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Module 7 

Limiting Distributions 

Let � = ���, … , ��� be a random vector having a probability density function/probability mass 

function (p.d.f./p.m.f.) 	
�∙� and let ℎ:ℝ� → ℝ be a Borel function. Suppose that the 

distribution of random variable �� = ℎ��� is desired. Very often it is not possible to derive the 

expression for distribution (i.e., p.d.f. or p.m.f.) of �� = ℎ���. To make this point clear let ��, … , �� be a random sample from  Be��, �� distribution, where �	and	� are positive real 

constants, and suppose that the distribution (i.e., the distribution function or a p.d.f.) of the 

sample mean ��� = �� ∑ ������  is desired. The form of the p.d.f. (or distribution function) of ��� is 

so complicated (it involves multiple integrals which cannot be expressed in a closed form) that 

hardly anybody would be interested in using it. Therefore, it will be helpful if we can 

approximate the distribution of ��� by a distribution which is mathematically tractable. In this 

module we will develop a theory which will help us in approximating distributions of a 

sequence ��� �!� of random variables for large values of " (say, as " → ∞). Such 

approximations are quite useful in statistical inference problems. 

1. Convergence in Distribution and Probability  

Let ��� �!� be a sequence of random variables with corresponding sequence of distribution 

functions (d.f.s) as �$� �!�. Suppose that an approximation to the distribution of  �� (i.e., of $�) 

is desired, for large values of " (say, as " → ∞). It may be tempting to approximate $��∙� by $�%� = lim�→) $��%� , % ∈ ℝ. However, as the following examples illustrate, �%� =lim�→) $��%� , % ∈ ℝ , may not be a d.f.. 

Examples 1.1 

(i) Let ��� �!� be sequence of random variables with +���� = " � = 1, " = 1, 2, …. Then 

the d.f. of �� is given by  $��%� = .0, if	% < "1, if	% ≥ " , " = 1, 2, …. 
We have $�%� ≝ lim�→) $��%� = 0, ∀	% ∈ ℝ. Clearly $ is not a d.f.. 

(ii) Let ��~	7�−", "�, " = 1, 2, …. Then the d.f. of �� is 

 

$��%� = 90,																		if	% < −"% + "2" , if − " ≤ % < ", " = 1, 2, … .1,																		if	% ≥ "  
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Clearly  $�%� ≝ lim�→) $��%� = �< , ∀	% ∈ ℝ and $�⋅� is not a d.f..  ▄ 

The above examples illustrate that a sequence �$� �!� of d.f.s on ℝ may converge, at all points, 

but the limiting function $�%� = lim�→) $��%� , % ∈ ℝ, may not be a d.f.. 

The following example illustrates that if a sequence �$� �!� of d.f.s converges at every point 

then it may be too restrictive to require that �$� �!� converges to a d.f. $ at all points (i.e., to 

require that lim�→) $��%� = $�%�, ∀% ∈ ℝ, for some d.f. $). 

Example 1.2  

Let ��� �!� be a sequence of random variables with + >?�� = ��@A = 1, " = 1, 2, …. Then the 

d.f. of �� is 

$��%� = 90, if	% < 1"1, if	% ≥ 1" , " = 1, 2, …. 
Clearly,   

$�%� ≝ 	 lim�→)$��%� = .0, if	% ≤ 01, if	% > 0, 
is not a d.f. (it is not right continuous at % = 0). However, $ can be converted into a distribution 

function  

$∗�%� = .0, if	% < 01, if	% ≥ 0	, 
by changing its value at the point 0 (the point of discontinuity of $). Since + >?�� = ��@A =1, " = 1, 2, … , and	 lim�→) �� = 0, a natural approximation of $� seems to be the distribution 

function of a random variable � that is degenerate at 0	�i. e. , +��� = 0 � = 1�. Note that $∗ is 

the d.f. of random variables � that is degenerate at 0. The above discussion suggests that it is 

too restrictive to require 

lim�→) $� �%� = $∗�%�, ∀	% ∈ ℝ, 
and that exceptions should be permitted at the points of discontinuities of $∗. ▄ 

Definition 1.1  

Let ��� �!�  be a sequence of random variables and let $� be the d.f. of ��, " = 1, 2, …. 
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(i) Let � be a random variables with d.f. $. The sequence ��� �!� is said to converge in 

distribution to �, as " → ∞ (written as �� D→ 	�, as	" → ∞) if lim�→) $��%� =$�%�, ∀	% ∈ 	FG, where FG is the set of continuity points of $. The d.f. 	$ (or the 

corresponding p.d.f/p.m.f.) is called the limiting distribution of �� , as " → ∞. 

(ii) Let H ∈ ℝ. The sequence ��� �!� is said to converge in probability to H, as " → ∞ 

(written as �� I→ H, as " → ∞) if �� D→ � , as " → ∞, where � is a random variable that 

is degenerate at H. ▄ 

 

Remark 1.1 

(i) Suppose that �� D→ �, as	" → ∞. Since the set JG = FGK = 	ℝ − FG of discontinuity 

points of limiting d.f. $ is at most countable we have lim�→) $��%� = $�%� everywhere 

except, possibly, at a countable number of points. 

(ii) Note that the distribution function of a random variable degenerate at point H ∈ ℝ is 

given by  

 $�%� = .0, if	% < H1, if	% ≥ H ∙ 
Thus we have  

�� I→ H, as	" → ∞ ⇔	 lim�→)$� �%� = .0, if	% < H1, if	% ≥ H ∙ 
(iii) Suppose that �� D→ �, as	" → ∞. If the random variable � is of continuous type  �i. e., FG = ℝ� then lim�→) $� �%� = $�%�, ∀	% ∈ ℝ.  
(iv) Note that, for a real constant H, 	�� I→ H if, and only if,  �� − H I→ 0, as " → ∞.  ▄ 

Example 1.3  

Let ��� �!� be a sequence of random variables such that +���� = 0 � = �� = 1 − + >?�� =��@A , " = 1, 2, …. Show that �� I→ 0, as	" → ∞. 

Solution. Let $ be the d.f. of a random variable degenerate at 0, i.e.,  

$�%� = .0, if		% < 01, if		% ≥ 0 ∙ 
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Since $ is continuous everywhere except at point  0	�i, e. , FG = ℝ − �0 �, we need to show that lim�→) $��%� = $�%�, ∀	% ∈ ℝ − �0 , where $��⋅� is the d.f. of ��, " = 1, 2, …. 
We have  

$��%� =
MNO
NP0,							if	% < 01" ,						if	0 ≤ % < 1" , " = 1, 2, …
1,							if	% ≥ 1"

 

																																																						�→)QRRS .0, if	% ≤ 01, if	% > 0 ∙ 
Clearly lim�→) $��%� = $�%�, ∀	% ∈ ℝ − �0 . ▄ 

Example 1.4 

 Let ��, �<, … be a sequence of independent and identically distributed (i.i.d.) 7�0, T� random 

variables, where T > 0. Let ��:� = max���, … , ��  and let V� = "�T − ��:��, " = 1, 2, …. 

(i) Show that  ��:� I→T, as		" → ∞;	 
(ii) Find the limiting distribution of �V� �!�. 
Solution. 

(i) Let  X� be the d.f. of ��:�, " = 1, 2, …,  and let 

X�%� = .0, if	% < T1, if	% ≥ T 

be the d.f. of random variable degenerate at T. We need to show that lim�→) X��%� =X�%�,			∀	% ∈ ℝ − �T . 
We have, for % ∈ ℝ, 

																																				X��%� = +����:� ≤ % � 

																																																	= +��max���, … , �� ≤ % � 

                                                = +���� ≤ %, Y = 1,… , " � 

																																																	= Z+�
��� ���� ≤ % �																			�since	��s	are	independent� 

																																																	= _$�%�`�, " = 1,2, …,			�since	��s	are	identically	distributed�, 
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where  

$�%� = 90,										if	% < 0%T , if	0 ≤ % < T1,										if	% ≥ T  

is the common distribution function of ��, �<, …. 

