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Introduction to Statistical Inference

The basic situation in statistical inference problems is as follows:

We seek information about characteristics of a collection of elements,
called population;

Due to various considerations (such as time, cost etc.) we may not
wish or be able to study each individual element of the population;

Our object is to draw conclusions about the unknown population
characteristics on the basis of information on characteristics of a
suitably selected sample from the population;

Formally, let the r.v. X (which may be vector valued) describes the
characteristics of the population under investigation and let F (·) be
the d.f. of X ;
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Parametric Statistical Inference:

Here the r.v.X has a d.f. F ≡ Fθ(·) with a known functional form
(except perhaps for the parameter θ, which may be a vector valued);

Let Θ be the set of possible values of the unknown parameter θ. In
problems of parametric statistical inference, the statistician’s job is
to decide, on the basis of a suitably selected sample (generally a
random sample) from Fθ(·), which member or members of the family
{Fθ(·) : θ ∈ Θ} can represent the d.f. of X ;
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Nonparametric Statistical Inference:

Here we know nothing about the functional form of the d.f. F (·)
(except perhaps that F (·) is, say, continuous or discrete);

Our goal is to make inferences about the unknown d.f. F (·);
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In statistical inference problems, the statistician can observe n
independent observations on X , the r.v. describing the population
under investigation, i.e., the statistician observes n values x1, . . . , xn
assumed by the r.v. X ;

Each x i can be regarded as the value assumed by a r.v. X i ,
i = 1, . . . , n, having the d.f. F (·);

The observed values (x1, . . . , xn) are then the values assumed by
(X 1, . . . ,X n);

The set {X 1, . . . ,X n} is then a random sample of size n taken from
the population having d.f. F (·);

The observed value (x1, . . . , xn) is called a realization of the random
sample.
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Definition 1

(a) The space of the possible values of the random sample (X 1, . . . ,X n)
is called the sample space. We will denote the sample space by χ.
Generally the sample space χ is the same as the support SX of the
distribution of random sample or its interior.

(b) In the parametric statistical inference problems, the set Θ of possible
values of the unknown parameter θ is called the parameter space.
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Some Parametric Statistical Inference Problems

Consider the following example.

Example 1.

A manager wants to make inferences about the mean lifetime of a
brand of an electric bulb manufactured by a certain company;

Here the population under investigation consists of lifetimes of all the
electric bulbs produced by that company;

Suppose that the r.v. X represents the lifetime of a typical electric
bulb manufactured by the company, i.e., the r.v. X describes the
given population;
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Probability modelling on the past experience with testing of similar
electric bulbs indicates that X has an exponential distribution with
mean θ, i.e., X has the d.f.

FX (x |θ) =

{
0, if x < 0

1− e−
x
θ , if x ≥ 0

;

But the value of θ ∈ Θ = (0,∞) is not evident from the past
experience and the manager wants to make inferences about the
unknown parameter θ ∈ Θ;

Here Θ = (0,∞) is the parameter space. Due to various
considerations (e.g., time, cost etc.), the statistician can not obtain
the lifetimes of all the bulbs produced by the company;

One way to obtain information about the unknown θ is to do testing,
under identical conditions, on a number, say n, of electric bulbs
produced by the company;
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This leads to observing a realization x = (x1, . . . , xn) of a random
sample X = (X1, . . . ,Xn) from the population;

Here, X = (X1, . . . ,Xn) ∈ χ = R+ = {(t1, . . . , tn) : 0 ≤ ti <∞, i =
1, . . . , n} and χ is the sample space;

On the basis of the realization x of the random sample X , the
manager may want answer several questions concerning unknown θ.
Some of these may be:
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(a) How to obtain a point estimate of θ? This is an example of a point
estimation problem;

(b) How to obtain an appropriate interval in which the unknown θ lies
with certain confidence? This is an example of a confidence interval
estimation problem of finding an appropriate random interval
(depending on X ) for the unknown θ such that the given random
interval contains the true θ with given confidence (probability);

(c) To verify the claim (hypothesis) that θ ∈ Θ0, where Θ0 ⊂ Θ. This is
an example of hypothesis testing problem.
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Point Estimation Problems

X : a r.v. defined on a probability space (Ω,F ,P);

X has a d.f. F (·|θ), the functional form of which is known and θ ∈ Θ
is unknown; here Θ is the parameter space;

The basic situation in point estimation problems is as follows:

We observe r.v.s X 1, . . . ,X n (say, a random sample) from the
population described by the d.f. F (·|θ);

based on random sample X 1, . . . ,X n we seek an approximation (or an
estimate) of θ (or some function of θ).
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Definition 2.

(a) Let g(θ) (possibly a vector valued) be a function of θ which we want
to estimate. Then g(θ) is called the estimand.

