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Summary. In this paper we employ the topological-multifunctional mathematical
language and techniques of non-injective illposedness developed in [30] to formulate
a notion of ChaNoXity — Chaos, Nonlinearity, Complexity — in describing the
specifically nonlinear dynamical evolutionary processes of Nature. Non-bijective ill-
posedness is the natural mode of expression for chanoxity that aims to focus on the
nonlinear interactions generating dynamical evolution of real irreversible processes.
The basic dynamics is considered to take place in a matter-negmatter (regulat-
ing matter, defined below) kitchen space X × X of Nature that is inaccessible to
both the matter (X) and negmatter (X) components. These component spaces are
distinguished by opposing evolutionary directional arrows and satisfy the defining
property

(∀A ⊆ X, ∃A ⊆ X) s.t. (A ∪ A = ∅).
Dynamical equilibrium is considered to be represented by such competitively collab-
orating homeostatic states of the matter-negmatter constituents of Nature.

The reductionist approach to science today remains largely the dominant
model. It fosters the detailed study of limited domains in individual

subdisciplines within the vast tree of science. However, over the past 30
years or so, an alternative conceptual picture has emerged for the study of

large areas of science which have been found to share many common
conceptual features, regardless of the subdiscipline, be it physics, chemistry

or biology. Self-organization and complexity are the watchwords for this new
way of thinking about the collective behaviour of many basic but interacting
units. In colloquial terms, we are talking about systems in which ’the whole

is greater that the sum of parts’.

Complexity is the study of the behaviour of large collection of such simple,
interacting units, endowed with the potential to evolve with time. The

complex phenomena that emerge from the dynamical behaviour of these
interacting units are referred to as self-organizing. More technically,

self-organization is the spontaneous emergence of non-equilibrium structural
reorganizations on a macroscopic level, due to the collective interactions
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between a large number of (usually simple) microscopic objects. Such
structural organizations may be of a spatial, temporal or spatio-temporal

nature, and is thus an emergent property.

For self-organization to arise, a system needs to exhibit two properties: it
must be both dissipative and nonlinear. Self-organization and complexity are
essential scientific concepts for understanding integrated systems whether in
physics, biology or engineering · · · with a much more ’holistic’, yet equally

rigorous, scientific perspective compared with the reductionist methods, and
so provide new insights into many of the more intellectually challenging

concepts, including the large-scale structure of the Universe, the origin and
evolution of life on Earth (and more widely in the cosmos), consciousness,

intelligence and language.

There is, therefore, a general and conceptual framework for the description
of self-organizing phenomena, of a theoretical and essentially mathematical
nature. This more or less boils down to the theory of nonlinear dissipative

dynamical systems.

Coveney [8]

10.1 Introduction

A dissipative structure is an open, out-of-equilibrium, unstable system that
maintains its form and structure by interacting with its environment through
the exchange of energy, matter, and entropy, thereby inducing spontaneous
evolutionary convergence to a complex, and possibly chaotic, equilibrated
state. These systems maintain or increase their organization through exergy
destruction in a locally reduced entropy state by increasing the entropy of
the “global” environment of which they are a part. This paper applies the
mathematical language and techniques of non-bijective, and in particular non-
injective, ill-posedness and multifunctions introduced and developed in [30] to
formulate an integrated approach to dissipative systems involving chaos, non-
linearity and complexity (ChaNoXity), where a complex system is understood
to imply

◮ an assembly of many interdependent parts

◮ interacting with each other through competitive nonlinear collaboration

◮ leading to self -organized, emergent behaviour.1

1 Competitive collaboration — as opposed to reductionism — in the context of this
characterization is to be understood as follows: The interdependent parts retain
their individual identities, with each contributing to the whole in its own charac-
teristic fashion within a framework of dynamically emerging global properties of
the whole. A comparison with reductionism as summarized in Fig. 10.10c, shows
that although the properties of the whole are generated by the parts, the indi-
vidual units acting independently on their own cannot account for the emergent
global behaviour of the total.



272 A. Sengupta

We will show how each of these defining characteristics of complexity can be
described and structured within the mathematical framework of our multi-
functional graphical convergence of a net of functions (fα). In this programme,
convergence in topological spaces continues to be our principal tool, and the
particular topologies of significance that emerge are the topology of saturated
sets and the exclusion topology. We will demonstrate that a complex sys-
tem can be described as an association of independent expert groups, each
entrusted with a specific specialized task by a top-level coordinating com-
mand, that consolidates and regulates the inputs received from its different
constituent units each working independently of the others within the global
framework of the coordinating authority, by harmonizing and combining them
into an emerging whole; thus the complexity of a system, broadly speaking, is
the amount of information needed to describe it. In this task, and depending
on the evolving complexity of the dynamics, the coordinating unit delegates
its authority to subordinate units that report back to it the data collected at
its own level of authority.

Recall that
(i) a multifunction — which constitutes one of the foundational notions of

our work — and the non-injective function are related by

f is a non-injective function ⇐⇒ f− is a multifunction (10.1.1)

f is a multifunction ⇐⇒ f− is a non-injective function.

and
(ii) the neighbourhood of a point x ∈ (X,U) — which is a generalization

of the familiar notion of distances of metric spaces — is a nonempty subset
N of X containing an open set U ∈ U ; thus N ⊆ X is a neighbourhood of x
iff x ∈ U ⊆ N for some open set U of X. The collection of all neighbourhoods
of x

Nx
def
= {N ⊆ X : x ∈ U ⊆ N for some U ∈ U} (10.1.2)

is the neighbourhood system at x, and the subcollection U of U used in this
expression constitutes a neighbourhood (local) base or basic neighbourhood
system, at x. The properties

(N1) x belongs to every member N of Nx,

(N2) The intersection of any two neighbourhoods of x is another neigh-
bourhood of x: N,M ∈ Nx ⇒ N ∩ M ∈ Nx,

(N3) Every superset of any neighbourhood of x is a neighbourhood of x:
(M ∈ Nx) ∧ (M ⊆ N) ⇒ N ∈ Nx

characterize Nx completely and imply that a subset G ⊆ (X,U) is open iff
it is a neighbourhood of each of its points. Accordingly if Nx is an arbitrary
collection of subsets of X associated with each x ∈ X satisfying (N1)− (N3),
then the special class of neighbourhoods G

U = {G ∈ Nx : x ∈ B ⊆ G for some B ∈ Nx and each x ∈ G} (10.1.3)
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defines a unique topology on X containing a basic neighbourhood B at each
of its points x for which the neighbourhood system is the prescribed collection
Nx. Among the three properties (N1) − (N3), the first two now re-expressed
as

(NB1) x belongs to each member B of Bx.

(NB2) The intersection of any two members of Bx contains another mem-
ber of Bx: B1, B2 ∈ Bx ⇒ (∃B ∈ Bx : B ⊆ B1 ∩ B2).

are fundamental in the sense that the resulting subcollection Bx of Nx gener-
ates the full system by appealing to (N3). This basic neighbourhood system,
or local base, at x in (X,U) satisfies

Bx
def
= {B ∈ Nx : x ∈ B ⊆ N for each N ∈ Nx} (10.1.4)

which reciprocally determines the full neighbourhood system

Nx = {N ⊆ X : x ∈ B ⊆ N for some B ∈ Bx} (10.1.5)

as all the supersets of these basic elements.
The topology of saturated sets is defined in terms of equivalence classes

[x]∼ = {y ∈ X : y ∼ x ∈ X} generated by a relation ∼ on a set X; the
neighbourhood system Nx of x in this topology consists of all supersets of
the equivalence class [x]∼ ∈ X/ ∼. In the x-exclusion topology of all sub-
sets of X that exclude x (plus X, of course), the neighbourhood system of
x is just {X}. While the first topology provides, as in [30], the motive force
for an evolutionary direction in time, the second will define a complementary
negative space X of (associated with, generated by) X, with an oppositely
directed evolutionary arrow. With dynamic equilibrium representing a state
of homeostasis2 between the associated opposing motives of evolution, equi-

librium will be taken to mark the end of a directional evolutionary process
represented by convergence of the associated sequence to an adherence set.

2 Homeostasis (Greek, homoio-: same, similar; stasis: a condition of balance among
various forces, literally means “resistance to change”) is the property of an open
system to maintain its structure and functions by means of a multiplicity of
dynamical equilibria rigorously controlled by interdependent regulation mecha-
nisms. Homeostatic systems by opposing changes to maintain internal balance —
with failure to do so eventually leading to its death and destruction — represent
the action of negative feedbacks in sustaining a constant state of equilibrium by
adjusting its physiological processes.

Examples: (a) Homeostasis is the fundamental defining character of a healthy
living organism that allows it to function more efficiently by maintaining its in-
ternal environment within acceptable limits in competitive collaboration with its
environment: the internal processes are regulated according to need. With respect
to a parameter, an organism may maintain it at a constant level regardless of the
environment, while others can allow the environment to determine its parameter
through behavioral adaptations. It is the second type that is relevant for home-
ostasy. (b) The gravitational collapse of a cloud of interstellar matter raises its
temperature until the nuclear fuel at the center ignites halting the collapse. The
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Let f : X → Y be a function and f− : Y →→ X its multi-inverse: hence
ff−f = f and f−ff− = f− although f−f �= 1X and ff− �= 1Y necessarily.
Some useful identities for subsets A ⊆ X and B ⊆ Y are shown in Table
10.1, where the complement of a subset A ⊆ X is denoted by Ac = {x : (x ∈
X −A)∧ (x �∈ A)}. Let the f-saturation of A and the f-component of B on the
image of f

Sf (A) = f−f(A)

Cf (B) = ff−(B) = B
⋂

f(X)

define generalizations of injective and surjective mappings in the sense that
any f behaves one-one and onto on its saturated and component sets respec-
tively; in particular f is injective iff Sf (A) = A for all subsets A ⊆ X and
surjective iff B = Cf (B) for all B ⊆ Y . It is possible therefore to replace each
of the relevant assertions of Table 10.1 with the more direct injectivity and
surjectivity conditions on f . Indeed

f(x) = y =⇒ f(f−f(x)) = y = ff−(y)

=⇒ f(Sf (x)) = Cf (y) (10.1.6a)

x = f−(y) =⇒ f−f(x) = [x] = f−(ff−(y))

=⇒ Sf (x) = f−(Cf (y)) (10.1.6b)

demonstrate the bijectivity of f : Sf (x) → Cf (y); hence in the bijective inverse
notation the corresponding functional equation takes the form

f(Sf (A)) = Cf (B) ⇐⇒ Sf (A) = f−1(Cf (B)). (10.1.7)

This significant generalization of bijectivity of functions is noteworthy because
our notion of chaos and complexity is based on ill-posedness of non-bijective
functional equations, and one of the principal objectives of this work is to
demonstrate that the natural law of entropy increase is caused by the urge of

the system f(x) = y to impose an effective state of uniformity throughout X
by the generation of saturated and component open sets.

All statements of the first column of the table for saturated sets A =
Sf (A) apply to the quotient map q; observe that q(Ac) = (q(A))c. Moreover
combining the respective entries of both the columns, it is easy to verify the
following results for the saturation map Sf on saturated sets A = Sf (A).

(a) Sf (∪Ai) = ∪Sf (Ai): The union of saturated sets is saturated.

consequent thermal pressure gradient of expansion inhibits the dominant grav-
itational force of compression resulting in the birth of a star that is a state of
dynamical equilibrium between these opposing forces.