Thus  

X��%� = 90,										if	% < 0>%TA� ,			if	0 ≤ % < T1,										if	% ≥ T  

																																																																			�→)QRRS		 .0, if	% < T1, if	% ≥ T 

																																																																						= X�%�, ∀	% ∈ ℝ. 
(ii) For d ∈ ℝ, we have 

                                          	$ef�d� = +��V� ≤ d � = + >?��:� ≥ T − d"@A 

			= 1 − X� g>T − d"A −h 

                                                         = 1 − X� >T − i�A								�since	X�	is	continuous	� 

                                                        = 90,																													if	d ≤ 01 − >1 − i�kA� , if	0 < d ≤ "T,			" = 1, 2, …1,																											if	d > "T . 
 

																																																			�→)QRRS		l0,																						if	d ≤ 01 − mnik , if	d > 0  

 																																																										= o�d�,			say. 
Note that o�∙� is the d.f. of Exp�T� random variable. Thus V� D→ V~Exp�T� , as	" → ∞. ▄ 

In the above example we saw that ��:� I→ T, as	" → ∞, and "�T − ��:�� D→ V~Exp�T� , as	" →∞, i.e., the limiting distribution of  ��:� is degenerate �at	T� and, to get a non-degenerate 

limiting distribution, we needed normalized version V� = "�T − ��:��	of	��:�, " = 1, 2, …. This 
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phenomenon is observed quite commonly. Generally, we will have a sequence ��� �!� of 

random variables, such that �� I→ H, as	" → ∞ for some real constant H (i.e., the limiting 

distribution of �� is degenerate at H). In order to get a non-degenerate limiting distribution a 

normalized version q� = "r��� − H�	�or	q� = "r�H − ����, s > 0, of	��, " = 1, 2, … is 

considered. Typically there is a choice of  s > 0 such that the limiting distribution of q� is non-

degenerate. 

Theorem 1.1 

 Let ��� �!� be a sequence of random variables such that �� D→ �, as	" → ∞, for some random 

variable �. Let $�	and	$ denote the d.f.s of ��	�" = 1, 2, … � and �, respectively. Then  

lim�→) $� �% −� = $�% −� = $�%� = lim�→)$� �%�, ∀	% ∈ FG, 
where FG  is the set of continuity points of $. 

Proof. We are given that 

lim�→)$� �%� = $�%�, ∀	% ∈ FG 										>since	�� D→ �, as	" → ∞A. 
Moreover $�% −� = $�%�, ∀	% ∈ FG. Thus it suffices to show that lim�→) $� �% −� =$�% −�, ∀	% ∈ FG. Let t ∈ FG so that $�t −� = $�t�. Fix u ∈ ℕ = �1, 2, …  .  Since the set FGK = ℝ − FG of discontinuity points of $ is countable and the interval >t − �w , tA is 

uncountable there exists a tw ∈ >t − �w , tA⋂	FG. Then we have lim�→) $� �tw� = $�tw� and lim�→) $� �t� = $�t�. Moreover 

																																																$��tw� ≤ $��t −� ≤ $��t�, " = 1, 2, … 

																																	⇒ lim�→) $� �tw� ≤ lim�→)$� �t −� ≤ lim�→) $� �t� 

																														⇒ $�tw� ≤ lim�→) $� �t −� ≤ $�t� = $�t −�.																																																�1.1� 

Since tw ∈ >t − �w , tA,  we have 

																																											 lim	w→)$�tw� = $�t −� = $�t�.																																																															�1.2�		 
On taking u → ∞ in (1.1) we get  

																																								 limw→) $�tw� ≤ limw→) $��t −� ≤ $�t −� 
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               																												⇒ $�t −� ≤ lim�→) $� �t −� ≤ $�t −�																													�using	�1.2�� 

                    									⇒ lim�→) $� �t −� = $�t −� ∙ ▄																																																	 
Corollary 1.1  

Let ��� �!� be a sequence of random variables with corresponding sequence of d.f.s  as �$� �!�. Further let � be another random variable having the d.f. $. 

(i) If �� D→ �, as	" → ∞, and � is of continuous type then lim�→) $��%� = $�%�, ∀	% ∈ ℝ 

and lim�→) $� �% −� = $�% −�, ∀	% ∈ ℝ. 
(ii) Suppose that +�{�� ∈ �0, 1, 2, …  |� = +�{� ∈ �0, 1, 2, …  |� = 1 and �� D→ �, as	" →∞. Then lim�→) $� �%� = $�%�, ∀	% ∈ ℝ  and  lim�→) $� �% −� = $�% −�, ∀	% ∈ ℝ. 

(iii) Under the assumptions of (ii), let of 	 and 	� be the p.m.f.s of � and ��, respectively, " = 1, 2, …. Then �� D→	 �, as	" → ∞ ⇔ lim�→) 	��%� = 	�%�, ∀	% ∈ �0, 1, 2, …  . 
Proof.  

(i) Since �	is of continuous type we have FG = ℝ, where FG is the set of continuity points 

of $. The assertion now follows from Theorem 1.1 

 

(ii) Fix % ∈ ℝ. If +��� = % � = 0 then % ∈ FG  and, therefore, by Theorem 1.1  

 lim�→)$��%� = $�%�, and					 lim�→)$��% −� = $�% −�. 
Now suppose that +��� = % � > 0. Then % ∈ �0, 1, 2, …   and +��� = % + 0.5 � =+��� = % − 0.5 � = 0. Consequently % ± 0.5 ∈ FG, 

$��%� = $��% + 0.5�				and				$��% −� = $��% − 0.5�, " = 1,2, …     

													⇒ lim�→)$��%� = $�% + 0.5� = $�%�			and		 lim�→)$��% −� = $�% − 0.5� = $�% −�. 
It follows that 

lim�→)$��%� = $�%�	and	 lim�→) $��% −� = $�% −�, ∀% ∈ ℝ. 
(iii) First suppose that �� D→ �, as	" → ∞.  Then, for % ∈ �0, 1, 2, …  , 
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																																														 lim�→) 	��%� = lim�→)+���� = % � 

																																																																			= lim�→)_$��%� − $��% −�` 
                                                                 = $�%� − $�% −�        (using (ii)) 

                                                                 = +��� = % � 

                                                                 = 	�%�. 
Conversely suppose that lim�→)		��%� = 	�%�, ∀	% ∈ �0, 1, 2, …  . Then, for % ∈ ℝ, 

																																																		$��%� = +���� ≤ % � 

																																																														= � +���� = � �_�`
���  

																																																														= � 	����_�`
���  

																																																								�→)QRRS	� 	���_�`
���  

																																																												= $�%�, 
where _%` denotes the largest integer not exceeding %. It follows that �� D→ 	�, as	" →∞. ▄ 

For the random variables of absolutely continuous type we state the following theorem without 

providing its proof. 

Theorem 1.2  

Let ��� �!� be a sequence of random variables of absolutely continuous type with 

corresponding sequence of p.d.f.s as �	� �!�. Further let � be another random variable of 

absolutely continuous type with p.d.f. 	. Suppose that lim�→) 	��%� =	�%�, ∀	% ∈ ℝ. Then �� D→ 	�, as	" → ∞. ▄ 

The following example demonstrates that if �� D→ 	�, as	" → ∞, then lim�→) $��% −� =$�% −� 

may not hold; here $� and $ are d.f.s of �� (" = 1, 2, …) and �, respectively. 
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Example 1.5  

Let ��	~	� >0, ��A , " = 1,2, …, and let �	be a random variable degenerate at 0		�i. e.,+��� = 0 � = 1�. Then, for % ∈ ℝ, 
																																													$�%� = +��� ≤ % � = .0, if	% < 01, if	% ≥ 0 

																																											$��%� = +���� ≤ % � 

																																																						= Φ�√"%� 

																																																					�→)QRRS	90, if	% < 012 , if	% = 01, if	% > 0. 
Clearly lim�→) $� �%� = $�%�, ∀	% ∈ 	FG = ℝ − �0  and, therefore, �� D→ 	� >equivalenty	��I→ 	0A, as	" → ∞. However  

lim�→) $� �0 −� = lim�→) $� �0� = �< ≠ $�0 −� = 0.	▄ 

The following example illustrates that, in general, the limiting distribution cannot be obtained 

by taking the limit of p.m.f.s/p.d.f.s. 

Example 1.6  

Let ��� �!� be a sequence of random variables such that 

+ �.�� = 12"�� = + �.�� = 1"�� = 12 , " = 1,2, …, 
and let � be another random variable with +��� = 0 � = 1. Then it is easy to verify that �� D→ 	�, as		" → ∞. The p.m.f. of �� is 

	��%� = �12 , if	% ∈ . 12" , 1"�0,										otherwise , 
and the p.m.f. of � is 

	�%� = .1, if	% = 00, otherwise ∙ 
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We have 

lim�→) 	��%� = 0 ≠ 	�%�, ∀	% ∈ ℝ.		▄ 

The following theorem provides a characterization of converge in probability. 