(b) Let Λ = {g(θ) : θ ∈ Θ} ⊆ Rq be the range of possible values of the
estimand g(θ). A statistic δ ≡ δ(X ) is said to be an estimator of
g(θ) if δ maps the sample space χ into Rq; here X = (X 1, . . . ,X n).
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Definition 2 (continued)

(c) Let x = (x1, . . . , xn) be a sample realization of X = (X 1, . . . ,X n)
and let δ ≡ δ(X ) be an estimator of g(θ). Then δ(x) is called an
estimate of g(θ) (i.e., an estimate is a realization of an estimator);

Note: An estimator is a r.v.. To cover more general situations, in the
definition of an estimator we allow it to assume values outside Λ, the set
of possible values of the estimand g(θ) (although it may look absurd).
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Example 2.

Let X1, . . . ,Xn be a random sample from a Poisson(θ) distribution,
where θ ∈ Θ = (0,∞);

Let the estimand be g(θ) = θ;

Then δ1(X ) = X is an estimator of g(θ), so also is δ2(X ) = S2.

By the definition, δ3(X ) = (−1)X1X1 is also an estimator of g(θ), but
it is absurd since it can assume negative values whereas the estimand
g(θ) is positive.

We will now discuss two commonly used methods of parametric point
estimation, namely the Method of Moments and the Method of
Maximum Likelihood.
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The Method of Moments

X1, . . . ,Xn: a random sample of size n from a population having
distribution function Fθ(x), x ∈ R (i.e., the r.v. describing the
population has the d.f. Fθ(·)), where θ = (θ1, . . . , θp) ∈ Θ is an
unknown parameter;

Suppose that, for k = 1, . . . , p, mk = Eθ(X k
1 ) exists and is finite.

Here and elsewhere Eθ0
(·) (Pθ0(·)) represents that the expectation

(probability) is calculated under the d.f. Fθ0
(·), θ0 ∈ Θ. Let

mk = hk(θ), k = 1, . . . , p;

Define

Ak =
1

n

n∑
i=1

X k
i , k = 1, . . . , p.
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Definition 3.

(a) mk (k = 1, . . . , p) is called the kth population moment (about origin)
of the d.f. Fθ(·), θ ∈ Θ;

(b) Ak (k = 1, . . . , p) is called the kth sample moment (about origin)
based on the random sample X1, . . . ,Xn;

(c) The method of moments consists of equating Ak with
hk(θ1, . . . , θp), for k = 1, . . . , p, and solving for θ1, . . . , θp. The value
(θ1, . . . , θp) = (θ̂1, . . . , θ̂p), say, so obtained is called the method of
moment estimator (M.M.E.) of θ = (θ1, . . . , θp);

() Module 33 Statistical Inference Problems: Point Estimation 15 / 66



Definition 3 (continued)

(d) Let g : Θ→ Λ be a mapping of Θ onto Λ. If θ̂ is the M.M.E. of θ,
then g(θ̂) is called the M.M.E. of g(θ).

Remark 1. (a) The method of moments is not applicable when mk

(k = 1, . . . , p) do not exist (e.g., for the Cauchy distribution with median
θ).

(b) M.M.E. may not exist when the underlying equations do not have a
solution. Also the M.M.E. may not be unique as the underlying equations
may have more than one solution.
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Example 3.

Let X1, . . . ,Xn be a random sample from a Poisson(θ) distribution, where
θ ∈ Θ = (0,∞) is unknown. Then θ̂ = X is the M.M.E. of θ.

Solution: We have m1 = E (X1) = θ. Thus M.M.E. θ̂ is the solution of
equation

θ̂ =
1

n

n∑
i=1

Xi = X .
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Example 4.

Let X1, . . . ,Xn (n ≥ 2) be a random sample from N(µ, σ2) distribution,
where θ = (µ, σ2) ∈ Θ = {(z1, z2) : −∞ < z1 <∞, z2 > 0} is unknown.
Then θ̂ = (X , n−1

n S2) is the M.M.E. of θ.

Solution: We have

m1 = E (X1) = µ and m2 = E (X 2
1 ) = σ2 + µ2.

Thus M.M.E. θ̂ = (µ̂, σ̂2) is the solution of

µ̂ =
1

n

n∑
i=1

Xi , σ̂2 + µ̂2 =
1

n

n∑
i=1

X 2
i

⇒ µ̂ = X σ̂2 =
1

n

n∑
i=1

X 2
i − X

2
=

1

n

n∑
i=1

(Xi − X )2 =
n − 1

n
S2.
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The Method of Maximum Likelihood

X1, . . . ,Xn: a random sample of size n from a population having
p.d.f. (or p.m.f.) fθ(x), x ∈ R (i.e., the r.v. describing the population
has the p.d.f. (or p.m.f.) fθ(·)), where θ = (θ1, . . . , θp) ∈ Θ is an
unknown parameter;

Then the joint p.d.f. of X = (X1, . . . ,Xn) is

fX (x |θ) =
n∏

i=1

fθ(xi ), θ ∈ Θ.

Definition 4. For a given sample realization x = (x1, . . . , xn) of the
observation on X = (X1, . . . ,Xn), the function

Lx(θ) = fX (x |θ),

considered as a function of θ ∈ Θ, is called the likelihood function.
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Remark 2.

