $Q_{n} \xrightarrow{P} \rho \tau \sigma$ and $R_{n} \xrightarrow{P} \rho$.
(b) Let $\delta=\frac{E\left(\left(X_{1}-\mu\right)^{2}\left(Y_{1}-\nu\right)^{2}\right)}{\sigma^{2} \tau^{2}}$. Show that $\sqrt{n}\left(Q_{n}-\rho \sigma \tau\right) \xrightarrow{d} N\left(0,\left(\delta-\rho^{2}\right) \sigma^{2} \tau^{2}\right)$.