Theorem 1.3 

 Let ��� �!� be a sequence of random variables and let H be a real constant. Then  

�� I→ H, as	" → ∞	 ⟺ ∀	� > 0, lim�→)+ ��|�� − H| ≥ � � = 0. 
Proof. Let $� denote the d.f. of �� (" = 1, 2, …) and let $ denote the d.f. of random variable 

degenerate at H. First suppose that �� I→ H, as	" → ∞. Then, for % ∈ ℝ − �H , 

                                           lim�→)$��%� = lim�→) + ���� ≤ % � 

					= .0,						if	% < H1,						if	% > H 		= 		$�%�.					 
 Fix � > 0. Then H ± � ∈ FG  and therefore, using Theorem 1.1, 

lim�→)+��|�� − H| ≥ � � = lim�→)_+���� ≤ H − � � + +���� ≥ H + � �` 
                                                          						= lim�→)�$��H − �� + 1 − $���H + �� −��																�1.3� 

                                      																													= _$�H − �� + 1 − $�H + ��` 
                                      																													= 0. 
Conversely, suppose that 	 lim�→)+��|�� − H| ≥ � � = 0, ∀	� > 0. 
Then, using (1.3), 

															 lim�→)�$��H − �� + 1 − $���H + �� −�� = 0, ∀	� > 0, 
⇒ lim�→)$� �H − �� = lim�→)�1 − $���H + �� −�� = 0, ∀	� > 0 

                                                                 �since	$��H − �� ≥ 0	and	1 − $���H + �� −� ≥ 0, ∀	" ≥ 1� 

⇒ lim�→)$��%� = 0, ∀	% < H	and	 lim�→)$� �d −� = 1, ∀	d > H 

⇒ lim�→)$��%� = 0, ∀	% < H	and	 lim�→)$� �d� = 1, ∀	d > H 																														�since	1 ≥ $��d� ≥ $��d −�, " = 1,2, … �. 
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Thus, for all % ∈ ℝ − �H , 

lim�→) $��%� = .0, if	% < H1, if	% > H = $�%� 

																																																													⇒ 		�� I→ H, as	" → ∞.▄	 
In many situations the above theorem in conjunction with Markov’s inequality (see Corollary 

5.1, Module 3) turns out to be quite useful in proving convergence in probability. 

Theorem 1.4 

 Let ��� �!� be a sequence of random variables with ����� = 	�� ∈ �−∞,∞�, and Var���� =��< ∈ �0,∞�, " = 1, 2, …. Suppose that lim�→) �� = �	 ∈ ℝ	and	 lim�→) ��< = 0. Then �� I→ �, as	" → ∞. 

Proof.  Fix � > 0. Using the Markov inequality we have  

								0 ≤ +��|�� − �| ≥ � � ≤ ��|�� − �|<��< =	����� − 	��<��< . 
Also,  

															����� − ��<� = ����� − �� + �� − ��<� 

																																										= ����� − ���<� + ��� − ��< 

																																										= ��< + ��� − ��< ∙ 
Therefore,  

																		0 ≤ +��|�� − �| ≥ � � ≤ ��< + ��� − ��<�<  

																																																												�→)QRRS 0. 

													⇒ lim�→)+ ��|�� − �| ≥ � � = 0, ∀	� > 0. 
                                                 ⇒ �� I→ �, as	" → ∞                         (using Theorem 1.3). ▄ 

Example 1.7 

 Let ��, �<, … be a sequence of i.i.d. 7�0, T� random variables, where T > 0. Let ��:� =max���, �<, … , �� , " = 1, 2, …. For any real constant �, show that  ��:�� I→ T�, as	" → ∞. 
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Solution.   It is easy to verify that a p.d.f. of ��:� is 

	��%� = �"%�n�T� , if	0 < % < T0,																			otherwise	 . 
Then  

����:�� � = "" + � T�,							" > −� 

				→ T�, as	" → ∞ ∙ 
Also, 

																															Var���:�� � = 	����:�<� � − �����:�� ��<
 

																																																			= 	 "" + 2�	T<� −	> "" + �	T�A< ,							" > max�−�,−2�� 

																																																			→ 0, as		" → ∞. 
Now, using Theorem 1.4, it follows that ��:�� I→T�, as	" → ∞. ▄ 

Example 1.8  

Let ��	~	Bin	�", T�, " = 1, 2, … , T ∈ �0,1�.  If V� = �f� , " = 1, 2, …, show that V� I→ T, as	" → ∞. 

Solution. We have  

��V�� = � ���" � = T, " = 1, 2, …, 
and 

Var�V�� = Var ���" � = Var����"< = T�1 − T�" → 0, as	" → ∞ ∙ 
Using Theorem 1.4 it follows that V� I→ T, as	" → ∞. ▄ 

Remark 1.2 

Theorem 1.3 provides an interpretation of the concept of convergence in probability. Theorem 

1.3 suggests that if �� I→ 	H, as	" → ∞, then �� is stochastically (in probability) very close to H 

for large values of ". Such an interpretation does not hold for the concept of convergence in 



13 

 

distribution. Specifically, if �� D→ 	�, as	" → ∞, (where � is some non-degenerate random 

variable) then it cannot be inferred that �� is getting close to �, for large values of ", in any 

sense. All we know in that case is that, for large values of ", the distribution of �� is getting 

close to that of �. ▄ 

The following example demonstrates that convergence in probability may not imply 

convergence of moments. 

Example 1.9 

Let ��� �!� be a sequence of random variables with 

1 − +���� = 0 � = +���� = " � = 1" , " = 1,2, …. 
Then the d.f. of �� is 

$��%� = 90,											if	% < 01 − 1" ,			if	0 ≤ % < ", " = 1, 2, … .1,											if	% ≥ "  

																																																							�→)QRRS		 .0, if	% < 01, if	% ≥ 0. 
Thus �� I→ 0, as	" → ∞. However, for s ∈ �1, 2, …    

����r� = ��|��|r� = "rn1 ↛ 0, as	" → ∞. ▄ 

The following example illustrates that convergence in distribution to a non-degenerate random 

variable also does not imply convergence of moments. 

Example 1.10    

Let ��� �!� be a sequence of random variables with p.m.f.s 

	��%� =
MNO
NP12 − 12" , if	% ∈ .0, 12�1" ,																			if	% = ",			" = 1, 2, …0,																				otherwise

 

 

and let  � be a random variable with p.m.f. 
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	�%� = �12 , if	% ∈ .0, 12�0, otherwise . 
Then the distribution function of � is 

$�%� =
MNO
NP0, if	% < 012 , if	0	 ≤ % < 121, if	% ≥ 12

	, 
and the distribution function of �� is 

$��%� =
MNO
NP0,																					if	% < 012 − 12" , if	0 ≤ % < 121 − 1" ,										if	 12 ≤ % < "1,																			if	% ≥ "

, " = 1, 2, … 

																																														�→)QRRS				
MNO
NP0,			if	% < 012 ,			if	0 ≤ % < 121,			if	% ≥ 12

. 
It follows that �� D→ �, as	" → ∞. Moreover ���� = �� and 

����� = 12  12 − 12"¡ + 1	 �→)QRRS	 54 ≠ ����.▄ 

We know that, for a real constant H, �� I→ H, as	" → ∞ ⇔ �� − H I→ 0, as	" → ∞. The following 

example illustrates that �� D→ �, as	" → ∞ may not imply that �� − � I→ 0, as	" → ∞ or, 

equivalently, �� D→ �, as	" → ∞, does not imply that �� − � will converge in distribution to a 

random variable degenerate at 0 (also see Remark 1.2). 