In the discrete case, given the sample realization x = (x1, . . . , xn),

Lx(θ0) = fX (x |θ0)

is the probability of obtaining the observed sample x , when θ0 ∈ Θ is the
true value of θ. Therefore, intuitively, it is appealing to find θ̂ ≡ θ̂(x)
(provided it exists) such that Lx(θ̂) = supθ∈Θ Lx(θ), since if such a θ̂ exists
then it is more probable that x came from the distribution with p.d.f. (or
p.m.f.) fX (·|θ̂) than from any of the other distribution fX (·|θ),

θ ∈ Θ− {θ̂}. A similar argument can also be given for absolutely
continuous distributions.
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Definition 5.

(a) For a given sample realization x , the maximum likelihood estimate
(m.l.e.) of the unknown parameter θ is the value θ̂ ≡ θ̂(x) (provided
it exists) such that

Lx(θ̂) = sup
θ∈Θ

Lx(θ).

(b) Let g : Θ→ Λ be a mapping of Θ into Λ. Define, for λ ∈ Λ,
Θλ = {θ ∈ Θ : g(θ) = λ}. Then, for a given sample realization x , the
function

Mx(λ) = sup
θ∈Θλ

Lx(θ),

considered as a function of λ ∈ Λ, is called the likelihood function
induced by g(θ).
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(c) For a given sample realization x , the maximum likelihood estimate
(m.l.e.) of the estimand g(θ) is the value λ̂ ≡ λ̂(x) (provided it
exists) such that

Mx(λ̂) = sup
λ∈Λ

Mx(λ),

where Mx(λ) is as defined in (b) above.

(d) The estimator (a r.v.) corresponding to the m.l.e. is called the
maximum likelihood estimator (M.L.E.).
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Remark 3.

(a) (Maximum likelihood estimate may not be unique). Let
x = (x1, . . . , xn) be a sample realization based on a random sample
from U(θ − 1

2 , θ + 1
2 ) distribution, where θ ∈ Θ = (−∞,∞) is an

unknown parameter. Then, for x(1) = min{x1, . . . , xn} and
x(n) = max{x1, . . . , xn},

Lx(θ) =

{
1, if x(n) − 1

2 ≤ θ ≤ x(1) + 1
2

0, otherwise
.

Clearly any estimate δ(x) such that x(n) − 1
2 ≤ δ(x) ≤ x(1) + 1

2 is a

m.l.e. In particular δ∗(x) =
x(1)+x(n)

2 is a m.l.e. of θ.
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(b) Maximum likelihood estimate may be absurd. Let
x = (0, 0, . . . , 0) be a sample realization based on a random sample of
size n from a Bin(1, θ) distribution, where θ ∈ Θ = (0, 1) is unknown.
In this case

Lx(θ) = (1− θ)n, 0 < θ < 1.

and θ̂ = x = 0 is the m.l.e., while θ̂ does not belong to Θ.

(c) Since Lx(θ) and ln Lx(θ) attain their maximum for same values of θ,
sometimes it is more convenient to work with ln Lx(θ).
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(d) If Θ is an open rectangle in Rp and Lx(θ) is a positive and
differentiable function of θ (i.e., the first order partial derivatives exist
in the components of θ), then if a m.l.e. θ̂ exists, it must satisfy

∂

∂θj
ln Lx(θ)

∣∣∣θ=θ̂ = 0, j = 1, . . . , p; θ = (θ1, . . . , θp)

⇔ ∂

∂θj
Lx(θ)

∣∣∣θ=θ̂ = 0, j = 1, . . . , p.
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Result 1.

(Invariance of the m.l.e.) Suppose that Θ ⊆ Rp. Let g : Θ→ Λ be a
mapping of Θ into Λ, where Λ is a region in Rq (1 ≤ q ≤ p). If θ̂ ≡ θ̂(x)
is the m.l.e. of θ and θ̂(X ) ∈ Θ with probability one, then g(θ̂) is the
m.l.e. of g(θ).

Proof: We have Θλ = {θ ∈ Θ : h(θ) = λ}, λ ∈ Λ and

Mx(λ) = sup
θ∈Θλ

Lx(θ), λ ∈ Λ.

Clearly {Θλ : λ ∈ Λ} forms a partition of Θ. Now

θ̂ is m.l.e. of θ ∈ Θ ⇒ θ̂ ∈ Θ ⇒ θ̂ ∈ Θλ, for some λ ∈ Λ.
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Let θ̂ ∈ Θλ̂, where λ̂ ∈ Λ. Then h(θ̂) = λ̂ (by definition of Θλ̂). Also,

since θ̂ ∈ Θλ̂,

Lx(θ̂) ≤ sup
θ∈Θλ̂

Lx(θ) = Mx(λ̂) ≤ sup
λ∈Λ

Mx(λ) = sup
θ∈Θ

Lx(θ) = Lx(θ̂)

⇒ Mx(λ̂) = sup
λ∈Λ

Mx(λ)

⇒ λ̂ = h(θ̂) is an m.l.e. of h(θ).
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Regularity Conditions R1:

(a) The parameter space Θ is an open interval in R (finite, infinite or
semi-finite);

(b) The support SX = {x : fX (x |θ) > 0} does not depend on θ.