Homeostasis, as the ability or tendency of an organism or cell to maintain
internal equilibrium by adjusting its physiological processes, will be used in this
work to denote a state of dynamical equilibrium among various forces acting on
the system.
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f : X → Y f− : Y →→ X

1 A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2) B1 ⊆ B2 ⇒ f−(B1) ⊆ f−(B2)

⇐ iff A = Sf (A) ⇐ iff B = Cf (B)

f(A) ⊆ B ⇔ A ⊆ f−(B) f(A) ⊆ B ⇔ A ⊆ f−(B)

2 B ⊆ f(A) ⇒ f−(B) ⊆ A B ⊆ f(A) ⇐ f−(B) ⊆ A

iff A = Sf (A) iff B = Cf (B)

f−(∅) = ∅
3 A = ∅ ⇔ f(A) = ∅ f−(B) = ∅ ⇒ B = ∅

iff B = Cf (B)

4 f(A1) ∩ f(A2) = ∅ ⇒ f−(B1) ∩ f−(B2) = ∅ ⇐
A1 ∩ A2 = ∅ ⇐ iff A = Sf (A) B1 ∩ B2 = ∅ ⇒ iff B = Cf (B)

5 f(∪αAα) = ∪αf(Aα) f−(∪αBα) = ∪αf−(Bα)

6 f(∩αAα) ⊆ ∩αf(Aα), “=” iff A = Sf (A) f−(∩αBα) = ∩αf−(Bα)

7 f(Ac) = (f(A))c ∩ f(X) iff A = Sf (A) f−(Bc) = ((f−(B))c

Table 10.1. The role of saturated and component sets in a function and its inverse;
here A = Sf (A) and B = Cf (B) are to be understood to hold for all subsets A ⊆ X
and B ⊆ Y , with the conditions ensuring that f is in fact injective and surjective
respectively. Unlike f , f− preserves the basic set operations in the sense of 5, 6, and
7. This makes f− rather than f the ideal instrument for describing topological and
measure theoretic properties like continuity and measurability of functions.

(b) Sf (∩Ai) = ∩Sf (Ai): The intersection of saturated sets is saturated.

(c) X − Sf (A) = Sf (X − A): The complement of a saturated set is satu-
rated.

(d) A1 ⊆ A2 ⇒ Sf (A1) ⊆ Sf (A2)

(e) Sf (∩Ai) = ∅ ⇒ ∩Ai = ∅.
While properties (a) and (b) lead to the topology of saturated sets, the

third makes it a complemented topology when the (closed) complement of
an open set is also an open set. In this topology there are no boundaries
between sets which are isolated in as far as a sequence eventually in one of
them converging to points in the other is concerned.

As the guiding incentive for this work is an understanding of the precise
role of irreversibility and nonlinearity in the dynamical evolution of (irre-
versible) real processes, we will propose an index of nonlinear irreversibility
in the kitchen space X × X of Nature, wherein all the evolutionary dynam-
ics are postulated to take place. The physical world X is only a projection
of this multifaceted kitchen that is distinguished in having a complementary
“negative” component X interacting with X to generate the dynamical reality
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perceived in the later. This nonlinearity index, together with the dynamical
synthesis of opposites between opposing directional arrows associated with
X and its complementing negworld X, suggests a description of time’s ar-
row that is specifically nonlinear with chaos and complexity being the prime
manifestations of strongly nonlinear systems.

The entropy produced within a system due to irreversibilities within it [15]
are generated by nonlinear dynamical interactions between the system and its
negworld, and the objective of this paper is to clearly define this interaction
and focus on its relevance in the dynamical evolution of Nature.

10.2 ChaNoXity: Chaos, Nonlinearity, Complexity

10.2.1 Entropy, Irreversibility, and Nonlinearity

Here we provide a summary of the “modern” approach to entropy — which is
a measure of the molecular disorder of the system, generated as it does work:
entropy relates the multiplicity associated with a state so that if one state
can be achieved in more ways than another then it is more probable with a
larger entropy — due to De Donder [15], incorporating explicitly irreversibility
into the formalism of the Second Law of Thermodynamics3 thereby making it
unnecessary to consider ideal, non-physical, reversible processes for computing
(changes in) entropy. This follows from the original Clausius inequality

dS ≥ dQ

T

written as

dS = dS + dS, (10.2.1)

where dS is the change in the entropy of the system due to heat exchanged
by it with its exterior and dS, the “uncompensated heat” of Clausius, repre-
sents the entropy generated within the system from real irreversible processes
occurring in it. Although dS = dQ/T can be either positive or negative, dS

must always be positive due to the irreversibilities produced in the system,
implying that although entropy can either increase or decrease through en-
ergy transport across its boundary, the system can only generate and never

3 The Second Law of Thermodynamics for non-equilibrium processes essentially
requires the exergy (the maximum useful work that can be obtained from a sys-
tem at a given state in a specified environment, Eq. 10.2.2) of isolated systems
to be continuously degraded by diabatic irreversible processes that drive systems
towards equilibrium by generating entropy, eventually leading to a dead equilib-
rium state of maximum entropy. Statistically, the equilibrium state is interpreted
to represent the most probable state. For a closed system, entropy gives a quan-
titative measure of the amount of thermal energy not available to do work, that
is of the amount of unavailable energy.
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destroy entropy. In an isolated system since the energy exchange is zero, the
entropy will continue to increase due to effective irreversibilities, and reach the
maximum possible value leading to a steady state of dynamical equilibrium
in which all (irreversible) processes must cease. When the system exchanges
entropy with its surroundings, it is driven to an out-of-equilibrium state and
entropy producing irreversibilities begin to operate leading to a more probable
disordered state. The entropy flowing out of an adiabatic system must, by Eq.
(10.2.1), be larger than that flowing into it with the difference being equal
to the amount generated by the irreversibilities. The basic point, as will be
elaborated in the following, is that dissipative systems in communion with its
exterior utilize the exergy (or thermodynamic availability) to organize emerg-
ing structures within itself: for a system to be in a non-equilibrium steady
state, dS ≤ 0; hence dS must be negative of magnitude greater than or equal
to dS. The exergy

E = (U − Ueq) + P0(V − Veq) − T0(S − Seq) −
J
∑

j=1

µj,0(Nj − Nj,eq) (10.2.2)

of a system is a measure of its deviation from thermodynamic equilibrium with
the environment, and represents the maximum capacity of energy to perform
useful work as the system proceeds to equilibrium, with irreversibilities in-
creasing its entropy at the expense of exergy; here eq marks the equilibrium
state, and 0 represents the environment with which the system interacts.

In postulating the existence of an entropy function S(U, V,N) of the exten-
sive parameters U , V , and {N}J

j=1 of the internal energy, volume, and mole
numbers of the chemical constituents comprising a composite compound sys-
tem that is defined for all equilibrium states, we follow Callen [4] in postulating
that in the absence of internal constraints the extensive parameters assume
such values that maximize S over all the constrained equilibrium states. The
entropy of the composite system is additive over the constituent subsystems,
and is continuous, differentiable, and increases monotonically with respect to
the energy U . This last property implies that S(U, V,N) can be inverted in
U(S, V,N); hence

dU(S, V, {Nj}) =
∂U(S, V, {Nj})

∂S
dS +

∂U(S, V, {Nj})
∂V

dV

+

J
∑

j=1

∂U(S, V, {Nj})
∂Nj

dNj (10.2.3)

defines the intensive parameters

∂U

∂S

def
= T (S, V, {Nj}J

j=1), V, {Nj}held const (10.2.4)

∂U

∂V

def
= −P (S, V, {Nj}J

j=1), S, {Nj}held const (10.2.5)
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∂U

∂Nj

def
= µj(S, V, {Nj}J

j=1), S, V held const (10.2.6)

of absolute temperature T , pressure P , and chemical potential µj of the jth

component, from the macroscopic extensive ones. Inversion of (10.2.3) gives
the differential Gibbs entropy definition

dS(U, V, {Nj}) =
1

T (U, V, {Nj})
dU +

P (U, V, {Nj})
T (U, V, {Nj})

dV

−
J
∑

j=1

µj(U, V, {Nj})
T (U, V, {Nj})

dNj (10.2.7)

that provides an equivalent correspondence of the partial derivatives

(∂S/∂U)V,Nj
=

1

T (U, V, {Nj})
(10.2.8)

(∂S/∂V )U,Nj
=

P (U, V, {Nj})
T

(10.2.9)

(∂S/∂Nj)U,V = −
∑J

j=1 µ(U, V, {Nj})
T

(10.2.10)

with the intensive variables of the system.
In the spirit of the Pffafian differential form, dependence of the intensive

variables of the First Law

dU(S, V, {Nj}) = dQ(S, V, {Nj}) + dW (S, V, {Nj}) + dM(S, V, {Nj})
= dQ(S, V, {Nj}) − P (S, V, {Nj}) dV

+

J
∑

j=1

µj(S, V, {Nj}) dNj (10.2.11)

on the respective extensive macroscopic variables U , V , or Nj serves to de-
couple the (possibly nonlinear) bonds between them; this is necessary and
sufficient for the resultant thermodynamics to be classified as quasi-static or
reversible. These ideal states as pointed out in [4] are simply an ordered class
of equilibrium states, neutral with respect to time-reversal and without any
specific directional property, distinguished from natural physical processes
of ordered temporal successions of equilibrium and non-equilibrium states: a

quasi-static reversible process is a directionless collection of elements of an

ordered set.4 From the definition (10.2.4) of the absolute temperature T it
follows that under quasi-static conditions,

4 The most comprehensive view of irreversibility follows from the notion of a time-
(a)symmetric theory that requires the (non)existence of a backward process Pr :=
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dQ
def
= T (S) dS (10.2.12)

reduces the heat transfer dQ to formally behave work-like, permitting (10.2.11)
to be expressed in the combined first and second law form

dU(S, V, {Nj}) = T (S) dS − P (V ) dV +
J
∑

j=1

µ(Nj) dNj (10.2.13a)

dS(U, V, {Nj}) =
1

T (U)
dU +

P (V )

T (U)
dV −

J
∑

j=1

µ(Nj)

T (U)
dNj (10.2.13b)

which are just the integrable quasi-static versions of Eqs. (10.2.3) and (10.2.7).
Note that the total energy input and the corresponding entropy transfer in
this quasi-static case reduces to a simple sum of the constituent parts of the
change. For non quasi-static real processes, this linear superposition of the
solution into its individual components is not justified as the resulting Pfaffian
equation solves as the arbitrary U(S, V, {Nj}) = const. For any natural non-
cyclic real process therefore, the identification

dQ(S, V, {Nj}) def
= T (S, V, {Nj}) dS (10.2.14)

reduces (10.2.3) to the first law form (10.2.11) for real processes that no longer
decomposes into individual, non-interacting component parts like its quasi-
static counterpart (10.2.13a). Equation (10.2.14) is graphically expressed [15]
in the spirit of (10.2.1) as

dS =
dQ(S, V, {Nj})
T (S, V, {Nj})

=
dQ(S, V, {Nj})
T (S, V, {Nj})

+
dQ(S, V, {Nj})
T (S, V, {Nj})

= dS + dS, (10.2.15)

where the total entropy exchange is expressed as a sum of two parts: the first

{r(−t) : −tf ≤ t ≤ −ti} for every permissible forward process P := {s(t) :
ti ≤ t ≤ tf} of the theory; here r = Rs with R2 = 1, is the time-reversal of
state s. Although in contrast with mechanics thermodynamics has no equations
of motion, the second law endows it with a time-asymmetric character and a
thermodynamic process is irreversible iff its reverse Pr is not allowed by the theory,
iff time-symmetry is broken in the sense that an irreversible process cannot be
reversed without introducing some change in the surroundings, typically by work
transforming to heat. Reversible processes are useful idealizations used to measure
how well we are doing with real irreversible processes. Entropy change in the
universe is a direct quantification of irreversibility indicating how far from ideal
the system actually is: irreversibility is directly related to the lost opportunity of
converting heat to work.
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dS =
dQ
T