Example 1.11  

Let ��� �!� and � be as defined in Example 1.10. Further suppose that, for each " ∈�1, 2, …  , 	�� and � are independent. Then �� D→ �, as	" → ∞. However, for 0 < � < �< 

+��|�� − �| ≥ � � = 12  +��|��| ≥ � � + + �.£�� − 12£ ≥ ���¡ 
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																								= 	 12  �12 − 12"� + 1" + �12 − 12"� + 1"¡ 
																																																															�→)QRRS			12, 
implying that �� − � does not converge in distribution to a random variable degenerate at 0. ▄ 

Definition 1.2 

 A sequence ��� �!� of random variables is said to be bounded in probability if there exists a 

positive real constant ¤ (not depending on ") such that  

+ ¥¦�|��| ≤ ¤ )
��� § = 1.▄ 

The following theorem relates convergence in distribution of a sequence ��� �!� of random 

variables to the convergence of corresponding sequence of moment generating functions 

(m.g.f.s). We shall not provide the proof of the theorem as it is slightly involved.  

Theorem 1.5 

 Let ��� �!� be a sequence of random variables and let � be another random variable. Suppose 

that there exists an ℎ > 0 such that the m.g.f.s ¤�∙�, 	¤��∙�, ¤<�∙�, … of �, ��, �<, …, 

respectively, are finite on �−ℎ, ℎ�. 

(i) If lim�→) ¤� �¨� = ¤�¨�, ∀	¨ ∈ �−ℎ, ℎ�, then �� D→ 	�, as	" → ∞; 

(ii) If ��, �<, … are bounded in probability and �� D→ 	�, as	" → ∞, then lim�→) ¤� �¨� =¤�¨�, ∀	¨ ∈ �−ℎ, ℎ�. ▄ 

The following example demonstrates that the conclusion of Theorem 1.5 (ii) may not hold if ��, �<, …  are not bounded in probability. 

Example 1.12 

Let ��� �!� and � be as defined in Example 1.10. Then the m.g.f. of � is 

¤�¨� = 1 + m©<2 , ¨ ∈ ℝ, 
and the m.g.f. of �� is   
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¤��¨� = 	 �12 −	 12"� �1 + m©<� +	m�©"  

						�→)QRRS			�1 + m ©<2 , if	¨ ≤ 0∞,																			if	t > 0 

≠ ¤�¨�, ∀	¨ ∈ ℝ. 
However, 	�� D→ 	�, as " → ∞. ▄  

Proposition 1.1  

Let �H� �!� be a sequence of positive real numbers such that lim�→) H� = H ∈ ℝ. Then  

lim�→) >1 + H�" A� = mK . 
Proof.  We know that  

																																							% − %<2 ≤ ln�1 + %� ≤ %, ∀	% > 0 

                               ⇒ H� − Kfª<� ≤ " ln >1 + Kf� A ≤ H�, " = 1, 2, … 

																																⇒ lim�→) «" ln >1 + H�" A¬ = H	�on	taking	limits	on	both	sides�	 
																																⇒ lim�→)  ln >1 + H�" A�¡ = H 

																																⇒ lim�→) >1 + H�" A� = mK .▄ 

Example 1.13 (Poisson Approximation to Binomial distribution) 

Let ��	~	Bin	�", T��, " = 1, 2, …, where  T� ∈ �0, 1�, " = 1, 2, …, and lim�→)�"T�� = T > 0. 

Show that �� D→ 	�, as	" → ∞, where �	~	P�T�, the Poisson distribution with mean T. 

Solution. Note that the m.g.f. of � is  

¤�¨� = mk�¯°n��, ¨	 ∈ ℝ, 
and the m.g.f. of �� is  
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                                     ¤��¨� = �1 − T� + T�m©�� 

																																																			= g1 + H��¨�" h� , ¨	 ∈ ℝ, 
where H��¨� = "T��m© − 1�, ¨	 ∈ ℝ, " = 1, 2, …. Clearly lim�→)H��¨� = T�m© − 1�, ∀	¨	 ∈ ℝ. Now 

using Proposition 1.1 we get  

lim�→)¤��¨� = mk�¯°n�� = ¤�¨�, ∀	¨ ∈ ℝ. 
Using Theorem 1.5 (i) we conclude that �� D→ 	�	~	+�T�, as	" → ∞.		▄ 

2. The Weak Law of Large Numbers (WLLN) and the Central Limit Theorem (CLT) 

Let ��� �!� be a sequence of i.i.d. random variables and let ��� = �� ∑ ������ , " = 1,2, …, be the 

sequence of sample means. In this section we will study the convergence behavior of the 

sequence ���� �!� of sample means. 

Theorem 2.1 

Let ��� �!� be a sequence of i.i.d. random variables and let ��� = �� ∑ ������ , " = 1,2, ….  
(i) (WLLN) Suppose that ����� = � is finite. Then ��� I→ 	�, as	" → ∞.    
(ii) (CLT) suppose that 0 < Var���� = �< < ∞. Then  

q� ≝	√"	���� − ��� 	 D→ 	q	~	��0,1�, as	" → ∞. 
Proof. 

(i) As the proof for the case Var���� = ∞ is quite involved, we assume that Var���� =�< < ∞. Then  

������ = � ¥1"	���
�

��� § = 1"�������
��� 	= ����� = 	� 

and 

				Var����� = Var	 ¥1"	���
�

��� § = 1"< 	�Var	�����
��� = �<" 	�→)QRRS 0. 

Using Theorem 1.4 it follows that  �� I→ �, as	" → ∞. 
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(ii) For simplicity we will assume that the common m.g.f. ¤�∙� of ��, �<, … is finite in an 

interval �– �, �� for some � > 0. Then, by Theorem 3.4, Module 3, �r² = ����r� is finite 

for each s ∈ �1, 2,⋯   and �r² = ����r� = ¤�r��0� = « D´D©´ ¤�¨�¬©�� , s = 1, 2, …. Let V� = �µn¶· , Y = 1,… , ". Then V�, V<, … are i.i.d. random variables with mean 0 and variance 1. Let ¤e�∙� denote the common m.g.f. of V�, V<, …, so that 

													¤e�¨� = mn¶	©· 	¤ ��̈� , −�� < ¨ < ��, 
																																																				¤e����0� = −	�� + ¤����0�� = 0 = ��V�� 

																																									and			¤e�<��0� = >��A< ¤�0� − 2��< ¤����0� + 1�< ¤�<��0� = 1 = ��V�<�. 
Let ψ<: �−��, ��� → ℝ be such that  

															¤e�¨� = ¤e�0� + 	¨	¤e����0� + ¨<2 >¤e�<��0� + ¹<�¨�A , ¨ ∈ �−��, ���														�2.1� 

i. e., ψ<�t� = ¤e�¨� − ¤e�0� − ¨	¤e����0�¨< 2º − ¤e�<��0�, ¨ ∈ �−��, ���,			¨ ≠ 0. 
Using L’ Hospital rule �0/0	form� we get  

lim©→� ψ< �¨� 	= 	lim©→� ¤e����¨� − ¤e����0�¨ − ¤e�<��0� 

																																																																	= 	¤e�<��0� − ¤e�<��0� 

                                                               = 0.                                                                                             (2.2) 

The m.g.f. of q� = √�	���fn¶�· = �√� ∑ V�����  is                                                     

															¤��¨� = � gm ©√�	∑ eµfµ¼½ h 

																												= � ¥Zm©eµ√��
��� § 
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																												= Z� gm©eµ√�h�
��� 																																																																							�V�s	are	independent� 

																												=  ¤e �√̈"�¡� 																																																																																							�V�s	are	i. i. d. � 

																							= ¾¤e�0� + √̈"¤e����0� + ¨<2" ¥¤e�<��0� + ψ< �√̈"�§¿� 																		�using	�2.1�� 

= ¾1 + ¨<2" ¥1 + ψ< �√̈"�§¿� , ¨ ∈ �−√"��, √"���, " = 1, 2, …. 
Now using (2.2) and Proposition 1.1 we get  

lim�→)	¤��¨� = m©ª< = À�¨�,			say, ¨ ∈ ℝ. 
Note that À�¨�, ¨ ∈ ℝ, is the m.g.f. of q	~	��0,1�. Using Theorem 1.5 (i) we conclude that q� D→ q	~	��0,1�, as	" → ∞. ▄ 

Remark 2.1 

(i)  The WLLN implies that the sample mean, based on a random sample from any parent 

distribution, can be made arbitrary close to population mean in probability by choosing 

sufficiently large sample size. 