(c) For any x ∈ SX and any θ ∈ Θ, the derivative ∂
∂θ fX (x |θ), θ ∈ Θ,

exists and is finite and∫ ∞
−∞
· · ·
∫ ∞
−∞

fX (x |θ)dx = 1, θ ∈ Θ,

can be differentiated under the integral (or summation) sign, so that∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂θ
fX (x |θ)dx =

d

dθ

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX (x |θ)dx = 0, ∀ θ ∈ Θ,

with integrals replaced by the summation sign in the discrete case.
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(d) For any x ∈ SX and any θ ∈ Θ, the second partial derivative
∂2

∂θ2 fX (x |θ), θ ∈ Θ, exists and is finite and∫ ∞
−∞
· · ·
∫ ∞
−∞

∂

∂θ
fX (x |θ)dx = 0, θ ∈ Θ,

can be differentiated under the integral (summation) sign, so that∫ ∞
−∞
· · ·
∫ ∞
−∞

∂2

∂θ2
fX (x |θ)dx =

d2

dθ2

∫ ∞
−∞
· · ·
∫ ∞
−∞

fX (x |θ)dx = 0,∀θ ∈ Θ,

with integrals replaced by the summation sign in the discrete case.
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Remark 4.

(a) Using advanced mathematical arguments, it can be shown that the
regularity conditions R1 are satisfied for a large family of distributions,
including the exponential family of distributions having associated
p.d.f.s (or p.m.f.s) of the form

fX (x |θ) = c(θ)h(x)er(θ)T (x), x ∈ χ, θ ∈ Θ,

for some functions h(·), c(·), r(·) and T (·) and an open interval
Θ ⊆ R.
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(b) For x ∈ SX ,

Ψ(x , θ) =

(
∂

∂θ
ln fX (x |θ)

)2

=

(
1

fX (x |θ)

∂

∂θ
fX (x |θ)

)2

represents the relative rate at which the p.d.f. (or p.m.f.) fX (x |θ)
changes at x . The average of this rate is denoted by

I (θ) = Eθ

((
∂

∂θ
ln fX (X |θ)

)2
)
, θ ∈ Θ ⊆ R.

The large value of I (θ0) indicates that it is easier to distinguish θ0

from the neighboring values of θ0 and therefore more accurately θ can
be estimated if true θ = θ0. The quantity I (θ), θ ∈ Θ, is called the
Fisher’s information that X contains about the parameter θ. Note
that I (θ) is a function of θ ∈ Θ.
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(c) Let X1, . . . ,Xn be a random sample with common p.d.f./p.m.f.
f (·|θ), θ ∈ Θ ⊆ R, and let X = (X1, . . . ,Xn). Then

fX (x |θ) =
n∏

i=1

f (xi |θ), θ ∈ Θ.

Let i(θ) and I (θ), respectively, denote the Fisher’s information
contained in the single observation, say X1, and the whole sample
X = (X1, . . . ,Xn). Then, for θ ∈ Θ,

I (θ) = Eθ

((
∂

∂θ
ln fX (X |θ)

)2
)

= Eθ

( n∑
i=1

∂

∂θ
ln f (Xi |θ)

)2
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= Eθ

(
n∑

i=1

(
∂

∂θ
ln f (Xi |θ)

)2
)

+Eθ

 n∑
i=1

n∑
j=1

i 6=j

∂

∂θ
ln f (Xi |θ)

∂

∂θ
ln f (Xj |θ)


= nEθ

((
∂

∂θ
ln f (X1|θ)

)2
)

= ni(θ),

since X1, . . . ,Xn are i.i.d., and
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Eθ

(
∂

∂θ
ln f (X1|θ)

)
=

∫ ∞
−∞

∂

∂θ
f (x |θ)dx

=
d

dθ

∫ ∞
−∞

f (x |θ)dx

= 0, ∀ θ ∈ Θ.
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Result 2.

Let X1,X2, . . . be a sequence of i.i.d. one-dimensional r.v.s with common
Fisher’s information i(θ) = Eθ(( ∂∂θ ln f (X1|θ))2), θ ∈ Θ ⊆ R, where f (·|θ),
θ ∈ Θ, is the common p.d.f. (or p.m.f.) of the sequence X1,X2, . . ., and Θ
is an open interval in R. Let θ̂n be the unique M.L.E. of θ based on
X1, . . . ,Xn. Then, under regularity conditions R1, as n→∞,

√
n(θ̂n − θ)

d→ Y ∼ N

(
0,

1

i(θ)

)
and θ̂n

p→ θ.
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Corollary 1.

Under the regularity conditions R1, let ĝn ≡ ĝn(X ) be the M.L.E. of
one-dimensional estimand g(θ), where g(·) is a differentiable function.
Then, under regularity conditions R1, as n→∞,

√
n(ĝn − g(θ))

d→W ∼ N

(
0,

(g ′(θ))2

i(θ)

)
and ĝn

p→ g(θ), θ ∈ Θ.
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Example 5.

Let X1, . . . ,Xn (n ≥ 2) be a random sample from N(µ, σ2) distribution,
where θ = (µ, σ2) ∈ Θ = (−∞,∞)× (0,∞) is unknown. Show that the
maximum likelihood estimator of θ is (µ̂, σ̂2) = (X , n−1

n S2).