≷ 0 (10.2.16)

may be positive, zero or negative depending on the specific nature of energy
transfer dQ with the (infinite) exterior reservoir, but the second

dS =
dQ

T
≥ 0 (10.2.17)

representing the entropy produced by irreversible nonlinear processes within
the system is always positive. Equation (10.2.13b) for a composite body C =
A ∪ B of two parts A and B, each interacting with its own infinite reservoir
under the constraint U = UA + UB , V = VA + VB and N = NA + NB , yields
the Gibbs expression

dSC(U, V,N) =

[

1

TA

dUA +
1

TB

dUB

]

+

[

pA

TA

dVA +
pB

TB

dVB

]

−
[

µA

TA

dNA +
µB

TB

dNB

]

(10.2.18)

for the entropy exchanged by C in reaching a state of static equilibrium with its
infinite environment; here T , P and µ are the parameters of the reservoirs that
completely determine the internal state of C. This exchange of energy with
the surroundings perturbs the system from its state of equilibrium and sets up
internal irreversible nonlinear processes between the two subsystems, driving
C towards a new state of dynamic equilibrium that can be represented ([12],
[15]) in terms of flows of extensive quantities set up by forces generated by the
intensive variables. Thus for a composite dynamically interacting compound

system C consisting of two chambers A and B of volumes VA and VB filled with
two nonidentical gases at distinct temperatures, pressures, and mole numbers,
the entropy generated by nonlinear irreversible processes within the system
on removal of the partition between them, can be expressed in Gibbs form as

dSC(U, V,N) =

[

1

TA

− 1

TB

]

dUA +

[

pA

TA

− pB

TB

]

dVA −
[

µA

TA

− µB

TB

]

dNA

U = UA + UB , V = VA + VB, and N = NA + NB remain constants.
(10.2.19)

Each term on the right — a product of an intensive thermodynamic force
and the corresponding extensive thermodynamic flow — contributing to the
uncompensated heat [15] generated within the system from the nonlinear ir-
reversible interactions between its subsystems, is responsible for the increase
in entropy accompanying all natural processes leading to the eventual degra-
dation of energy in the universe to a state of inert uniformity.

The interaction of two finite subsystems is to be compared with the sta-
tic interaction between a finite system and an infinite reservoir. Contrasted
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with the later, for which the time evolution is unidirectional with the system
unreservedly acquiring the properties of the reservoir which undergoes no per-
ceptible changes resulting in the static equilibrium from passive interaction of
the system with its reservoir, the system-system interaction is fundamentally
different as it evolves bidirectionally such that the properties of the composite
are not of either of the systems, but an average of the individual properties
that defines an eventual state of dynamic interactive equilibrium. This distinc-
tion between passive and dynamical equilibria resulting respectively from the
uni- and bi-directional interactions is clearly revealed in Eqs. (10.2.18) and
(10.2.19), with bi-directionality of the later being displayed by the difference

form of the generalized forces. Accordingly, subsystems A and B have two di-
rectional arrows imposed on them: the first due to the evolution of the system
opposed by a reverse arrow arising from its interactive interaction with the
other, see Fig. 10.4. Evolution requires all macroscopic extensive variables —
and hence all the related microscopic intensive parameters — to be functions
of time so that equilibrium, in the case of (10.2.19) for example, demands

dSC

dt
= 0 =⇒

(

dUA

dt
= 0

)

∧

(

dVA

dt
= 0

)

∧

(

dNA

dt
= 0

)

⇐= (TA(t) = TB(t))
∧

(pA(t) = pB(t))
∧

(µA(t) = µB(t)).
(10.2.20)

While we return to this topic subsequently using the tools of directed sets
and convergence in topological spaces, for the present it suffices to note that
for an emerging, self-organizing, complex evolving system far from stable equi-
librium, the reductionist linear proportionality between cause and effect5 that
decouples the entropy change into two independent parts, one with the exte-
rior and the other the consequent internal generation as given by (10.2.15), is
open to question as these constitute a system of interdependent evolutionary
interlinked processes, depending on each other for their sustenance and con-
tribution to the whole. Thus, “life” forms in which dS, arising from the energy
exchanged as food and other sustaining modes with the exterior, depends on
the capacity dS of the life to utilize these resources, which in turn is regulated
by dS. These interdependent, non-reductionist, contributions of constituent
parts to the whole is a direct consequence of nonlinearity that effectively im-
plies f(αx1 + βx2) �= αf(x1) + βf(x2) for the related processes. The other
“non-life” example requires the change to be determined by such internal pa-
rameters as mass, specific heat and chemical concentration of the constituents
parts. Thus, for example, in the adiabatic mixing of a hot and cold body A
and B the equilibrium temperature, given in terms of the respective mole

5 Which, we recall, allows breaking up of the system into its constituent parts,
studying their micro-dynamics and putting them back together in a linear sum to
generate the macro-dynamics, thereby presuming that the macroscopic behaviour
of a system of a large number of interacting parts is directly proportional to the
character of its microscopic constituents.
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numbers N , specific heat c and temperature T , by

NAcA(TA − T ) = NBcB(T − TB) (10.2.21)

sets up a state of dynamical equilibrium in which the bi-directional evolu-
tionary arrow prevents A from annihilating B with the equilibrium condition
T = TA, P = PA, µ = µA. Putting the heat balance equation in the form

dQA + (−dQB) = 0, dQ = N c dT

suggests that the heat transfer out of a body, considered as a negative real
number, be treated as the additive inverse to the positive transfers into the
system. This sets up a one-to-one correspondence between two opposing di-
rectional real process that evolves to a state of dynamic equilibrium.

The basic feature of this evolutionary thermodynamics — based entirely
on (linear) differential calculus — is that it reduces the dynamics of Eqs.
(10.2.3) and (10.2.7) to a separation of the governing macroscopic extensive
variables, thereby raising the question of the validity of such decoupling of
the motive forces of evolution in strongly nonlinear, self-organizing, complex
dynamical systems of nature6. Such a separation of variables tacitly implies, as
in the example considered above, that the total energy exchange taking place

6 The following extracts from the remarkably explicit lecture MIT-CTP-3112 by
Michel [2], delivered possibly in 2000/2001, are worth recalling . Chaos is still not
part of the American university’s physics curriculum; most students get physics
degrees without ever hearing about it. The most popular textbook in classical
mechanics does not include chaos. Why is that? The answer is simple. Physicists
did not have the time to learn chaos, because they were fascinated by something
else. That something else was 20th century physics of relativity, quantum mechan-
ics, and their myriad of consequences. Chaos was not only unfamiliar to them; it
was slightly distasteful!

In offering an explanation for this, Baranger argues that in discovering calcu-
lus, Newton and Leibnitz provided the scientific world with the most powerful
new tool since the discovery of numbers themselves. The idea of calculus is sim-
plicity itself. Smoothness (of functions) is the key to the whole thing. There are
functions that are not smooth · · · . The discovery of calculus led to that of analysis
and after many decades of unbroken success with analysis, theorists became im-
bued with the notion that all problems would eventually yield to it, given enough
effort and enough computing power. If you go to the bottom of this belief you
find the following. Everything can be reduced to little pieces, therefore everything
can be known and understood, if we analyze it to a fine enough scale. The enor-
mous success of calculus is in large part responsible for the decidedly reductionist
attitude of most twentieth century science, the belief in absolute control arising
from detailed knowledge.

Nonetheless, chaos is the anti-calculus revolution, it is the rediscovery that cal-
culus does not have infinite power. Chaos is the collection of those mathematical
truths that have nothing to do with calculus. Chaos theory solves a wide variety
of scientific and engineering problems which do not respond to calculus.
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when the gases are allowed to mix completely is separable into independent
parts arising from changes in temperature, volume, and diffusion mixing of
the gases, with none of them having any effect on the others. Observing that
the defining property of a complex system responsible for its “complexity” is
the interdependence of its interacting parts leading to non-reductionism, this
contrary implication of independence of the extensive parameters conflicts
with the foundational tenets of chaos and complexity.

Nonetheless, it should be clear from the above considerations that a non-
isolated, “non-equilibrium” system can maintain a steady state of low entropy
not only by discarding its excess entropy to the surroundings, but more impor-
tantly by utilizing [15] a part of this generation by the nonlinearities within
itself to enhance its own state of organization consistent with the irreversibil-
ities. Thus when the heated earth at a high level of non-equilibrium insta-
bility radiates heat to the cooler atmosphere through evaporation, the earth-
atmosphere system is not scorched to the earth’s temperature but instead
stabilizes itself by “attracting, as it were, a stream of negative entropy upon
itself” [29], through condensation of the water vapour back to the earth that
essentially opposes this attempt to move the earth-atmosphere system away
from its stable equilibrium by acting a gradient dissipator of the temperature
difference. As the temperature difference increases, so does the opposition
making it more and more difficult for the system to be away from equilib-
rium. The Second Law of Thermodynamics for non-equilibrium systems —
recall footnote 3 — can accordingly be reformulated [27] to require that as
the system is forced away from thermodynamic equilibrium it utilizes every
possible avenue in “sucking orderliness from its environment” [29], to counter
the applied gradients, with its ability to oppose continued displacement in-
creasing with the gradient itself. For such systems the Second Law becomes a
law of continuity for the entropy transferred in and out of the system.

The objective of this paper is to propose an explicitly nonlinear, topological
formulation of dynamical evolution from an integrated chanoxity perspective
that focuses on nonlinearly generated self-organization, adaption, and emer-
gence of systems far from thermodynamic equilibrium. In this perspective, the
following observations of Bertuglia and Vaio [3] are worth noting.

Linear approximations become increasingly unacceptable the further away
we get from a condition of stable equilibrium. The world of classical science
has shown a great deal of interest in linear differential equations for a very
simple reason: apart from some exceptions, these are the only equations of
an order above the first that can be solved analytically. The simplicity of

linearization and the success that it has at times enjoyed have imposed the
perspective from which scientists observed reality, encouraging scientific

investigation to concentrate on linearity in its description of dynamic
processes. On one hand this led to the idea that the elements that can be
treated with techniques of linear mathematics prevail over nonlinear ones,
and on the other hand it ended up giving rise to the idea that linearity is
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intrinsically “elegant” because it is expressed in simple, concise formulae, and
that a linear model is aesthetically more “attractive” than a nonlinear one.

The practice of considering linearity as elegant encouraged a sort of
self-promotion and gave rise to a real scientific prejudice: mainly linear

aspects were studied. The success that was at times undeniably achieved in
this ambit increasingly convinced scholars that linearization was the right

way forward for other phenomena that adapted badly to linearization.

However, an arbitrary forced aesthetic sense led them to think (and at times
still leads us to think) that finding an equation acknowledged as elegant was,

in a certain sense, a guarantee that nature itself behaved in a way that
adapted well to an abstract vision of such mathematics.

Linear systems cannot generate dynamics that is sensitive to initial con-
ditions with non-repeating orbits that remain confined in a bounded region
of space. This defining character of chaos can be generated only by nonlin-
ear interactions leading to increasing unpredictability of the system’s future
with increasing time: nonlinearity produces unexpected outcomes, linearity
does not. Newtonian classical mechanics is reductionist and the solution of
the equations of motion are uniquely determined by the initial conditions for
all times.