(ii) The CLT states that, irrespective of the nature of the parent distribution, the probability 

distribution of a normalized version of the sample mean, based on a random sample of 

large size, is approximately normal. For this reason the normal distribution is quite 

important in the field of Statistics. ▄ 

Example 2.1 (Random Walk)  

Consider a drunkard, who having missed his bus from the bus stand, starts walking towards his 

residence. Every second he either moves half a meter forward or half a meter backward from 

his current position, each with probability 1 2º . Assuming that steps are taken independently,  

find the (approximate) probability that after fifteen minutes the drunkard will be within 30 

meters form the bus stand. 

Solution. Note that in 15 minutes (= 	900 seconds) the drunkard will take 900 steps. Let V� be 

the size (in meters) of the i-th step, Y = 1, 2, … ,900. Then V�, V<, … are i.i.d.  random variables 

with  
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+ �.V� = −12�� = + �.V� = 12�� = 12, 
and V = ∑ V�Â�����  is the position of the drunkard after 15 minutes. The desired probability is  

+��|V| ≤ 30 � = + �.− 130 ≤ 	V�Â�� ≤ 130��, 
where V�Â�� = �Â�� 	∑ V�Â����� = eÂ��. Note that ��V�� = 0 and Var�V�� = ��V�<� = �� = �<, say. 

By the CLT 

qÂ�� = √900	�V�Â�� − 0�1 2º 	 ~ÃÄÄÅÆÇ.	��0,1�, 
																																								i. e. , 	qÂ�� = 60	V�Â��	 ~ÃÄÄÅÆÇ.��0,1�. 

The desired probability is 

																																+��|V| ≤ 30 � = +��−2 ≤ qÂ�� ≤ 2 � 

																																																								 =ÃÄÄÅÆÇ. Φ�2� − Φ�−2� 

																																																												= 2Φ�2� − 1 

																																																												= 2 × .9772 − 1 

																																																												= .9544.▄ 

  

Example 2.2 (Justification of Relative Frequency Method of Assigning 

Probabilities)  

Suppose that we have independent repetitions of a random experiment under identical 

conditions. Further suppose that we are interested in assigning probability, say +���, to an 

event �. To do this we repeat the random experiment a large (say �) number of times. 

Define  

V� = .1,												if	i − th	trial	reuslts	in	occurrence	of	�0,												otherwise	 ,					Y = 1,… ,�. 

Then V�, V<, … are i.i.d. random variables with common mean � = ��V�� = +���. Also  

	Ë��� = number of times event � occurs in first � trials 
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																																														= �V�
Ë

���  

and the relative frequency of event � in first � trials is 

																																	sË��� = 	Ë���� = 1��V� = V�ËË
��� ,			say ∙ 

The WLLN implies that 

																																		sË��� = VË I→ � = +���, as	� → ∞. 

Thus the WLLN justifies the relative frequency approach to assign probabilities. ▄ 

3. Some Preservation Results 

In this section we will investigate that under what algebraic operations convergence in 

probability and/or convergence in distribution is preserved. 

Theorem 3.1  

Let  ��� �!� and �V� �!� be sequences of random variables and let � be another random 

variable. 

(i) Let Ì:	ℝ → ℝ be continuous at H ∈ ℝ and let �� I→ H, as	" → ∞. Then Ì���� I→ Ì�H�,as	" → ∞. 

(ii) Let ℎ:	ℝ< → ℝ  be continuous at �H�, H<�, ∈ ℝ< and let �� I→ H�, 	V� I→ H<, as	" → ∞. 

Then ℎ���, V�� I→ ℎ�H�, H<�, as	" → ∞. 

(iii) Let Ì:ℝ → ℝ  be continuous on a support Í� of � and let �� D→ �, as	" → ∞. Then Ì���� D→ Ì���, as	" → ∞.  

 

(iv) Let ℎ:	ℝ< → ℝ be continuous at all points in J = ��%, ��: % ∈ Í� , where � is a fixed real 

constant and Í� is a support of �. if �� D→ �	and	V� I→ �, as	" → ∞, then  ℎ���, V��D→ ℎ��, ��, as	" → ∞.   

Proof. We shall not attempt to prove assertions (iii) and (iv) here as their proofs are slightly 

involved. 

(i) Fix � > 0. Since Ì:	ℝ → ℝ is continuous at H ∈ ℝ, there exists a Î ≡ Î��, H� such that 
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|% − H| < Î ⇒ |Ì�%� − Ì�H�| < � ∙ 
or equivalently            |Ì�%� − Ì�H�| ≥ � ⇒ |% − H| ≥ Î. 
Therefore,  

																														0 ≤ +��|Ì���� − Ì�H�| ≥ � � ≤ +��|�� − H| ≥ Î � �→)QRRS 0									�since	�� I→ H� 

																									⇒ 				 lim�→) +��|Ì���� − Ì�H�| ≥ � � = 0									 
                        ⇒ 		Ì���� 	 I→ 	Ì�H�, as	" → ∞. 
(ii) Fix � > 0. Since ℎ:ℝ< → ℝ is continuous at �H�, H<� ∈ ℝ<, there exists a Î = Î��, H�, H<� 

such that 

|% − H�| < Î	and	|d − H<| < Î	 ⇒ 	 |ℎ�%, d�| − ℎ�H�, H<�| < �, 

or equivalently  

																		|ℎ�%, d� − ℎ�H�, H<�| ≥ � ⇒ |% − H�| ≥ Î	or	|d − H<| ≥ Î. 
Therefore, 

+��|ℎ���, V�� − ℎ�H�, H<�| ≥ � � ≤ +��|�� − H�| ≥ Î ⋃�|V� − H<| ≥ Î � 

               																												≤ +��|�� − H�| ≥ Î + +�|V� − H<| ≥ Î �  (using Boole’s inequality) 

																																										�→)QRRS 0 + 0 = 0>since	�� I→ H�	and	V� I→ H<	A 

	⇒ 			 lim�→)+ ��|ℎ���, V�� − ℎ�H�, H<�| ≥ � � = 0 

⇒ 		ℎ���, V�� I→ ℎ�H�, H<�, as	" → ∞.▄ 

Throughout, we shall use the following convention. If, for a real constant H, we write �� D→ 	H, as	" → ∞, then it would mean that �� converges  in distribution, as	" → ∞, to a 

random variable degenerate at H	�i. e., �� I→ 	H, as	" → ∞�. Similarly, for a random variable �, 0 × 	� will be treated as a random variable degenerate at 0. 

Now we provide the following useful lemma whose proof, being straight forward, is left as an 

exercise. 

Lemma 3.1 



23 

 

(i) Let �	and	V be random variables and let H be a real constant. If +��V = H � = 1 then � + V =D 	� + H and �V =D H�,  where 0 × � is treated as a random variable degenerate 

at 0. 

(ii) Let ��� �!� and �V� �!� be sequences of real numbers such that �� =D V�, " = 1, 2, …. If, 

for some real constant H, �� I→ 	H, as	" → ∞, then V� I→ 	H, as	" → ∞.     

(iii) Let ��� �!� and �V� �!� be sequences of real numbers such that �� =D V�, " = 1, 2, …. If, 

for some random variable , �� D→ 	�, as	" → ∞, then V� D→ 	�, as	" → ∞.        

(iv) Let ��� �!� be sequence of real numbers such that	 lim�→)�� = � ∈ ℝ and let ��� �!� be 

a sequence of random variables such that �� is degenerate at  ��, " = 1, 2, …. Then �� I→ 	�, as	" → ∞. ▄       

Theorem 3.2 

Let ��� �!� and �V� �!� be sequences of random variables and let ��� �!� and ��� �!� be 

sequences of real numbers such that lim�→)�� = �	and	 lim�→)�� = �. 

(i) Suppose that, for some real constants H� and H<, �� I→H� and V� I→	H<, as	" → ∞. Then, as	" → ∞, �� + V� I→H� + H<, 		�� − V� I→H� − H< and ��V� I→H�	H<. Moreover, if H< ≠0, then 
�fef I→	 K½Kª,  as " → ∞. 

(ii) Suppose that, for a real constant H	and a random variable �, 	�� D→ 	� and V� I→ 	H, as	" → ∞. Then, as	" → ∞, �� + V� D→ 	� + H, �� − V� D→ 	� − H and ��V� D→H�. Moreover, if H ≠ 0, then 
�fef D→	�K , as	" → ∞. 

(iii) Suppose that, for a real constant H, �� I→ 	H, as	" → ∞. Then ���� +	�� I→ 	�H +�, as	" → ∞. 