Proof: For a given sample realization x = (x1, . . . , xn)

Lx(θ) =
n∏

i=1

{
1

σ
√

2π
e−

1
2σ2 (xi−µ)2

}
= (2πσ2)−

n
2 e−

1
2σ2

∑n
i=1(xi−µ)2

, θ ∈ Θ.

Then

ln Lx(θ) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(xi − µ)2,

∂

∂µ
ln Lx(θ) =

1

σ2

n∑
i=1

(xi − µ)
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∂

∂σ2
ln Lx(θ) = − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2

∂

∂µ2
ln Lx(θ) = − n

σ2

∂

∂(σ2)2
ln Lx(θ) =

n

2σ4
− 1

σ6

n∑
i=1

(xi − µ)2

∂

∂µ∂σ2
ln Lx(θ) = − 1

σ4

n∑
i=1

(xi − µ).

Clearly θ̂ = (µ̂, σ̂2) = (X , n−1
n S2) is the unique critical point. Also[

∂

∂µ2
ln Lx(θ)

]
θ=θ̂

= − n

σ̂2[
∂

∂(σ2)2
ln Lx(θ)

]
θ=θ̂

=
n

2σ̂4
− 1

σ̂6

n∑
i=1

(xi − x)2
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= − n

2σ̂4[
∂

∂µ∂σ2
ln Lx(θ)

]
θ=θ̂

= 0.

It follows that θ̂ = (µ̂, σ̂2) = (X , n−1
n S2) is the m.l.e. of θ.
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Example 6.

Let X1, . . . ,Xn be a random sample from Bin(m, θ) distribution, where
θ ∈ Θ = (0, 1) is unknown and m is a known positive integer. Show that
δM(X ) = X is the M.L.E. of θ.

Solution. For a sample realization x ∈ χ = {0, 1, . . . ,m}n

Lx(θ) =
n∏

i=1

{(
m

xi

)
θxi (1− θ)m−xi

}

=

(
n∏

i=1

(
m

xi

))
θ
∑n

i=1 xi (1− θ)mn−
∑n

i=1 xi .

First, let θ ∈ (0, 1).

ln Lx(θ) =
n∑

i=1

ln

(
m

xi

)
+

(
n∑

i=1

xi

)
ln θ +

(
mn −

n∑
i=1

xi

)
ln(1− θ)
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∂

∂θ
ln Lx(θ) =

∑n
i=1 xi
θ

−
mn −

∑n
i=1 xi

1− θ
∂

∂θ
ln Lx(θ) > 0 ⇔ θ <

x̄

m

⇔ x̄

m
is the M.L.E. of θ

⇒ δM(X ) =
X̄

m
is the M.L.E. of θ.
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Example 7.

Let X1, . . . ,Xn be a random sample from U(θ1, θ2) distribution, where
θ = (θ1, θ2) ∈ Θ = {(z1, z2) : −∞ < z1 < z2 <∞} is unknown. Show
that δM(X ) = (X(1),X(n)) is the M.L.E. of θ.

Solution.

fXi
(x) =

{
1

θ2−θ1
, if θ1 < x < θ2

0, otherwise
, i = 1, . . . , n.

Let x be the fixed realization. Then

Lx(θ) = Lx(θ1, θ2) = fX (x |θ) =
n∏

i=1

fXi
(xi |θ)

=

{
1

(θ2−θ1)n , x(1) > θ1, x(n) < θ2

0, otherwise
.

Here Lx(θ) is an increasing function of θ1 and decreasing function of θ2.
Thus δM(X ) = (X(1),X(n)) is the M.L.E. of θ.

() Module 33 Statistical Inference Problems: Point Estimation 42 / 66



Example 8. ( M.L.E. and M.M.E. may be different)

Let X ∼ U(0, θ), where θ ∈ Θ = (0,∞) is unknown. Show that the
M.M.E. of θ is δMME(X ) = 2X , whereas the M.L.E. of θ is
δMLE(X ) = X .

Solution. Since Eθ(X ) = θ
2 , it follows that δMME(X ) = 2X is the

M.M.E. of θ. Also, for a fixed realization x > 0,

Lx(θ) = fX (x |θ) ==

{
1
θ , if θ > x

0, if 0 < θ ≤ x
.

Clearly Lx(θ) is maximized at θ = x . Thus the M.L.E. of θ is
δMLE(X ) = X .
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Properties of Estimators

Unbiased Estimators

Suppose that the estimand g(θ) is real-valued.

Definition 6.

(a) An estimator δ(X ) is said to be an unbiased estimator of g(θ) if
Eθ(δ(X )) = g(θ), ∀ θ ∈ Θ.

(b) An estimator which is not unbiased for estimating g(θ) is called a
biased estimator of g(θ).

(c) The quantity Bθ(δ) = Eθ(δ(X ))− g(θ), θ ∈ Θ, is called the bias of
the estimator δ(X ).
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Remark 5.

(a) Note that Bθ(δ) is a function of θ ∈ Θ.