10.2.2 Maximal Noninjectivity is Chaos

Chaos was defined in [30] as representing maximal non-injective ill-posedness
in the temporal evolution of a dynamical system and was based on the purely
set theoretic arguments of Zorn’s Lemma and Hausdorff Maximal Chain Theo-
rem. It was, however, necessary to link this with topologies because evolution-
ary directions are naturally represented by adherence and convergence of the
associated nets and filters, which require topologies for describing their even-
tual and frequenting behaviour. For this we found the topology of saturated
sets generated by the increasingly non-injective evolving maps to provide the
motivation for maximally non-injective, degenerate ill-posedness leading to the
concept of the ininality of topologies generated by a function f : X → Y that
is simultaneously image and preimage continuous. In this case, the topologies
on the range R(f) and domain D(f) of f are locked with respect to each other
as far as further temporal evolution of f is concerned by having the respective
topologies defined as the f-images in Y of f−-saturated open sets of X. Thus
Eqs. (10.1.6a, b), and (10.1.7) taken with the definitions7

7 If (fα : X → (Yα,Vα))α∈D is a family of functions into topological spaces
(Yα,Vα), then the topology generated by the subbasis {f−

α (Vα) : Vα ∈ Vα}α∈D

is the initial topology of X induced by the family (fα)α∈D. Reciprocally, if
(fα : (Xα,Uα) → Y )α∈D is a family of functions from topological spaces (Xα,Uα),
then the collection {G ⊆ Y : f−

α (G) ∈ Uα}α∈D is the final topology of Y of the
family (fα)α∈D. A topology that is both initial and final is ininal.
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IT{e;V} def
= {U ⊆ X : U = e−(V ), V ∈ V} (10.2.22a)

and
FT{U ; q} def

= {V ⊆ Y : q−(V ) = U, U ∈ U} (10.2.22b)

of initial and final topologies — that denote the coarsest (smallest) and finest
(largest) topologies in X and Y respectively making f continuous — implies
for open sets V ∈ V of Y and G ⊆ U ∈ U of X satisfying U = Sq(G) so that
q acts only on saturated open sets,

f(Sf (A)) = Cf (B)

{

IT
=⇒ (Se(U) = U) (e(U) = Ce(V ))
FT
=⇒ (q(Sq(G) = V ) (V = Cq(V ));

(10.2.23)

see also column 2, row 1 of Table 10.1. As these equations show, preimage and
image continuous functions need not be open functions: a preimage continuous
function is open iff e(U) is an open set in Y and an image continuous function
is open iff the q-saturation of every open set of X is also an open set. The
generation of new topologies on the domain and range of a function — which
will generally be quite different from the original topologies the spaces might
have possessed — by the evolving dynamics of increasingly nonlinear maps is
a basic property of the evolutionary process that constitutes the motive for
such dynamical changes. Putting implications (10.2.23) together yields

U, V ∈ IFT{U ; f ;V} ⇐⇒ (U = f−(V)) (f(U) = V) (10.2.24a)

that effectively renders both e and q open functions, and reduces to

U, V ∈ HOM{U ; f ;V} ⇐⇒ (U = f−1(V)) (f(U) = V) (10.2.24b)

for a bijection satisfying both Sf (A) = A, ∀A ⊆ X and Cf (B) = B, ∀B ⊆ Y ;
observe that the only difference between Eqs. (10.2.24a) and (10.2.24b) is in
the bijectivity of f .

There are two defining components, temporal and spatial, in any natural
evolutionary processes. However, these are equivalent in the sense that both
can be represented as pre-ordered sets with the additional directional property
of a directed set (D,)) which satisfies

(DS1) α ∈ D ⇒ α ) α () is reflexive)
(DS2) α, β, γ ∈ D such that (α ) β∧β ) γ) implies α ) γ () is transitive)
(DS3) For all α, β ∈ D, there exists a γ ∈ D such that α ) γ and β ) γ

with respect to the direction ). While the first two properties are obvious
and constitutes the preordering of D, the third replaces antisymmetry of an
order with the condition that every pair of elements of D, whether ordered
or not, always has a successor. This directional property of D, that imparts
to the static pre-order a sequential arrow by allowing it to choose a forward
path between possible alternatives when non-comparable elements bifurcate
at the arrow, will be used to model evolutionary processes in space and time.
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Besides the obvious examples N, R, Q, or Z of totally ordered sets, more exotic
instances of directed sets imparting directions to neighbourhood systems in
X tailored to the specific needs of convergence theory are summarized in
Table 10.2, where β ∈ D is the directional index. Although the neighbourhood

Directed set D Direction ) induced by D

DN = {N : N ∈ Nx} M ) N ⇔ N ⊆ M

DNt = {(N, t) : (N ∈ Nx)(t ∈ N)} (M, s) ) (N, t) ⇔ N ⊆ M

DNβ = {(N, β) : (N ∈ Nx)(xβ ∈ N)} (M,α) ≤ (N, β) ⇔ (α ) β) ∧ (N ⊆ M)

Table 10.2. Natural directions of decreasing subsets in (X,U) induced by some
useful directed sets of convergence theory. Significant examples of directed sets that
are only partially ordered are (P(X),⊆), (P(X),⊇); (F(X),⊇); (Nx,⊆), (Nx,⊇)
for a set X, We take Nx, suitably redefined if necessary, to be always a system of
nested subsets of X.

system DN at a point x ∈ X with the reverse-inclusion direction ) is the
basic example of natural direction of the neighbourhood system Nx of x, the
directed sets DNt and DNβ are more useful in convergence theory because
unlike the first, these do not require a simultaneous application of the Axiom
of Choice to every N ∈ Nx.

Chaos as manifest in the limiting adhering attractors is a direct conse-
quence of the increasing nonlinearity of the map under increasing iterations
and with the right conditions, appears to be the natural outcome of the charac-
teristic difference between a function f and its multi-inverse f−. Equivalence
classes of fixed points stable and unstable, as generated by the saturation op-
erator Sf = f−f , determine the ultimate behaviour of an evolving dynamical
system, and since the eventual (as also frequent) nature of a filter or net is
dictated by topology on the set, chaoticity on a set X leads to a reformula-
tion of the open sets of X to equivalence classes generated by the evolving
map f . In the limit of infinite iterational evolution in time resulting in the
multifunction Φ, the generated open sets constitute a basis for a topology on
D(f) and the basis for the topology of R(f) are the corresponding Φ-images
of these equivalent classes. It follows that the motivation behind evolution
leading to chaos is the drive toward a state of the dynamical system that
supports ininality of the limit multi Φ8. In this case therefore, the open sets of

8 For the logistic map fλ(x) = λx(1 − x) with chaos setting in at λ = λ∗ =
3.5699456, this drive in ininality implies an evolution toward values of the spatial
parameter λ ≥ λ∗; this is taken to be a spatial parameter as it determines the
degree of surjectivity of fλ. Together with the temporal evolution in increasing
noninjectivity for any λ, this comprises the full evolutionary dynamics of the
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Fig. 10.1. Generation of a multifunctional inverse x = f−(y) of the functional
equation f(x) = y for f : X → X; here G : Y → XB is a generalized inverse of
f because fGf = f and GfG = G that follows from the commutativity of the
diagrams. g and h are the injective and surjective restrictions of f ; these will be
topologically denoted by their generic notations e and q respectively.

the range R(f) ⊆ X are the multi images that graphical convergence gener-
ates at each of these inverse-stable fixed points. As readily verified from Fig.
10.1, X has two topologies imposed on it by the dynamics of f : the first of
equivalence classes generated by the limit multi Φ in the domain of f and the
second as Φ-images of these classes in the range of f . Hence while subdia-
grams X − (XB,FT{U ; q})− (f(X),U2) and (XB,U1)− (f(X), IT{e;U})−X
apply to the final and initial topologies of XB and f(X) respectively, their
superposition X−(XB,FT{U ; q})−(f(X), IT{e;U})−X under the additional

requirement of a homeomorphic fB leads to the conditions U1 = IT{g;U} and
U2 = FT{U ;h} that XB and f(X) must possess. For this to be possible,

FT{U ; q} = IT{g;U}
IT{e;U} = FT{U ;h}

requires the image continuous q and the preimage continuous e to be also be
open functions which translates to the ininality of f on (X,U), and hence for
the topology of X to be simultaneously the direct and inverse images of itself
under f ; compare Eq. (10.2.24a). Since the map f and the topology U of X
are already provided, this is interpreted to mean that the increasing nonlinear

logistic map. These two distinct dynamical mechanisms of increasing surjectivity
and decreasing injectivity are not independent, however. Thus λ — which may
be taken to represent the energy exchanges of all possible types that the system
can have with the surroundings — determines the nature of the internal forward-
backward stasis that leads to the eventual equilibrium of the system with its
environment.
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ill-posedness of the time-iterates of f is driven by ininality of the maximally
“degenerate” ill-posed limit relation Φ on X2. In this case Φ acts as a non-
bijective open and continuous relation that forces the sequence of evolving
functions (fn) on X to eventually behave, by (10.1.7), homeomorphically on
the saturated open sets of equivalence classes and their fn-images in X. A
homeomorphism, by establishing an equivalence between spaces (X,U) and
(Y,V) — algebraically through bijectivity and topologically by setting up a
one-to-one correspondence between the respective open sets — renders the
spaces as “essentially the same”, with the non-bijective ininal function acting
as an effective bijection f : Sf (A) → Cf (B) for all subsets A and B between X
and Y . For a function defined on a space X, this means that, under ininality,
the domain and range spaces are “effectively the same” thereby precluding
any further interaction between them, which corresponds to a condition of
equilibrium entropic death. We define the resulting ininal topology on X to
be the chaotic topology on X associated with f . Neighbourhoods of points in
this topology cannot be arbitrarily small as they consist of all members of the
equivalence class to which any element belongs; hence a sequence converging
to any of these elements necessarily converges to all, and the eventual objective
of chaotic dynamics is to generate a topology in X (irrespective of the original
U) with respect to which elements of the space are grouped together in large
equivalence classes such that if a net converges simultaneously to points x �=
y ∈ X then x ∼ y: x is of course equivalent to itself while x, y, z are equivalent
to each other iff they are simultaneously in every open set where the net
may eventually be in. This signature of chaos eradicates existing separation
properties of the space: it makes X uniformly homogeneous and flat, devoid
of any interaction inducing inducement among its parts, signifying thereby
“death”.

The generation of a new topology on X by the dynamics of f on X is a
consequence of the topology of pointwise biconvergence T defined on the set
of relations Multi((X,U), (Y,V)), [30]. This generalization of the topology of
pointwise convergence defines neighbourhoods of f in Multi((X,U), (Y,V)) to
consist of those functions in (Multi((X,U), (Y,V)), T ) whose images at any
point x ∈ X lie not only close enough to f(x) ∈ Y (this gives the usual
pointwise convergence) but additionally whose inverse images at y = f(x)
contain points arbitrarily close to x. Thus the graph of f apart from being
sufficiently close to f(x) at x in V ∈ V, but must also be constrained such that
f−(y) has at least one branch in the open set U ∈ U about x. This requires all
members of a neighbourhood Nf of f to “cling to” f as the number of points
on the graph of f increases with the result that unlike for simple pointwise
convergence, no gaps in the graph of the limit relation is possible not only on
the domain of f but on its range too.

For a given integer I ≥ 1, the open sets of (Multi(X,Y ), T ) are

B((xi), (Vi); (yi), (Ui)) = {g ∈ Map(X,Y ) : (g(xi) ∈ Vi)
∧

(g−(yi)
⋂

Ui �= ∅) , i = 1, 2, · · · , I}, (10.2.25)
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where (xi)
I
i=1 ∈ X, (yi)

I
i=1 ∈ Y , (Ui)

I
i=1 ∈ U , (Vi)

I
i=1 ∈ V are chosen arbitrar-

ily with reference to (xi, f(xi)). A local base at f , for (xi, yi) ∈ Graph(f), is
the set of functions of (10.2.25) with yi = f(xi), and the collection of all local
bases Bα = B((xi)

Iα

i=1, (Vi)
Iα

i=1; (yi)
Iα

i=1, (Ui)
Iα

i=1), for every choice of α ∈ D, is
a base TB of (Multi(X,Y ), T ); note that in this topology (Map(X,Y ), T ) is
a subspace of (Multi(X,Y ), T ).