(iv) Suppose that, for a random variable �, �� D→�, as	" → ∞. Then ���� + �� D→�� +�, as	" → ∞. 

Proof. (i) and (ii). Follow from Theorem 3.1 (ii) and (iv) as ℎ��%, d� = % + d, ℎ<�%, d� = % − d 

and ℎÑ�%, d� = %d are continuous functions on ℝ<, and ℎ��%, d� = �i is continuous on J = ���, ¨� ∈ ℝ<: ¨ ≠ 0 . 

(iii) Let V� be a random variable that is degenerate at �� and let q� be a random variable 

that is degenerate at �� , " = 1, 2, …. Then V� I→ 	� and q� I→ 	�, as	" → ∞ (Lemma 3.1 
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(iv)). Now using (i) we get ��V� + q� I→ �H + �, as	" → ∞. Since ��	�� + �� =D 	��V� +q�, " = 1,2,⋯, (Lemma 3.1 (i)), the  assertion follows on using Lemma 3.1 (ii). 

(iv) Let V�	and	q� be as defined in (iii). Then V� I→ 	� and q� I→ 	�, as	" → ∞. Using (ii) we get ��V� + q� D→ �� + �, as	" → ∞. Since ��	�� + �� =D 	 ��V� + q�, " = 1, 2, …, the 

assertion follows on using Lemma 3.1 (iii). ▄ 

Remark 3.1  

The CLT asserts that if ��, �<, … are i.i.d. random variables with mean � and finite variance �< > 0, then  

q� ≝ √"	���� − ��� 	 D→ q	~	��0,1�, as	" → ∞, 
where ��� = �� 	∑ ������ . Since 

·√� → 0, as	" → ∞, using Theorem 3.2 (iv) we get 

��� − � = �√"	q� D→ 0 × q, as	" → ∞. 
Note that 0 × q is a random variable degenerate at 0. Thus it follows that 

										��� − �	 D→ 	0,								as		" → ∞⇔				��� − �	 I→ 	0, as	" → ∞⇔												 ��� 	 I→ 	�,								as			" → ∞. 
The above discussion suggests that, under the finiteness of second moment (or variance), the 

CLT is a stronger result than the WLLN. ▄ 

Example 3.1  

Let ��� �!� and �V� �!� be sequences of random variables. 

(i) If �� I→ ln 4 and V� I→ 2, as	" → ∞, show that �� + ln V� I→ ln 8 and m�f 	 ln V� →ln 16 , as	" → ∞; 
(ii) If �� D→ q	~	��0,1�, as	" → ∞, show that  and  ��<	 D→ 	Ó�	~	Ô�< (the chi-square 

distribution with one degree of freedom),  as	" → ∞. 

(iii) If �� D→ q	~	��0,1�, and  V� I→ 3, as	" → ∞, show that ��V� D→ Õ	~	��0, 9� and 2�� + 3V� 	 D→	Ó<	~	��9, 4�, as	" → ∞.  
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(iv)  For a given T > 0, if ��, �<, … are i.i.d. 7�0, T� random variables and ��:� =max���, … , �� , " = 1, 2, …, show that m�f:f I→	mk , ��:�< + ��:� + 1	 I→	T< + T + 1 and mnf�Ö×Øf:f�Ö 	 D→ 	7	~	7�0,1�, as	" → ∞. 
Solution.  

(i) Since ℎ��%� = ln % , % ∈ �0,∞� is a continuous function, using Theorem 3.1 (i) it follows 

that ln V� 	 I→ ln2 , as	" → ∞. Now on using Theorem 3.2 (i) we get 	�� +lnV� 	 I→ ln 4 +ln 2 = ln 8 , as	" → ∞. Also, since ℎ<�%� = m� , % ∈ ℝ, is a continuous function on ℝ, on 

using Theorem 3.1 (i), we get m�f I→ mÙÚ� = 4, as	" → ∞. Now on using Theorem 3.2 (i) 

it follows that m�f ln VÚ I→4 ln 2 = ln 16 , as	" → ∞. 

(ii) Since ℎÑ�%� = %<, % ∈ ℝ, is a continuous function on ℝ, using Theorem 3.1 (iii) we get ��< D→	q<, as	" → ∞. Let Ó� = q<. Since q~��0,1�, we have Ó�	~	Ô�< (Theorem 4.1 (ii), 

Module 5). Consequently ��< D→	Ó�~	Ô�<, as	" → ∞. 

(iii) Using Theorem 3.2 (ii) we get ��V� D→ 	3q, as	" → ∞. Let Õ = 3q. Since q	~	��0,1� we 

have Õ = 3q	~	��0, 9� (Theorem 4.2 (ii) Module 5) and, therefore, ��V� D→ Õ	~	��0,9�,as	" → ∞. Using theorem 3.2 (iii) and (iv) we get 2�� D→2q and 3V� I→ 	9, as	" → ∞. 

Now using Theorem 3.2 (ii) we also conclude that 2�� + 3V� D→ 	2q + 9, as	" → ∞. Let Ó< = 2q + 9. Since q	~	��0,1�, we have Ó<	~	��9, 4� (Theorem 4.2 (ii), Module 5). 

(iv) From Example 1.4 we have ��:� 	 I→ 	T, as	" → ∞, and V� = "	�T − ��:�� 	 D→ 	V	 ~	Exp�T� , as	" → ∞. Since  ℎ��%� = m� , % ∈ ℝ, ℎÛ�%� = %< + % + 1, % ∈ ℝ, and ℎÜ�%� = mnÝÖ, % ∈ ℝ, are continuous functions on ℝ, using Theorem 3.1 (i) and (ii), we 

get m�f:f 	 I→	mk , ��:�< + ��:� + 1	 I→	T< + T + 1 and mnÞfÖ 	 D→	mnÞÖ	, as	" → ∞. Let 7 = mnÞÖ. Since V	~	Exp	�T�, it is easy to verify that 7	~	7�0,1�. Consequently, mnf�Ö×Øf:f�Ö = mnÞfÖ 	 D→ 	7	~	7�0,1�, as	" → ∞. ▄   

Theorem 3.3 

 Let ��, �<, … be a sequence of i.i.d. random variables with finite mean �. Let ��� = �� 	∑ ������  

and Í�< = ��n� 	∑ ��� − ����<���� , " = 2, 3, …, be sequences of sample means and sample 

variances, respectively. Define �� = √�	���fn¶�ßf , " = 2, 3, …. 

(i) If �< = Var���� ∈ �0,∞�, then Í�< I→	�<, 	Í� I→ 	� and �� D→ 	q~��0, 1�, as	" → ∞; 
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(ii) Suppose that the kurtosis à� = á���½n¶�â�·â < ∞. Then √"	�Í�< − �<� D→ 	ã	~	��0, �à� −1����, as	" → ∞. 

Proof. 

(i)  We have  

																																	Í�< = 1" − 1���� − ����<�
���  

																																							= 1" − 1	���<
�

��� − "" − 1	���< 

																																						= "" − 1 ∙ 1"	���<
�

��� − "" − 1	���<, " = 2, 3, …. 
Let  V� = ��<, Y = 1, 2, … and let V�� = �� ∑ V����� , " = 2, 3, ….Then  

Í�< = "" − 1 �V�� − ���<�, 
and V�, V<, … is a sequence of i.i.d. random variables with mean ��V�� = ����<� = �< + �<. By 

WLLN 

V�� 	 I→ 	�< + �<, as	" → ∞ 

																																														and							��� 	 I→ 		�, as	" → ∞. 
Using the continuity of function ℎ�%� = %<, % ∈ ℝ, and Theorem 3.1 (i) we have ��< I→	�<,as	" → ∞. Since 

��n� → 1, on using Theorem 3.2 (i) and (iii) we get 

Í�< = "" − 1	>V� − ��<A	 I→	�<, as	" → ∞. 
Since 	�%� = √%, % ∈ �0,∞�, is a continuous function, it follows that Í� I→ 	�, as	" → ∞, and 

therefore 
·ßf

I→ 	1, as	" → ∞. Using the CLT we have 

q�	 ≝		√"	���� − ��� 	 D→ 	q	~	��0,1�, as	" → ∞ 

                           						⇒ 				�� = ·ßf 	q� 	 D→ 		q	~	��0,1�,			as	" → ∞,   (using Theorem 3.2 (iii)). 
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(ii) Let �� = �µn¶· , Y = 1, … , ", so that ��, �<, …	 are i.i.d. random variables with mean 0 and 

variance 1. Moreover �� = � + ���, Y = 1, 2, … , ��� = � + ����, ��� = �� ∑ ������  and  