(b) Note that for an unbiased estimator δ(X ), Bθ(δ) = 0, ∀ θ ∈ Θ.

(c) An unbiased estimator, if evaluated a large number of times, on the
average equals the true value of the estimand. Thus, the property of
unbiasedness is a reasonable property for an estimator to have.
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Example 8. ( Unbiased estimators may not exist)

. Let X ∼ Bin(n, θ), where θ ∈ Θ = (0, 1) is unknown and n is a known
positive integer. Show that the unbiased estimators for the estimand
g(θ) = 1

θ do not exist.

Solution. On contrary suppose there exists an estimator δ(X ) such that

Eθ(δ(X )) =
1

θ
, ∀ θ ∈ Θ

i.e.,
n∑

j=0

δ(j)

(
n

j

)
θj(1− θ)n−j =

1

θ
, ∀ 0 < θ < 1

⇒ θ
n∑

j=0

δ(j)

(
n

j

)
θj(1− θ)n−j = 1, ∀ 0 < θ < 1,

which is not possible since, as θ → 0, L.H.S. → 0, whereas R.H.S. → 1.

() Module 33 Statistical Inference Problems: Point Estimation 46 / 66



Example 9. ( Unbiased estimator may be absurd)

Let X ∼ Poisson(θ), where θ ∈ Θ = (0,∞) is unknown, and let the
estimand be g(θ) = e−3θ. Show that δ(X ) = (−2)X is the unique
unbiased estimator of g(θ) (here δ(X ) = (−2)X takes both positive and
negative values, whereas the estimand g(θ) is always positive).

Solution. An estimator δ(X ) is unbiased for estimating g(θ) = e−3θ iff

Eθ[δ(X )] = g(θ), ∀ θ ∈ Θ

⇔
∞∑
j=0

δ(j)
e−θθj

j!
= e−3θ, ∀ θ > 0

⇔
∞∑
j=0

δ(j)θj

j!
= e−2θ, ∀ θ > 0

⇔
∞∑
j=0

δ(j)θj

j!
=

∞∑
j=0

(−2)jθj

j!
, ∀ θ > 0
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The L.H.S. and R.H.S. are power series in θ and they match in an open
interval. Thus,

δ(j)

j!
=

(−2)j

j!
, j = 0, 1, 2, . . .

⇒ δ(j) = (−2)j , j = 0, 1, 2, . . .

Thus δ(X ) = (−2)X is the unique unbiased estimator of g(θ) = e−3θ.
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Example 10. ( M.M.E. and M.L.E. may not be
unbiased)

Let X ∼ U(0, θ), where θ ∈ Θ = (0,∞) is unknown, and let the estimand
be g(θ) =

√
θ. Show that M.M.E. and the M.L.E. of g(θ) are

δMME(X ) =
√

2X and δMLE(X ) =
√
X , respectively, and

Eθ(δMME(X )) = 2
√

2
3 g(θ), θ ∈ Θ, Eθ(δMLE(X )) = 2

3g(θ), θ ∈ Θ.

Solution. For the sample realization x > 0, the likelihood function

LX (θ) = fX (x |θ) =

{
1
θ , if θ > x

0, otherwise,

is minimized at θ = θ̂ = x . Thus the MLE of θ is X and by the invariance
property of MLEs, the MLE of g(θ) =

√
θ is

δMLE(X ) =
√
X .

Eθ[δMLE(X )] =

∫ θ

0

√
x

θ
dx =

2

3

√
θ 6= θ.
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Also MME of θ is given by (since E (X ) = θ
2 )

θ̂MME
2

= X ⇒ θ̂MME = 2X .

Thus the MME of g(θ) =
√
θ is

δMME(X ) =
√

2X

⇒ Eθ[δMME(X )] =
√

2Eθ(X ) =
2
√

2

3

√
θ 6= θ.
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Example 11 ( Typically, there are many unbiased
estimators for a given estimand)

Let X1, . . . ,Xn be a random sample from a N(θ, 1) distribution, where
θ ∈ Θ = (−∞,∞) is unknown, and let the estimand be g(θ) = θ. Then

δM(X ) = X , δi (X ) = Xi , δi ,j =
Xi+Xj

2 , i , j ∈ {1, 2, . . . , n}, i 6= j
δi ,j ,k(X ) = Xi + Xj − Xk , i , j , k ∈ {1, . . . , n}, etc., are all unbiased for
estimating g(θ).

() Module 33 Statistical Inference Problems: Point Estimation 51 / 66



As seen in the above example, typically, there are many unbiased
estimators for a given estimand. Therefore, it is useful to have some
criterion for comparing unbiased estimators. One criterion which is often
used is the variance of the unbiased estimator δ(·) (denoted by Vθ(δ) to
emphasize the dependence on θ ∈ Θ). If δ1 ≡ δ1(X ) and δ2 ≡ δ2(X ) are
two unbiased estimators of g(θ) and if

Vθ(δ1) = Eθ((δ1(X )− g(θ))2) < Vθ(δ2) = Eθ((δ2(X )− g(θ))2), ∀ θ ∈ Θ,

then (δ1(X )− g(θ))2 is, on the average, less than (δ2(X )− g(θ))2, which
indicates that δ1 is nearer to g(θ) than δ2. For this reason we define:
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Definition 7.
An unbiased estimator δ1 is said to be better than the unbiased estimator
δ2 if Vθ(δ1) ≤ Vθ(δ2), ∀ θ ∈ Θ, with strict inequality for at least one
θ ∈ Θ.