The basic technical tool needed for describing the adhering limit relation
in (Multi(X,Y ), T ) is a generalization of the topological concept of neigh-
bourhoods to the algebraic concept of a filter which is a collection of subsets
of X satisfying

(F1) The empty set ∅ does not belong to F ,

(F2) The intersection of any two members of a filter is another member of
the filter: F1, F2 ∈ F ⇒ F1 ∩ F2 ∈ F ,

(F3) Every superset of a member of a filter belongs to the filter: (F ∈
F) ∧ (F ⊆ G) ⇒ G ∈ F ; in particular X ∈ F ,

and is generated by a subfamily (Bα)α∈D = FB ⊆ F of itself, known as the
filter-base, characterized by

(FB1) There are no empty sets in the collection FB: (∀α ∈ D)(Bα �= ∅)
(FB2) The intersection of any two members of FB contains another mem-

ber of FB: Bα, Bβ ∈ FB ⇒ (∃B ∈ FB : B ⊆ Bα ∩ Bβ).

Hence any family of subsets of X that does not contain the empty set and
is closed under finite intersections is a base for a unique filter on X, and the
filter-base

FB def
= {B ∈ F : B ⊆ F for each F ∈ F} (10.2.26)

determines the filter

F = {F ⊆ X : B ⊆ F for some B ∈ FB} (10.2.27)

as all its supersets. Since filters are purely algebraic without any topolog-
ical content, to use it as a tool of convergence, a comparison of (F1)-(F3)
and (FB1)-(FB2) with (N1)-(N3) and (NB1)-(NB2) of Sec. 10.1 show that
the neighbourhood system Nx at x is the neighbourhood filter at x and any
local base at x is a filter-base for Nx and generally for any subset A of X,
{N ⊆ X : A ⊆ Int(N)} is a filter on X at A. All subsets of X containing a
point p ∈ X is the principal filter FP(p) on X at p, and the collection of all
supersets of a nonempty subset A of X is the principal filter FP(A) at A. The
singleton sets {{x}} and {A} are particularly simple examples of filter-bases
that generate the principal filters at {x} and A; other useful examples that
we require subsequently are the set of all residuals

Res(D) = {Rα : Rα = {β ∈ D : α ) β}}
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of a directed set D, and the neighbourhood systems Bx and Nx. By adjoining
the empty set to the principal filters yields the p-inclusion and A-inclusion
topologies on X respectively9.

The utility of filters in describing convergence in topological spaces is be-
cause a filter F on X can always be associated with the net χF : DFx → X
defined by

χF (F, x)
def
= x (10.2.28)

where DFx = {(F, x) : (F ∈ F)(x ∈ F )} is the directed set with direction
(F, x) ) (G, y) ⇒ (G ⊆ F ); reciprocally a net χ : D → X corresponds to the
filter-base

FBχ
def
= {χ(Rα) : Res(D) → X for all α ∈ D}, (10.2.29)

with the corresponding filter Fχ being obtained by taking all supersets of
the elements of FBχ. Filters and their bases are extremely powerful tools for
maximal, non-injective, degenerate ill-posedness in the context of the algebraic
Hausdorff Maximal Principle and Zorn’s Lemma, that is now summarized
below10.

Let f be a noninjective function in Multi(X) and I(f) be the number of
injective branches of f and let

F = {f ∈ Multi(X) : f is a noninjective function on X} ∈ P(Multi(X))

be the collection of all noninjective functions on X satisfying the properties

(a) For every α ∈ D, F has the extension property

(For any fα ∈ F )(∃fβ ∈ F ) : I(fα) ≤ I(fβ).

Define a partial order ) on Multi(X) as

I(fα) ≤ I(fβ) ⇐⇒ fα ) fβ , (10.2.30)

with I(f) := 1 for the smallest f . This is actually a preorder on Multi(X) in
which all function with the same number of injective branches are equivalent

9 A filter is almost a topology: both are closed under finite intersections and ar-
bitrary unions, and both contain the base set X. It is only the empty set that
must always be in the topology but never in a filter; adding it to a filter makes
it a special type of topology that might be termed a filtered topology. Whereas
any arbitrary family of sets can generate a topology as its subbase through finite
intersections followed by arbitrary unions, the family must satisfy the finite inter-
section property before qualifying as a filter subbase; hence, every filter subbase
is a topological subbase but not conversely.

10 Hausdorff Maximal Principle (HMP): Every partially ordered set has a max-
imal chain.

A partially ordered set X is said to be inductive if every chain of X has an
upper bound in X.
Zorn’s Lemma: Every inductive set has at least one maximal element.
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to each other. Note that Multi(X) has two orders imposed on it: the first )
between its elements f , and the second the usual ⊆ that orders subsets of
these functional elements.

(b) Let

X = {C ∈ P(F ) : C is a chain in (Multi(X),))} ∈ P2(Multi(X)) (10.2.31)

be a collection of chains in Multi(X) with respect to the order (10.2.30) where

Cν = {fα ∈ Multi(X) : fα ) fν} ∈ P(Multi(X)), ν ∈ D, (10.2.32)

are the chains of non-injective functions where fα ∈ F is to be identified
with the iterates f i, the number of injective branches I(f) depending on i.
The chains are to be built from the smallest C0 = D the domain of f , by
application of a choice function gc that generates the immediate successor

Cj := g(Ci) = Ci

⋃

gc(G(Ci) − Ci) ∈ X

of Ci by picking one from the many

G(Ci) = {f ∈ F − Ci : {f}
⋃

Ci ∈ X}

that Ci may possibly possess. Application of g to C0 n-times generates the
chain Cn = {D, f(D), · · · , fn(D)}, and the smallest common chain

C = {Cj ∈ P(Multi(X)) : Ci ⊆ Ck for i ≤ k} ⊆ X (10.2.33)

= {D, {D, f(D)}, {D, f(D), f2(D)}, · · · } D := C0

of all the possible g-towered chains {Ci}i=0,1,2,··· of Multi(X) constitutes a
principal filter of totally ordered subsets of (Multi(X),⊆) at C0. Notice that
while X ∈ P2(Multi(X)) is a set of sets, C ∈ P(Multi(X)) is relatively simpler
as a set of elements of f ∈ Multi(X), which at the base level of the tree of
interdependent structures of Multi(X), is canonically the simplest.

To continue further with the application of Hausdorff Maximal Principle
to the partially ordered set (X ,)) of sets, it is necessary to postulate that

(i) There exists a smallest element C0 in X with no predecessor,
(ii) Every element C of X has an immediate successor g(C) in X ; hence

there is no element of X lying strictly between C and g(C), and
(iii) X is an inductive set so that every chain C of (X ,)) has a supremum

supX (C) = ∪C∈CC in X .

Any subset T of X satisfying these properties is known as a tower ; X is of
course a tower by definition. The intersection of all possible towers of X is the
towered chain C of X , Eq. (10.2.33). Criterion (iii) is especially crucial as it
effectively disqualifies (F,)) as a likely candidate for HMP: the supremum of
the chains of increasingly non-injective functions need not be a function, but
is more likely to be a multifunction. Hence X in the conditions above is the
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Fig. 10.2. Application of Zorn’s Lemma to a partially ordered set F of non-injective
functions f in Multi(X). C = {D, {D, f(D)}, {D, f(D), f2(D)}, · · · } is a chain of
towered chains of functions in Multi(X) with C0 = D, the domain of f . Notice that
to obtain a maximal Φ at the base level Multi(X), it is necessary to go two levels
higher: X ∈ P2(Multi(X)) → C ∈ P(Multi(X)) → Φ ∈ Multi(X) is a three-tiered
structure with the two-tiered HMP feeding to the third of Zorn’s Lemma.

space of relations, and it is necessary to consider C of (10.2.32) as a subset
of this Multi(X) rather than of F . The careful reader cannot fail to note
that the requirement of inductivity of X effectively leads to an “extension”
of Map(X) to Multi(X) where the supremum of the chain of non-injective
functions can possibly lie. However since this is purely in an algebraic setting
without topologies on the sets, the supremum constitutes only a static cap on
the family of equilibrium ordered states: the chains being only ordered and
not directed are devoid of any dynamical evolutionary property.

(c) The Hausdorff Maximal Principle applied to (X ,⊆) now yields

sup
C

(C) = C+ = {fα, fβ , fγ , · · · }

= {D, f(D), f2(D), · · · } = g(C+) ∈ C (10.2.34)

as the supremum of C in C, defined as a fixed-point of the tower generator g,
without any immediate successor. Identification of this fixed-point supremum
as one of the many possible maximal elements of (X ,⊆) completes the appli-
cation of Hausdorff Principle, yielding C+ as the required maximal chain of
(X ,⊆).

The technique of HMP is of interest because it presents a graphic step-wise
algorithmic rule leading to an equivalent filter description and the algebraic
notion of a chained tower. Not possessing any of the topological directional
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properties associated with a net or sequence, the tower comprises an ideal
mathematical vocabulary for an ordered succession of equilibrium states of a
quasi-static, reversible, process. The directional attributes of convergence and
adherence must be externally imposed on towered filters like C by introducing
the neighbourhood system: a filter F converges to x ∈ (X,U) iff Nx ⊆ F .

(d) Returning to the partially ordered set (Multi(X),)), Zorn’s Lemma
applied to the maximal chained element C+ of the inductive set X finally
yields the required maximal element Φ ∈ Multi(X) as an upper bound of the
maximal chain (C+,)). Because this limit need not in general be a function,
the supremum does not belong to the towered chain having it as a fixed point,
and may be considered as a contribution of the inverse functional relations
(f−

α ) in the following sense. From Eq. (10.1.1), the net of increasingly non-
injective functions of Eq. (10.2.30) implies a corresponding net of decreasingly
multivalued functions ordered inversely by the relation fα ) fβ ⇔ f−

β ) f−
α .

Thus the inverse relations which are as much an integral part of graphical con-
vergence as are the direct relations, have a smallest element belonging to the
multifunctional class. Clearly, this smallest element as the required supremum
of the increasingly non-injective tower of functions defined by (10.2.30), serves
to complete the significance of the tower by capping it with a “boundary” ele-
ment that can be taken to bridge the classes of functional and non-functional
relations on X.

Having been assured of the existence of a largest element Φ ∈ Multi(X),
we now proceed to construct it topologically. Let (χi := f i(A))i∈N for a subset
A ⊆ X that we may take to be the domain of f , correspond to the ordered
sequence (10.2.30). Using the notation of (10.2.29), let the sequences χ(Ri) =
∪j≥if

j(A) for each i ∈ N generate the decreasingly nested filter-base

FBχ =







⋃

j≥i

f j(A)







i∈N

=







⋃

j≥i

f j(x)







i∈N

, ∀x ∈ A, (10.2.35)

corresponding to the sequence of functional iterates (f j)j≥i∈N. The existence
of a maximal chain with a maximal element guaranteed by the Hausdorff
Maximal Principle and Zorn’s Lemma respectively implies a nonempty core
of FBχ. We now identify this filterbase with the neighbourhood base at Φ and
thereby define

Φ(A)
def
= adh( FBχ)

=
⋂

i≥0

Cl(Ai), Ai = {f i(A), f i+1(A), · · · } (10.2.36)

as the attractor of A, where the closure is with respect to the topology of point-
wise bi-convergence induced by the neighbourhood filter base FBχ. Clearly the
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attractor as defined here is the graphical limit of the sequence of functions
(f i)i∈N with respect to the directed sets of Table 10.2. This attractor repre-
sents, in the product space X × X, the converged limit of the bi-directional
evolutionary dynamics occurring in the kitchen X ×X that induces the image
Φ(A) in X. The exclusion space X is not directly observable, being composed
of complementary negelements x that correspond in an unique, one-to-one
fashion to the corresponding defining observables x ∈ X, just as the negative
reals — which are not physically directly observable either — are attached in
a one-to-one fashion with their corresponding defining positive counterparts
by

r + (−r) = 0, r ∈ R+. (10.2.37)

The exclusion space (X,U) introduced next is necessary for the understanding
of bi-directional evolutionary process responsible for a synthesis of opposites
of two sub-systems competitively collaborating with each other. The basic
example of an exclusion space is the negative reals with a forward arrow of
the decreasing negatives resulting from an exclusion topology U− generated
by the topology U+ of the observable positive reals R+. This generalization
of the additive inverse of the real number system to sets follows.