Í�< = 1" − 1	���� − ����<�
��� 																															 

																																																						= �<" − 1���� − ����<�
��� 	 

																																																						= "" − 1	�< ¾1"	���<
�

��� − ���<¿ 

																																																						= "" − 1	�< ¾1"	�V�
�

��� − ���<¿ 

																																																						= "" − 1	�<_V�� − ���<`, 
where V� = ��<, Y = 1, 2, … and V�� = �� ∑ V����� , " = 2, 3, …. Then V�, V<, … are i.i.d. random 

variables with mean ��V�� = ����<� = 1 and Var�V�� = ������ − �����<��< = à� − 1. By the 

CLT 

7� 	≝ 	√"	�V�� − 1�äà� − 1 	 D→ 	7	~	��0,1�, as	" → ∞ 

																												and						Õ� 	= 		√"	��� 	 D→ 	Õ	~	��0,1�, as	" → ∞. 
Also,  

√"	�Í�< − �<� = "" − 1�<äà� − 1	7� + √"" − 1�< − √"" − 1�<Õ�<,			" = 2, 3, …. 
Using continuity of function ℎ�%� = %<, % ∈ �0,∞�, and Theorem 3.1 (iii) we have Õ�< D→	Õ<,as	" → ∞. Since, as	" → ∞, ��n� 	�<äà� − 1 	→ �<äà� − 1  and  

√��n� 	�< → 0, using Theorem 

3.2 we conclude that 

√"�Í�< − �<� 	 D→ 	ã	~	��0, �à� − 1����, as	" → ∞, 
where ã = �<äà� − 1	7	~	��0, �à� − 1����.▄ 
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Corollary 3.1. (Nomal Approximation to the Student-t Distribution) 

Let ��� �!� be a sequence of random variables such that ��	~	¨�, the Student-t distribution 

with  " degrees of freedom. Then �� D→ 	q	~	��0,1�, as	" → ∞. 

Proof. Let q�, q<, … be a sequence of i.i.d. ��0,1� random variables. Let q̅� = �� ∑ q�����  and Í�< = ��n� ∑ �q� − q̅������ < , " = 2, 3, …. Define  

Õ� = √"	q̅�Í� , " = 2, 3, …. 
By Corollary 11.1, Module 6,  Õ� =D 	 ��n�, " = 2, 3, …. By Theorem 3.3 (i) we have 

																																																Õ� D→ 	q	~	��0,1�, as	" → ∞ 

																																								⇒ 		 ��n� D→ 	q	~	��0,1�, as	" → ∞ 

																																								⇒ 		 �� D→ 	q~��0,1�, as	" → ∞.▄ 

4. The Delta-Method  

Generally we have a sequence ��� �!� of random variables such that, for real constants H	and � > 0, 	�� I→ H, and "æ��� − H� D→ �, as	" → ∞, where � is some random variable. Then, for 

any continuous function Ì�∙�, we know that Ì���� I→ 	Ì�H�, as	" → ∞. The Delta-method is a 

tool for providing a non-degenerate limiting distribution to a normalized version of Ì����, " =1, 2, …. 

Theorem 4.1 (The Delta-Method)  

Let ��� �!� be a sequence of random variables such that, for some real constants � > 0 and H 

and some random variable �, "æ��� − H� D→ �, as	" → ∞. Let Ì:ℝ → ℝ be a function that is 

differentiable at H. Then    

"æ�Ì���� − Ì�H��	 D→Ì����H��, as	" → ∞, 
where Ì����H� is the derivative of Ì�∙� at the point H. 

Proof. Let Ψ�: ℝ → ℝ be such that Ψ��H� = 0 and 

Ì�%� = Ì�H� + �% − H� >Ì����H� + Ψ��%�A , % ∈ ℝ, 
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i.e., 

Ψ��%� = �Ì�%� − Ì�H�% − H − Ì����H�, if	% ∈ ℝ − �H 0,																																																	if	% = H . 
Then lim�→K Ψ��%� = Ì����H� − Ì����H� = 0 = Ψ��H� (i.e., Ψ��∙� is continuous at H) and 

"æ�Ì���� − Ì�H�� = Ì����H�"æ��� − H� + Ψ�����"æ��� − H�, " = 1, 2, …. 

Also, by Theorem 3.2 (iv), 

																															�� = "næ>"æ��� − H�A + H D→ 0 × � + H, as	" → ∞ 

																⇒ 		�� I→ H, as	" → ∞ 

								⇒ 			Ψ����� I→ Ψ��H� = 0, as	" → ∞		�since	Ψ�	is	continuous		at	H� 

 						⇒ 				Ψ�����"æ��� − H�	 I→ 	0, as	" → ∞   (Theorem 3.2 (ii)) 							⇒ 				"æ�Ì���� − Ì�H�� = Ì����H�"æ��� − H� + Ψ�����"æ��� − H� 

                                    															 D→ 	Ì����H�	�, as	" → ∞        (Theorem 3.2). ▄ 

Remark 4.1 

Note that, in the above theorem, if we have Ì����H� = 0 then we conclude that 

																																		"æ�Ì���� − Ì�H�� D→ 0, as	" → ∞ 

																	i. e., "æ�Ì���� − Ì�H�� I→ 0, as	" → ∞, 
and we get a degenerate limiting distribution. Now suppose that Ì����H� = 0 and Ì�∙� is twice 

differentiable at H with first and second derivatives at the point H given by Ì����H� and Ì�<��H�, 

repectively. Define Ψ<: ℝ → ℝ by 

Ψ<�%� =
MNO
NPÌ�%� − Ì�H��% − H�< 2º − Ì�<��H�, if	% ≠ H
0,																																																	if	% = H ∙ 

The, using L’ Hospital rule (0/0 form), we have 

																																						lim�→K Ψ<�%� = lim�→K Ì����%�% − H − Ì�<��H� 
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																																																									= lim�→K Ì����%� − Ì����H�% − H − Ì�<��H�		�since	Ì����H� = 0� 

                                            											= 	Ì�<��H� −	Ì�<��H�                 

                                            											= 0 

                                            											= Ψ<�H�, 
i.e., Ψ<�⋅� is continuous at point H. Consequently, using Theorem 3.2,  

"<æ�Ì���� − Ì�H�� = Ì�<��H�2 	>"æ��� − H�A< + >"æ��� − H�A<
2 	Ψ<���� 

																																																							 D→			 	Ì�<��H�2 	�<, 
since Ψ<���� I→	Ψ<�H� = 0 (as Ψ< is continuous at H and �� I→H, as	" → ∞) and >"æ��� −
H�A< D→�< (as ℎ�%� = %< is a continuous function on ℝ and "æ��� − H� D→�, as	" → ∞). ▄ 

The following example demonstrates that the conclusion of Theorem 4.1 (The Delta-Method) 

may not hold if � = 0. 

Example 4.1 

Let �q� �!� be a sequence of random variables such that q�	~	��0,1�, " = 1, 2, …. Then "��q� − 0� = q� D→ 	q	~	��0,1�, as	" → ∞. Let Ì�%� = %<, % ∈ ℝ.  Then  

"��Ì�q�� − Ì�0�� = q�< 	 D→ q�<	~	Ô�<, as	" → ∞. 
However Ì����0�q = 0 × q = 0. ▄ 

Corollary 4.1  

Let ��, �<, … be a sequence of i.i.d. random variables, each having the mean � ∈ ℝ and variance �< ∈ �0,∞�. Let ��� = �� 	∑ ������ , " = 1, 2, … and let Ì:ℝ → ℝ be a function that is 

differentiable at �. Then 

√"�Ì����� − Ì���� 	 D→ 	ã	~	� >0, �Ì�������<�<A , as	" → ∞, 

provided Ì������ ≠ 0. If Ì������ = 0 then 
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√"�Ì����� − Ì���� I→ 0, as	" → ∞ ∙ 
Proof. Let q	~	��0,1� and let Õ = �q. Then by the CLT 