Definition 8.
In an estimation problem where the M.L.E. exists, an estimator (not
necessarily unbiased) which depends on observation X = (X1, . . . ,Xn) only
through the M.L.E. (i.e., an estimator which is a function of the M.L.E.
alone) is called an estimator based on the M.L.E..
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Under fairly general conditions, it can be shown that the estimators which
are not based on the M.L.E. are not desirable, i.e., given any unbiased
estimator δ, which is not based on the M.L.E., there exists an unbiased
estimator based on the M.L.E., say δM , such that δM is better than that δ.
Thus, to find the best unbiased estimators one should consider only those
estimators which are based on the M.L.E. Under fairly general conditions,
it can also be shown that there is only one unbiased estimator based on
the M.L.E., and that estimator is the best unbiased estimator. Therefore,
in finding a sensible unbiased estimator for an estimand g(θ), we typically
start with the M.L.E. of g(θ). If it is unbiased, then we have found the
estimator we want. If it is not unbiased, we modify it to make it unbiased.
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Example 12. Let X1, . . . ,Xn be a random sample from a Poisson(θ)
distribution, where θ ∈ Θ = (0,∞) is unknown, and let the estimand be

g(θ) = Pθ(X = 0) = e−θ. Then the M.L.E. of g(θ) is δM(X ) = e−X and

the unbiased estimator based on the M.L.E. is δU(X ) = (1− 1
n )nX .

Solution. Let T =
∑n

i=1 Xi so that T ∼ Poisson(nθ) and X = T
n . We

want the estimator δ(X ) = δ(Tn ) such that

Eθ(δ(X )) = e−θ, ∀ θ > 0

⇔
∞∑
j=0

δ(
j

n
)
e−nθ(nθ)j

j!
= e−θ, ∀ θ > 0

⇔
∞∑
j=0

δ(
j

n
)
nj

j!
θj = e(n−1)θ, ∀ θ > 0

⇔
∞∑
j=0

δ(
j

n
)
nj

j!
θj =

∞∑
j=0

(n − 1)j

j!
θj , ∀ θ > 0

() Module 33 Statistical Inference Problems: Point Estimation 55 / 66



⇔ δ(
j

n
) = (1− 1

n
)j , j = 0, 1, . . . .

It follows that the unbiased estimator based on the M.L.E. is
δU(X ) = (1− 1

n )nX .
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Example 13.

Let X1, . . . ,Xn be a random sample from a N(µ, σ2) distribution, where
θ = (µ, σ2) ∈ Θ = {(z1, z2) : −∞ < z1 <∞, z2 > 0} is unknown, and let
the estimand be g(θ) = σ2. Show that the M.L.E. of (µ, σ2) is

(X , (n−1)S2

n ) and the unbiased estimator of g(θ) based on the M.L.E. is S2.
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Consistent Estimators

Let g(θ) be a real valued estimand and let X1,X2, . . . ,Xn be a random
sample based on which g(θ) is to be estimated. We consider the problem
of estimating g(θ) as n, the number of observations, goes to infinity.
Suppose that for each n, we have an estimator δn ≡ δn(X1, . . . ,Xn) of
g(θ). For any sensible estimator δn we would expect that, as n→∞, the
estimator δn would get close to g(θ) in some sense. Estimators defined
below possess such property.

Definition 9. An estimator δn(X1, . . . ,Xn), based on sample X1, . . . ,Xn,
is said to be a consistent estimator of (or consistent for estimating) g(θ)

if , for each θ ∈ Θ, δn(X )
p→ g(θ), as n→∞.
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Remark 5.

(a) An estimator δn(X ) is consistent for estimating g(θ) if and only if, for
every θ ∈ Θ,

lim
n→∞

Pθ(|δn(X )− g(θ)| > ε) = 0, ∀ ε > 0,

i.e., as n goes to infinity, the estimator δn(X ) would get close to the
estimand g(θ).

(b) Let Θ ⊆ R and suppose that the regularity conditions R1 are satisfied.
Then, by Corollary 1, the M.L.E of any real-valued estimand g(θ) is
consistent.
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Remark 5 continued

(c) Consider the method of moments for estimating the estimand
θ = (θ1, . . . , θp). Let Ak = 1

n

∑n
i=1 X

k
i , k = 1, . . . , p, and let

mk = Eθ(X k
1 ) = hk(θ), k = 1, . . . , p, say. By WLLN, Ak

P→ mk = hk(θ),
k = 1, . . . , p. If (m1, . . . ,mp) = (h1(θ), . . . , hp(θ)) is one-to-one function
of θ and if the inverse functions θi = gi (m1, . . . ,mp), i = 1, . . . , p, are
continuous in m1, . . . ,mp, then, as n→∞,

θ̂i = gi (A1, . . . ,Ap)
P→ gi (m1, . . . ,mp) = θi , i = 1, . . . , p, so that

θ̂i = gi (A1, . . . ,Ap) (i = 1, . . . , p) are consistent estimators of θi .