The Negative Exclusion Space of a Topological Space

Postulate NEG-1. The Negative X of a set X.11 Let X be a set and
suppose that for every x ∈ X there exists a negative element x ∈ X with the
property that

X
def
= {x : {x}⋃ {x} = ∅} (10.2.38a)

defines the negative, or exclusion, set of X. This means that for every subset A
of X there is a complementary neg(ative)set A ⊆ X associated with (generated

by) it such that

A
⋃

G
def
= A − G, G ←→ G, (10.2.38b)

implies A∪A = ∅. Hence a neg-set and its generating set act as relative disci-

pliners of each other in restoring a measure of order in the evolving confusion,
disquiet and tension, with the intuition of the set-negset pair “undoing”, “con-
trolling”, or “stabilizing” each other. The complementing neg-element is an
unitive inverse of its generating element, with ∅ the corresponding identity

and G the physical manifestation of G. Thus for r > s ∈ R+, the physical
manifestation of any −s ∈ R+(≡ R−) is the smaller element (r − s) ∈ R+.

As compared with the directed set (P(X),⊆) that induces the natural di-
rection of decreasing subsets of Table 10.2, the direction of increasing supersets

induced by (P(X),⊇) — which understandably finds no ready application in
convergence theory — proves useful in generating a co-topology U− on (X,U+)
as follows. Let (x0, x1, x2, · · · ) be a sequence in X converging to x∗ ∈ X with

11 These quantities will be denoted by fraktur letters.
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reference to any of the reverse-inclusion directions of decreasing neighbour-
hoods of Table 10.212, and consider the backward arrow induced at x∗ by the
directed set (P(X),⊇) of increasing supersets at x∗. As the reverse sequence
(x∗, · · · , xi+1, xi, xi−1, · · · ) does not converge to x0 unless it is eventually in
every neighbourhood of this initial point, we employ the closed-open subsets

Ni − Nj =

{

(Ni − Nj)
⋂

Ni, (open)

(Ni − Nj)
⋂

(X − Nj) (closed)
(10.2.39)

(j > i) in the inclusion topology U+ of X with xi ∈ Ni − Ni+1, Ni ∈ Nx∗
, to

define an additional exclusion topology U− on (X,U+) as follows. First recall
that whereas the x-inclusion topology U+ of X comprises, together with ∅,
all subsets of X that include x with the neighbourhood system Nx being
just these non-empty subsets of X, the x-exclusion topology is, along with X,
all the subsets P(X − {x}) that exclude x. The A ⊆ X exclusion topology
{P(X−A), X} therefore consists of all subsets of X that do not intersect A and
the (X−A)-exclusion topology {P(A), X} comprises, with X, only the subsets
of A. Since Nx = {X} and Ny �=x = {{y}} are the neighbourhood systems at
x and any y �= x in the x-exclusion topology, it follows that while every net
must converge to the defining point of its own topology, only the eventually
constant net {y, y, y, · · · } converges to any y �= x13. The exclusion topology
of x therefore has the remarkable property of compelling every other element
of X to either submit to the dictum of x by being in its sphere of influence,
or else to effectively isolate any other member of X from establishing its own
sphere of influence. All directions with respect to x are consequently rendered
equivalent; hence the directions of {1/n}∞n=1 and {n}∞n=1 are equivalent in R+

as they converge to 0 in its exclusion topology, and this basic property of the
exclusion topology induces an opposing direction in X.

It is now possible to postulate with respect to the directed set DNi =
{(Ni, i) : (Ni ∈ Nx∗

)(xi ∈ Ni)} of Table 10.2 and a sequence (xi)i≥0 in
(X,U+) converging to x∗ = ∩ i≥0Cl(Ni) ∈ X, that

Postulate NEG-2. The x0-exclusion topology U− of (X,U+). There ex-
ists an increasing sequence of negelements (xi)i≥0 of X that converges to x∗ in
the x∗-inclusion topology U of X generated by the X-images of the neighbour-
hood system Nx∗

of (X,U+). Since the only manifestation of neg-sets in the
observable world is their regulating property, the X-increasing sequence (xi)i≥0

converges to x∗ in (X,U) if and only if the sequence (x0, x1, x2, · · · ) converges
to x∗ in (X,U+). Affinely translated to X, this means that the x∗-inclusion

12 We henceforth adopt the convention that the arrow induced by the inclusion
topology of the real world is the forward arrow of the system, and the exclusion
neg-matter manifests in this real world as its backward arrow. The forward arrow
therefore corresponds to the increasing direction of an appropriate pre-ordering
of the real physical world.

13 I thank Joseph T. H. Lo for his clarifications on the subtleties of the exclusion
topology, Private Communication, May 2004.
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arrow in (X,U) transforms to an x0-exclusion arrow in (X,U+) generating an
additional topology U− in X that opposes the arrow converging to x∗. This
direction of increasing supersets of {x∗} excluding x0 associated with U− of
Table 10.3, is to be compared with the natural direction of decreasing subsets

containing x∗ in (X,U+), Table 10.2. We take the reference natural direc-
tion in X ∪ X to be that of X pulling the inclusion sequence (x0, x1, x2, · · · )
to x∗; hence the decreasing subset direction in X of the inclusion sequence
(x0, x1, x2, · · · , x∗) appears in X as an exclusion sequence converging to x0 be-
cause any sequence in an exclusion space must necessarily converge to the
defining element in its own topology. In this perspective, the left side of Eq.
(10.2.38b), read in the more familiar form a+(−b) = a− b with a, b ∈ R+ and
−b := b ∈ R+, represents “+” evolution in the base kitchen of Nature, which
is then served in its bi-directional physical-world manifestation on the dining-
table of the right side supporting retraction along the “−” direction. At the
risk of an apparent “abuse of language”, (X,U) will be termed the exclusion

space of (X,U+).

Directed set D Direction ) induced by D

DN = {N : N ∈ Nx} M ) N ⇔ M ⊆ N

DNt = {(N, t) : (N ∈ Nx)(t ∈ N)} (M, s) ) (N, t) ⇔ M ⊆ N

DNβ = {(N, β) : (N ∈ Nx)(xβ ∈ N)} (M, α) ≤ (N, β) ⇔ (α ) β) ∧ (M ⊆ N)

Table 10.3. Natural directions of increasing supersets in (X, U) is to be compared
with Table 10.2 of the natural reverse directions in (X,U). The direction of coevents
in X is opposite to that of X in the sense that the temporal sequence of images of
events in X opposes that in X and the order of occurrence of events induced by the
coworld appear to be reversed to the physical observer stationed in X.

Although the backward sequence (xj)j=··· ,i+1,i,i−1,··· in (X,U+) does not
converge, the effect of (xi)i≥0 of X on X is to regulate the evolution of the
forward arrow (xi)i≥0 to an effective state of stasis of dynamical equilibrium,
that becomes self-evident on considering for X and X the sets of positive and
negative reals, and for x∗, x∗ a positive number r and its negative inverse im-
age −r. The existence of a negelement x ↔ x in X for every x ∈ X requires all
forward arrows in X to have a matching forward arrow in X that actually ap-

pears backward when viewed from X. It is this opposing complimentary effect
of the apparently backward-X sequences on X — responsible by (10.2.38b)
for moderating the normal uni-directional evolution in X — that is useful in
establishing a stasis of dynamical balance between the opposing forces gener-
ated in the composite of a compound system with its environment. Obviously,
the evolutionary process ceases when the opposing influences in X due to it-
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(X,U+) (X,U−)

T0
(∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y} (∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y}
= ∅) ∨ (∃M ∈ Ny : M ∩ {x} = ∅) �= ∅) ∨ (∃M ∈ Ny : M ∩ {x} �= ∅)

T1
(∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y} (∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y}
= ∅) ∧ (∃M ∈ Ny : M ∩ {x} = ∅) �= ∅) ∧ (∃M ∈ Ny : M ∩ {x} �= ∅)

T2
(∀x �= y ∈ X) (∃N ∈ Nx ∧ M ∈ Ny) (∀x �= y ∈ X) (∃N ∈ Nx ∧ M ∈ Ny)

: (M ∩ N = ∅) : (M ∩ N �= ∅)

Table 10.4. Comparison of the separation properties of (X,U+) and its inhibitor
(X,U−).

self and that of its moderator X balance out marking a state of dynamic
equilibrium.

It should be noted that the moderating image X of X needs to be en-
dowed with inverse inhibiting properties if Eq. (10.2.38b) is to be meaningful
which leads to the separation properties of the conjugate spaces (X,U+) and
(X,U) as shown in Table 10.4. Significantly, the exclusion space is topologi-
cally distinguished in having its sequences converge with respect to the only
neighbourhood X of the limit point, a property that leads as already pointed
out earlier to the existence of a multiplicity of equivalent limits in large neigh-
bourhoods of x0 to which the backward sequences in X converges, even when
(X,U) is Hausdorff. In the context of iterational evolution of functions that
concerns us here, that the function-multifunction asymmetry of (10.1.1) in-
troduced by the non-injectivity of the iterates is directly responsible for the
difference in the separation properties of U+ and U−, which in turn prohibits
the system from annihilating B mentioned earlier and forces it to adopt the
forward-backward stasis of opposites. Recalling that non-injectivity of one-
dimensional maps translate to pairs of injective branches with positive and
negative slopes, we argue with reference to Fig. 10.3 that whereas branches
with positive slope represent matter, those with negative slope correspond to
reg(ulating)-matter by Eq. (10.2.38b) and the disjoint union of these compo-
nents represents the compound system of forward-backward opposites. Taking
TA > TB, pA > pB and µA > µB , the dynamical evolution represented by
the shaded boxes would, in the absence of the backward arrow induced by the
exclusion space, eventually spread uniformly over the full domain, and equi-
librium would be characterized completely by TA, pA, µA, at the exclusion of
B. Denoting matter by 1 and (the effect of) negmatter by 0, the progressively
refined partition of D(t) induced by the evolving map is indicated in (ii), (iii)
and (iv).

As an example, we return to Eqs. (10.2.18) and (10.2.19) for the entropy
change due to exchange of resources and its non-linear, irreversible, internal
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Fig. 10.3. Matter-negmatter synthesis of an evolving system C = A∪B under the
tent interaction. A and B are represented by the solid and dashed lines as injective
branches with positive and negative slopes respectively.

generation respectively. The external exchange with the environment leads to
a change in the internal state of the system which is then utilized in performing
irreversible useful work relative to the environment, conveniently displayed in
terms of the neutral-neutral convergence mode of a net of Fig. 10.4 adapted
from Fig. 22 of [30], which illustrates the irreversible internal generation of
entropy in a universe C = A∪B, where A and B are two disjoint components
of a system prepared at different initial conditions shown in the figure, with B
the physical manifestation of a compatible space B endowed with an exclusion
topology and a direction opposing that of A. In the real interval [0, 1], notable
examples of A and B are f(x) and f(1−x) with B the physical manifestation
of A. This allows us to make the

Definition 10.1 (Interaction Between Two Spaces). A space (A,U) will

be said to interact with a disjoint space (B,V) if there exists a function f on

the compound disjoint sum (C = A ∪ B,W) where

W = {W := U
⋃

V : (U ∈ U)
∧

(V ∈ V)}
= {W ⊆ C : (W

⋂

A is open in A)
∧

(W
⋂

B is open in B)},
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which evolves graphically to a well defined limit in the topology of pointwise

biconvergence on (C,W). The function f will be said to be a bidirectional
interaction between the subsystems A and B of C.14

Fig. 10.4. Schematic representation of irreversible entropy generation in C = A∪B
with respect to the universe X∪Y . We will identify the solid arrows in C from the hot
body to the cold with inverse limit, neg-entropic self-organization, and the dashed
arrows from the cold to hot as direct limit, second law entropic emergence, see Fig.
10.5b.