√"	���� − ��� 	 D→ 	q	~	��0,1�, as	" → ∞ 

								⇒ 		√"	���� − �� D→ 	�q = Õ	~	��0, �<	�, as	" → ∞ 

				⇒ 		√"	�Ì����� − Ì���� D→	Ì������	Õ, as	" → ∞ ∙ 
If Ì������ ≠ 0, then ã = Ì������	Õ	~	��0, �Ì�������<�<	�. However if Ì������ = 0, then the 

random variable  Ì������	Õ is degenerate at 0. Hence the result follows. ▄ 

Example 4.2  

Let ��� �!� be a sequence of random variables such that ��	~	Ô�<, " = 1, 2, …. Show that  

√2	�ä�� − √"� D→ 	q	~	��0,1�, as	" → ∞. 
Solution. Let V�, V<, … be a sequence of i.i.d. Ô�< random variables. Then ��V�� = 1, Var�V�� = 2 

and �� =D 	 ∑ V� = "V����� , " = 1, 2, … (see Example 7.6 (i), Module 6). By the CLT 

√"	�V�� − 1�√2 	 D→ 	q	~	��0,1�, as	" → ∞ 

⇒ √"	�V�� − 1� D→√2	q~��0, 2�, as	" → ∞ ∙ 
Since Ì�%� = √%, % ∈ �0,∞� is differentiable at % = 1, using the delta-method we have 

√"	gèV�� − 1h	 D→		12 × √2	q = q√2	~	� �0, 12� , as	" → ∞.	 
																										⇒ 		 √2	�ä�� − √"� D→ 	q	~	��0,1�, as	" → ∞. ▄ 

Problems	
1. Let ��, �<, … be a sequence of i.i.d. ���, �<� random variables, where � > 0 and 0 < �< < ∞. Let q� = ∑ ������  and let ¤� = √"	���� − ��, where 	��� = �� 	∑ ������ , " =1, 2, …. Show that the sequence �q� �!� does not have a limiting distribution, however, 

the sequence �¤� �!� has a limiting distribution. 
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2. Let ��, �<, … be a sequence of i.i.d. random variables. Let ��:� = min���, … , ��  and let V� = "��:�, " = 1, 2, …. Find the limiting distribution of ���:� �!� and �V� �!� when  

 

(i) ��~U�0, T�, T > 0; 
(ii) ��~Exp�T�, T > 0. 

 

3. Let ��, �<, … be a sequence of i.i.d. random variables with mean � and finite variance. 

Show that 

(i) 
<���ê�� 	∑ Y���� �� I→ 	�, as	" → ∞; 

(ii) 
Ü���ê���<�ê�� 	∑ Y<���� �� I→ 	�, as	" → ∞ ∙ 

 

4. Let ��� �!� be a sequence of independent random variables such that the p.m.f. of �� 

is given by  

	��%� = �12 , if	%	 ∈ 	 .−"��, 	"��	�0, otherwise ∙ 
Show that ��� I→ 0, as	" → ∞, where ��� = �� 	∑ ������ , " = 1, 2, …. 

 

5. Let ��	~	NB�", ì��, where ì� ∈ �0,1�, " = 1, 2, … and lim�→) " �1 − ì�� = í > 0. 

Show that �� D→ 	�	~	P�í�, the Poisson distribution with mean í. 

 

6. (i)  Let ��	~	G >", ��A , " = 1, 2, …. Show that �� I→ 	1, as	" → ∞. 

              (ii) Let ��~�	 >�� , 1 − ��A , " = 1, 2, …. Show that �� D→ q	~	��0,1�, as	" → ∞. 

 

7. Consider a random sample of size 80 from the distribution having a p.d.f. 

	�%� = � 2%Ñ , if	% > 10, otherwise	. 
Compute, approximately, the probability that not more than 20 of the items of the 

random sample are greater than √6. 

8. Let ��, �<, … , �<�� be a random sample from P�2� distribution, and let V = ∑ ��<����� . 

Find, approximately,  +��420 ≤ V<�� ≤ 440 �. 

9. Let ��, �<, … be a sequence of i.i.d. random variables having a common p.d.f. 	�%� = 1ï ⋅ 11 + %< , −∞ < % < ∞. 
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Using the principle of mathematical induction, show that ��� = �� 	∑ ������ =D 	 ��, ∀	"	 ∈�1, 2, …  . Hence show that ���� �!� does not converge to anything in probability (Note 

that ����� is not finite and therefore validity of WLLN is not guaranteed). 

 

10. Let ��	~	P�2"�, V� = �f�  and q� = �fª��<�ê�� , " = 1, 2, …. 

Show that 

(i) V� I→ 	2 and q� I→ 	1, as	" → ∞; 
(ii) V�< + äq� 	 I→ 	5, as	" → ∞; 

(iii) 
�ª	efªê�ef�efê�ª 	 I→ 	4, as	" → ∞. 

11. Let ��� be the sample mean based on a random sample of size " from a distribution 

having mean � ∈ �−∞,∞� and variance �< ∈ �0,∞�. Let q� = √�	���fn¶�· , " = 1, 2, …. If �V� �!�  is a sequence of random variables such that V� I→ 	2, as	" → ∞, show that: 

 

(i) 
<ðfef D→ 	q	~	N�0,1�, as	" → ∞; 

(ii) 
�ðfªefª D→ 	7	~	Ô�<, as	" → ∞; 

(iii) 
�<�êef�ðf�efêefª D→ 	q	~	��0,1�, as	" → ∞. 
 

12. Let ��, �<, … be a sequence of i.i.d. U�0,1� random variables. Let o� = ���	�< ⋯���½f, " = 1, 2, … be the sequence of geometric means. Show that, as	" → ∞, 

(i) o� I→	 �̄ ; 
(ii) 	"æ 	>o�< − �̄ªA 	 D→ 	��0, �<�, for some � > 0 and �< > 0. Find the values of � 

and �<. 

13. Let �����, �<�� �!� be a sequence of i.i.d. bivariate random vectors such that ������ = �� ∈ ℝ, �	��<�� = �< ∈ ℝ, Var����� = ��< > 0, Var	��<�� = �<< > 0, and Corr����, �<�� = ò ∈ �−1, 1�. Let ���� = �� ∑ ������� , ��<� = �� ∑ �<����� , F� =	 ��n� 	∑ ���� − ��������� ��<� − ��<��, Í��< = ��n� 	∑ ���� − �����<���� , Í<�< = ��n�∑ ��<� −������<��< and ó� = ôfß½fßªf , " = 2, 3, …. Show that, as	" → ∞, 

(i) F� I→ 	ò���< and ó� I→ 	ò; 
(ii) √"	�F� − ò	��	�<� D→ 	��0, �T − ò<���<	�<<�, where  T = á���½½n¶½�ª��ª½n¶ª�ª	�·½ª·ªª . 
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14.  
(i)  Let ��	~	Bin	�", ì��, where ì� ∈ �0,1�, " = 1, 2, … and lim�→) ì� = ì ∈ �0,1�. 

Show that �� − "ì�ä"ì��1 − ì�� 	 D→ 	q	~	��0,1�, as	" → ∞; 
(ii) Let ��, �<, … be a sequence of i.i.d. random variables of absolutely continuous type. 

Let $�∙�	and		�∙�, respectively, denote the d.f. and the p.d.f. of �� and let T be the 

median of $ >i. e. , $�T� = �<A. Suppose that 	�T� > 0. Let ¤� = ��ê�:<�ê�, " =1, 2, …, be the middle observation (called the sample median) based on random 

sample ��, �<, … , �<�ê�. Show that, as	" → ∞,   

(a) √"	�¤� − 	T� D→�>0, ��õª�k�A ; 
(b) ¤� I→ 	T. 

15. Let ��� �!� be a sequence of random variables such that, for real constants �	and	� >0, √"��� − �� D→ 	��0, �<�, as	" → ∞. Find the limiting distributions of  

(i) Í� =	√"	���< − �<�, " = 1, 2, …, 
(ii) �� = 	"��� − ��<, " = 1, 2, …, 
(iii) 7� = 	√"	�ln�� − ln ��, " = 1, 2, …, where � > 0. 

16. Let ��	~	Bin	�", ì�, " = 1, 2, …. Find the limiting distribution of q� = √"	��� >1 − ��A −
ì�1 − ì�� , " = 1, 2, …. Find the limiting distribution (non degenerate) of a normalized 

version of V� = �� >1 − ��A when ì = �<.  

 

 

 

 

 

 

 