(d) If δn(X ) is consistent for estimating g(θ) and if {an}n≥1 and {bn}n≥1

are sequences of real numbers such that an → 1 and bn → 0, as n→∞,
then the estimator Tn(X ) = anδn(X ) + bn is also consistent for estimating
g(θ). Thus for an estimand, typically, many consistent estimators exist.
Also it follows that a consistent estimator may not be unbiased.
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Theorem 1.

(a) If, for each θ ∈ Θ, Bθ(δn) and Vθ(δn) go to zero, as n→∞, then δn is
consistent for estimating g(θ).

(b) If δn is consistent for estimating g(θ) and h(t) is a real-valued
continuous function, then h(δn) is consistent for estimating h(g(θ)).
Proof. (a) We have

Eθ(δn(X )− g(θ))2 = Eθ[(δn(X )− Eθ(δn(X )) + Eθ(δn(X ))− g(θ))2]

= Vθ(δn) + (Bθ(δn))2 → 0, as n→∞.
Thus,

0 ≤ Pθ(|δn(X )− g(θ)| > ε) ≤ Eθ(δn(X )− g(θ))2

ε2
→ 0, as n→∞,∀ε > 0.

⇒ lim
n→∞

Pθ(|δn(X )− g(θ)| > ε) = 0,∀ε > 0

⇒ δn(X )
p→ g(θ).

(b) Follows using the result done before.
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Example 14. Let X1,X2, . . . ,Xn be a random sample from a distribution
having p.d.f. f (x |θ) = e−(x−θ), if x ≥ θ and = 0, otherwise, where
θ ∈ Θ = (−∞,∞) is unknown. The M.L.E. of θ is δM(X ) = X(1) and the

unbiased estimator based on the M.L.E. is δU(X ) = X(1) − 1
n . Both of

these estimators are consistent for estimating θ.

Example 15. Let X1,X2, . . . ,Xn be a random sample from the Cauchy
distribution having p.d.f. f (x |θ) = 1

π ·
1

1+(x−θ)2 , −∞ < x <∞, where

θ ∈ Θ = (−∞,∞) is unknown. Then δn(X ) = X is neither unbiased nor
consistent for estimating g(θ).
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Criteria for Comparing Estimators

We discussed how to find the best unbiased estimator. Often estimators
with some bias may be preferred over the unbiased estimators provided
these estimators have some desirable properties which are not possessed by
the unbiased estimators. Thus, it is useful to have a criterion for
comparing estimators that are not necessarily unbiased. One such criterion
is the mean squared error (m.s.e.), defined below.

Definition 10. (a) The mean squared error (m.s.e.) of an estimator δ(X )
(possibly biased) of g(θ) is defined by

Mθ(δ) = Eθ
(
(δ(X )− g(θ))2

)
= Vθ(δ) + (Bθ(δ))2, θ ∈ Θ,

where Vθ(δ) is the variance of δ(X ) and Bθ(δ) is the bias of δ(X ).
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(b) For estimating g(θ), we say that the estimator δ1(X ) is better than
the estimator δ2(X ), under the m.s.e. criterion, if Mθ(δ1) ≤ Mθ(δ2),
∀ θ ∈ Θ, with strict inequality for at least one θ ∈ Θ.

Under fairly general conditions, it can be shown that the estimators
(possibly biased) which are not based on the M.L.E. are not sensible, i.e.,
given any estimator δ, which is not based on the M.L.E., there exists an
unbiased estimator based on the M.L.E., say δ∗, such that δ∗ has smaller
m.s.e. than δ, for each parametric configuration. Thus, for finding a
sensible estimator (not necessarily unbiased) of a real-valued estimand
g(θ), we typically start with the M.L.E. of g(θ) and then consider an
appropriate class, say D, of estimators based on the M.L.E., of which
M.L.E. is a particular member. This choice of class D is generally based
on intuitive considerations. We then try to find the estimator having the
smallest m.s.e. (if such an estimator exist) in this class D of estimators.
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Example 16. Let X1, . . . ,Xn (n ≥ 2) be a random sample from N(µ, σ2)
distribution, where θ = (µ, σ2) = {(z1, z2) : −∞ < z1 <∞, z2 > 0} is
unknown. Let (µ̂, σ̂2) be the M.L.E. of (µ, σ2). Then

(a) M.L.E. σ̂2 is not unbiased for estimating σ2;

(b) The unbiased estimator of σ2 based on the M.L.E. is
δU(X ) = n

n−1 σ̂
2 = 1

n−1

∑n
i=1(Xi − X )2;

(c) Among the estimators in the class D = {δc(X ) : δc(X ) = cσ̂2}, the
estimator δc0(X ) = c0σ̂

2 = 1
n+1

∑n
i=1(Xi − X )2, where c0 = n

n+1 , has the
smallest m.s.e., for each parametric configuration.
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Thank you for your patience
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