While A and B by themselves need not display any notable features (see
Fig. 10.10c), the evolution of A in the disjoint compound (C,W), motivated
by the inducement of an ininal topology on C, is effectively opposed by the
influence of the exclusion topology of B, with the equivalence classes generated
in C being responsible for the multi-inverses of the evolving f characterizing
the nonlinear state of C following the internal preparation of the system.
This irreversible process, indicated in Fig. 10.4 by the nets of full arrows
from (A,U) to (B,V) representing transfer of energy, volume, or mass driven

14 If A and B are not disjoint, then this construction of the compound sum may
not work because A and B will generally induce distinct topologies on C; in
this case W is obtained as follows. Endow the disjoint copies A1 := A × {1}
and B2 := B × {2} of A and B with topologies U1 = {U × {1} : U ∈ U}
and V2 = {V × {2} : V ∈ V}, which are homeomorphic with their originals
with a �→ (a, 1) and b �→ (b, 2) being the respective homeomorphisms. Then
C = A1 ∪ B2 is the disjoint union (sum) of A1 and B2 with the topology W =
{W ⊆ C : W = (U × {1}) ∪ (V × {2}) : (U ∈ U) ∧ (V ∈ V)} that induces the
subspaces (A1,U1) and (B2,V2).
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by an appropriate evolutionary directed set of a thermodynamic force (for
instance due to a temperature gradient TA > TB inducing the energy transfer),
provides the forward impetus for directional transport motivated by ininality.
The dashed open arrows show the reverse evolution in C due to its inhibitor
C. The dash-dot arrows stand for the uni-directional transfer of energy from a
reservoir that continues till the respective parts of C acquire the characteristics
of their reservoirs.

Since physical evolution powered by changes in the internal intensive pa-
rameters is represented by convergence of appropriate sequences and nets, it
is postulated in keeping with the role of ininality, that equilibrium in uni-
directional temporal evolutions like X → A ⊆ X or Y → B ⊆ Y sets up A
and B as subspaces of X and Y respectively. For bi-directional processes like
A ↔ B, the open headed dashed arrows of Fig. 10.4 from B to A represent
the backward influence of (B,V) on (C,W). The assumptions

◮ Both the subsets A and B of the compound C are perfect in the sense
that A = Der(A) and B = Der(B) so that there are no isolated points in A
and B with all points of each of the sets accessible by sequences eventually in
them, and

◮ BdyB(A) = B and BdyA(B) = A which enables all points of A and B
to be directly accessed as limits by sequences in B and A,

imply that any exchange of resource from the environment E = X ∪ Y to
system C will be evenly dispersed throughout by the irreversible, internal
evolution of the system, once C attains equilibrium with E and is allowed to
evolve unperturbed thereafter. This global homogenizing principle of detailed

balance, applicable to evolutionary processes at the micro-level provides a ra-
tionale for equilibration in nature that requires every forward arrow to be bal-
anced by a backward, leading to the global equilibrium of thermodynamics. If
these influences exactly balance each other resulting in a complete restoration
of all the intermediate stages, then the resulting reversible process is actually
quasi-static with no effective changes; hence nontrivial dynamical equilibrium
cannot be generated by reversible processes.

For unimodal maps like the logistic fλ = λx(1 − x) that are defined with
respect to the forward-backward, positive-negative slope characteristic, which
for a particular λ can be taken to represent the subspace C ⊆ E at equilib-
rium with its environment E, evolutionary changes in the effective available
resources λ induce changes in the internal intensive thermodynamic para-
meters that follow uni-directional exchanges of C with E. This perturbs the
equilibrium between components A and B resulting in further evolutionary it-
erational interaction between them. The iterational evolution of fλ is relatively
moderated by the reverse effect of the evolution of f−

λ which suppresses the
continual increase of noninjectivity of fλ that would otherwise lead to a state
of maximum noninjective ill-posedness for this λ: note the negative branches
of f appear positive to its inverse, and conversely. Measurable global dynamic
equilibrium represents a balance between the opposing induced local forces
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that are determined by, and which in turn determine, the degree of resource
exchange λ. The eventual ininality at λ = 4 represents continual resource uti-
lization from E that is dissipated for the globalizing uniformity of Figs. 10.3
and 10.10a(iii). In the range 3 < λ ≤ λ∗ = 3.5699456, the input is gainfully
employed to generate the complex structures that are needed to sustain the
process at that level of λ.

Recalling footnote 8, we now summarize the principal features of the non-
linear evolutionary dynamics following interaction of a compound system C
with its surroundings.

◮ If the state of dynamic equilibrium of a composite system C = A ∪ B
with its surroundings, as represented by the logistic map is disturbed by an
interaction between them, forces are set up between the components A and
B so as to absorb the effect of this disturbance.

◮ Consumption of the effects of the exchange is motivated by a simulta-
neous, non-reductionist drive towards increasing surjectivity and decreasing
injectivity of (fλ)λ and its evolved iterated images, that eventually leads to
a state of maximal non-injective degeneracy on the domain of f . Owing to
the function-multifunction asymmetry of f , such a condition would signify
static equilibrium and an end to all further evolutionary processes, a state of
dissipative annihilation, burn-out and ininality.

◮ Since such eventual self-destruction cannot be the stated objective of
Nature, this unrelenting thrust toward collapse is opposed by the negworld
exclusion effects we have described earlier, generating a reversed sequential
direction effectively inhibiting the drive towards self-destruction induced by
the simultaneous increase of λ and the increased noninjectivity under itera-
tions. The resulting state of dynamic equilibrium is the observed equilibrium
of Nature. Like all others, nature’s kitchen C ×C where the actual dynamical
evolution occurs is beyond direct observation; only its disciplining effect in
C × C is perceived by the observer stationed in D(f) = C.

As an example, consider an isolated system of two parts each locally in
equilibrium with its environment as in (10.2.19) that can now be re-written
as

SC(t) = SC(0) +

[

NAcA ln

(

T

TA(t)

)

+ NBcB ln

(

T

TB(t)

)]

− R

[

NA ln

(

PA

pA(t)

)

+ NB ln

(

PB

pB(t)

)]

, (10.2.40)

where we note with reference to Fig. 10.4 that TA = T1, TB = T2 are the
temperatures of subsystems A and B, VA + VB = V is the total volume of C,
pA, pB are the pressures of A and B, PA,B := NA,BRTA,B/V are their partial
pressures with P = PA +PB the total pressure exerted by the gases in V , and
T is the equilibrium temperature of (10.2.21).

Then



302 A. Sengupta

(i) If the parts containing nonidentical ideal gases at different temperatures
are brought in contact with each other, the equilibrium state of stasis resulting
from the flows of heat and cold (= negheat) between the bodies lead to the
equality of temperature, TA = T = TB , and the vanishing of the first part of
(10.2.40).

(ii) If the gas in the first half expands into the second then equilibrium
is reached when the gas outflow is exactly balanced by the vacuum inflow

into it if the second is evacuated, or if it is filled with a nonidentical gas then
equalization of pressure of the chambers by outflow of the gases from their
respective halves into the other, results in the vanishing of the second term
of (10.2.40). In either case, competitive collaboration of the two opposites
with unequal resources, rather than annihilation of the weaker by the more
resourceful, leads to the state of mutual equilibrium.

In all these instances, the two disjoint opposing parts act in competitive
non-reductionist collaboration to generate a moderated and inhibited stasis
of the union: this is its only manifestation of the complementary neg-world
on its observable physical partner. Thus cold, vacuum and a nonidentical

substance are the negations of heat and matter — just as −r ∈ R+ is the
negation of r ∈ R+. These negations as elements of the negworld are no more
observable than −5, for example, is to us in our physical world: we cannot
collect −5 objects around us or measure the distance between two places
to be −100 kilometers; more generally, the set of complex numbers can be
considered to constitute the coreals, without which there would have been
no zero, no starting initial point in any ordered set, and no “equilibrium”
either. Nature, propelled by its unidirectional increasing entropic disorder,
without the containing Schrodinger and de Broglie λ = h/p waves, would
have probably crashed out of existence long ago!

In summary, then, for an interaction f : C → C and the bijective map
f : C → C corresponding to (10.2.38b), the hierarchal order

Dynamics of ff : C → C in nature’s kitchen (C,W) × (C,W)

−→ Evolution of f on (C,W)2

−→ Experimental observation in D(f) = C

accompanied by

◮ Increasing iterates of f , driven by ininality of topology generated on C,
constitutes the activating sense of the dynamics, that as we see subsequently,
corresponds to the backward, entropy increasing, destabilizing direction of the
evolutionary process. The function-multifunction asymmetry between f and
f− generates and sustains this unidirectional ininality, and

◮ Decreasing iterates of f corresponds to the forward, entropy decreasing,
stabilizing direction in the evolving, competitive collaboration of interactions
generated by f and f−,

defines the state of equilibrated stasis schematized in Fig. 10.4. From the dis-
cussion in connection with Fig. 10.1 that ininality is an effective expression of
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a non-bijective homeomorphism when the sequence of evolutions (fn) become
progressively more bijective on the saturated open sets of equivalence classes
and their respective images, Eq. (10.1.7), it can be argued that the incentive

towards the resulting effective simplicity of invertibility on the definite classes

of sets associated with (fn) is responsible for evolutionary dynamics on C.
This account of “providing a mechanical (i.e., dynamical) explanation of

why classical systems behave thermodynamically” [5] is to be compared with
[10], see also [31]. The distinctive feature of the present approach is in its use
of difference equations rather than the microscopic Hamilton differential equa-
tions that yield the Liouville equation of macroscopic mechanical systems. As
so forcefully inquired by Baranger [2], can the emerging evolutionary prop-
erties of strongly nonlinear, emergent, self-organizing systems be described
by linear (Hamiltonian) differential equations? By employing functional in-
teractions as solutions to difference equations by the technique of graphical
convergence of their iterates, we explicitly invoke the immediate past in deter-
mining its future and are thereby able to circumvent the issues of time reversal
invariance and Poincare recurrence that are inherently associated with the mi-
croscopic dynamics of Hamilton’s differential equations. This also enables us
to avoid direct reference to statistical and probabilistic arguments except in
so far as are inherently implied by the Axiom of Choice.

While our preference for unimodal, single-humped, logistic-like difference
equations is based on the understanding that only an appropriate juxtaposi-
tion of the opposing directional effects — like that of x − a and b − x in the
interval a ≤ x ≤ b — can lead to meaningful emergence and self-organization,
it is also well known [17, 20] that time evolution of a discrete model and its
continuous counterpart can be so different as to have no apparent correlation
with each other. Thus the logistic differential equation

ẋ = g(x) := (λ − 1)x

(

1 − λ

λ − 1
x

)

(10.2.41a)

having the same equilibrium fixed points x = 0, x∗ = (λ−1)/λ as the discrete
version, has the harmless “trivial” solution

x(t) =
x0 x∗e

(λ−1)t

x∗ + x0(e(λ−1)t − 1)
t→∞−→ x∗. (10.2.41b)

Compared with the structurally rich multifunctional graphical convergence
leading to chaos and entropic drive of the discrete form, the tranquil differen-
tial variety can only produce a simple monotonic convergence to the basic fixed
point x∗ which is responsible for the complex dynamics of the former; in fact,
linear systems can only admit stable or exponentially growing oscillatory or
non-oscillatory solutions. This apparently surprising, though not unexpected,
result arises from the fundamental difference in the bifurcation characteristics
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of these equations: the availability of additional spatial dimensions allows the

dynamical system a greater latitude in its evolution so that the complex hier-

archal structure generated by iteration of one-dimensional maps are absent in

flows under Hopf bifurcations. In fact, for Eq. (10.2.41a), 0 is unstable and
x∗ stable for all values of λ > 1 because g′(x) = (λ − 1) − 2λx is positive at
x = 0 and negative for x = x∗. In contrast with the bifurcation dominated
rich and varied dynamics of maps, bifurcation-less evolution of vector fields
on the real line — capable only of monotonically converging to fixed points or
diverging to infinity without any oscillations or other dynamically interesting
features — precludes any qualitative change in the evolution of solutions like
(10.2.41b).

The alert reader would not have failed to notice that our use of the quali-
fiers “discipliner”, “inhibitor”, “stasis” signifying a condition of balance among
various forces of the forward-backward opposites, can only provisional as the
existence of a set of negatives for every positive as postulated in (10.2.38b)
does not necessarily imply that their natural directions interact to generate a
smaller positive. This crucial dynamical manifestation of matter-negmatter is
provided by the second law of thermodynamics which is formalized through
the concept of inverse and direct limits that incorporates directional arrows
in their definitions.

Direct Limit, Inverse Limit, Irreversibility

Otherwise put, every “it” — every particle, every field of force, even
space-time continuum itself — derives its function, its meaning, its very

existence, from answers to yes-no questions, binary choices, bits. “It from
bit” symbolizes the idea that every item of the physical world has at bottom

— at a very deep bottom, in most instances — an immaterial source and
explanation, that which we call reality arises in the last analysis from the

posing of yes-no questions; in short, that all things physical are
information-theoretic in origin and this is a participatory universe.

J. A. Wheeler (1990)

These limits also known as colimit and limit respectively, with the confusing
terminology arising possibly from the fact that the “natural” direction in con-
vergence theory is a reverse direction where the counting index increases with
decreasing size of the defining open sets, is summarized in Fig 10.5a.

Direct limit. The direct (or inductive) limit is a general method of taking
limits of a “directed families of objects”. Let (D,)) be a directed partially
ordered set, {Xκ}κ∈D a family of spaces, and ηαβ : Xα → Xβ a family of
continuous connecting maps oriented along (D,)) satisfying the properties

ηαα(x) = x, for all x ∈ Xα (10.2.42a)

ηαγ = ηβγ ◦ ηαβ , for all α ) β ) γ. (10.2.42b)
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Direct Limit

Xα

Xβ

πβ

Inverse LimitXβ

g

πα

ζβ

Y↔ηβ

Xα

ηα

ξα

ξβ

ζα α � β ∈ D

X←→Xηαβ h πβα

Fig. 10.5a. Direct and inverse limits of commutative diagrams. ηα, πα are projec-
tions and ηαβ , πβα are connecting maps.

Then the pair (Xα, ηαβ) is called a direct (or inductive) system over D. The
image of a xα ∈ Xα under any connecting map is called the successor of xα,
and a direct system (Xα, ηαβ) yields a direct limit space →X as follows. Let
X = ⊎κXκ be the disjoint union of {Xκ} and let xα ∈ Xα. The class of
elements

[xα] = {xβ ∈ Xβ : ∃ γ - α, β such that ηαγ(xα) = ηβγ(xβ)} (10.2.43)

with a common successor in the union constitutes an equivalence class of xα:
while reflexivity and symmetry are obvious enough, transitivity of ∼D follows
from

[xα ∼D xβ ]
∧

[xβ ∼D xγ ] =⇒ ∃ δ, ǫ - α, β, γ s.t. [ηαδ(xα) = ηβδ(xβ)]
∧

[ηβǫ(xβ) = ηγǫ(xγ)]

=⇒ ∃ ζ - δ, ǫ s.t. ηαζ(xα) = ηγζ(xγ) = ηβζ(xβ),

with two elements in the disjoint union being equivalent iff they are “eventually
equal” in the direct system. Then the quotient space

→X
def
=
⊎

κ

Xκ/ ∼D (10.2.44a)

of the disjoint union of {Xκ} modulo ∼D is known as the direct, or induc-

tive, limit of the system (Xα, ηαβ). The pair (→X, ηα) must be universal in
the sense that if there exists any other such pair (Y↔, ζα) there is a unique
morphism g : →X → Y↔ with the respective sub-diagrams commuting for all
α ) β ∈ D. If

p :
⊎

κ

Xκ → →X

is the projection, then its restriction
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ηκ : Xκ → →X

maps each element to its equivalence class, see Fig. 10.5a; hence

→X =
⋃

κ

ηκ(Xκ) (10.2.44b)

implies that →X is not empty whenever at least one Xα is not empty and the
algebraic operations on →X are defined via these maps in an obvious manner.
Clearly, ηα = ηβηαβ .

If the directed family is a family of disjoint sets (Xα)α, with each Xα the
domain of an injective branch of f that partitions D(f), then the direct limit

→X of (Xα) is isomorphic to the basic set XB of Fig. 10.1, where ηαβ(xα) is
the element of [xα]f in Xβ .

Inverse Limit. The inverse (or projective) limit is a construction that
allows the “glueing together” of several related objects, the precise nature of
the glueing being specified by morphisms between the objects. Let (D,)) be
a directed partially ordered set, {Xα}α∈D a family of spaces, and πβα : Xβ →
Xα a family of continuous connecting maps oriented against (D,)) satisfying
the properties

παα(x) = x, for all x ∈ Xα (10.2.45a)

πγα = πβα ◦ πγβ , for all α ) β ) γ. (10.2.45b)

Then the pair (Xα, πβα) is called an inverse, or projective, system over D.
The image of a xβ ∈ Xβ under any connecting map is the predecessor of xβ

and the inverse, or projective, limit

X←
def
= {x ∈

∏

κ

Xκ : pα(x) = πβα ◦ pβ(x) for all α ) β ∈ D}, (10.2.45c)

of (Xα, πβα), where

pα :
∏

κ

Xκ → Xα

is the projection of the product onto its components, is a subspace of
∏

Xκ

with the property that a point x = (xκ) ∈ ∏Xκ is in X← iff its coordinates
satisfy xα = πβα(xβ) for all α ) β ∈ D. Every element of X← has a unique
representation in each Xκ, but an element of Xκ may correspond to many
points of the limit. As for direct limits, the pair (X←, πα) must be universal
such that the existence of any other such pair (Y↔, ξα) implies the existence
of a unique morphism h : Y↔ → X← with the respective sub-diagrams com-
muting for all α ) β ∈ D. The sets (πα)−1(U), U ⊆ Xα open, is a topological
basis of X←, and all pairs of points of X← obeying xα = πβα(xβ) for α ) β
is identical iff their images coincide for every α. The restrictions

πα : X← → Xα



10 ChaNoXity: The Dynamics of Opposites 307

of pα is the continuous canonical morphism of X← into Xα with two points
of X← being identical iff their images coincide for every α.

Straightforward examples of these limits are

(a) Let {Xk}k∈Z+
be an increasing family of subsets of a set X, and let

ηmn : Xm → Xn be the inclusion map for m ≤ n. The direct limit of this
system is

→X =
∞
⋃

k=1

Xk (10.2.46)

with the inclusion functions mapping from each Xk into this union. Generally,
if D is any directed partially ordered set with a greatest element ω, then the
direct limit of any corresponding direct system is isomorphic to Xω and the
canonical morphism ηω : Xω → →X is an isomorphism.

A BC

imn
· · ·· · ·

X0

"Hot" X1

Xm

Xn

Xn

Xm

X1

Backward-direct system: Emergence, contraction, disorder

ξn

Forward-inverse system: Self-organization, expansion, order

inm

ηn

X← =
⋂

Xi

→X =
⋃

Xi

"Cold"

X0

A: "hot" disorder; C: synthetic cohabitation of A and B; B: "cold" order

Fig. 10.5b. Direct-inverse limits for a family of nested subsets of a set X, with the
direction of “order” O and “disorder” D — to be understood as implying smaller and
larger multiplicities of the state — shown opposite so that all maps of the systems are
now in the same direction. In the absence of a direct component, the inverse on its
own would cause bottom-up, self-organized “cold death” to X←; if the inverse system
were absent, emergent, “heat death” from the lone effect of the direct system would
follow in →X, with each acting essentially as a gradient dissipator of the other. The
nested decreasing subsets denote stability inspired expansion and self-organization
as the system’s response of utilizing “every possible avenue in sucking orderliness
from its environment” to counter attempts to move it away from thermodynamic
equilibrium, while the increasing supersets signify instability driven contraction and
emergence. Compare Fig. 10.10a.
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(b) Let {Xk}k∈Z+
be a decreasing family of subsets of X, and let πnm :

Xn → Xm be the inclusion map for m ≤ n. Since the inverse limit consists
of only those points of the cartesian product whose “eventual” coordinate can
be assigned independently,

X← ≃
∞
⋂

k=1

Xk (10.2.47)

might be empty even though Xk �= ∅ for each k, with πkk = 1 being the
identity map. What this result means is that the limit X← must have all its
components from the intersection only. Thus the inverse limit of X1 = [0, 1],
X2 = [0, 0.6] and X3 = [0, 0.2] is of the form X← = {(x1, x2, x3) : x1 ∈
X3, x2 ∈ X3, x3 ∈ X3} with the first and second coordinates considered to
be elements of X1 and X2 respectively, by the inclusion map.

The consequence of these limit constructs in providing a dynamical basis
to Postulates NEG-1 and NEG-2 of the exclusion space is contained in the
following arguments. For a given resource λ, the inverse and direct limits X←

and →X, in competitive collaboration with each other, can be taken to repre-
sent respectively the anabolic synthesis of expansion, order, entropy-decrease
and catabolic analysis of contraction, disorder, entropy-increase of the corre-
sponding systems15 leading to the dynamically equilibrated state X↔: recall
that everything else remaining the same, “hot” objects have higher entropy
than “cold” ones, and when two bodies of different resources are brought in
contact, entropy of the hot body decreases while that of the cold body in-

creases such that the entropy decrease in the former is more than compen-
sated by its increases in the later. This spontaneous flow of “heat” is associated
with an overall entropy increase that continues till the combined entropy is
a maximum. This is the essence of entropy production in the universe at the
expense of exergy of the more resourceful constituent that in simple terms
represents the opposition of a cold stable system to the urge of a hot unstable
component to stabilize at its expense. The second law represents a straight-
forward stipulation that a part of the useful energy of a closed system must
always be wasted as heat with the entropy being a quantitative measure of
the amount of thermal energy not available for doing work, of the tendency
for all matter and energy in the universe to evolve toward a dead state of
inert uniformity. In the absence of the direct limit component, however, the
inverse system would proceed to its logical destination of X← leading to its

15 Metabolism comprises the chemical processes taking place within a living cell or
organism involving consumption and breakdown of complex compounds neces-
sary for the maintenance of life, often accompanied by liberation of energy and
waste products. It is the major process of living systems affecting all its chemical
processes, consisting of a series of changes in an organism by means of which food
is manufactured and utilized, and waste materials are eliminated. Metabolism
is broadly subdivided into two opposing parts: anabolic synthesis of simple sub-
stances into complex materials is its constructive phase, and catabolic analysis of
complex substances into simpler ones is the destructive.
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minimum-entropy frozen “cold death”, which translated to practical terms re-
quires the whole system to acquire the unmoderated properties of the infinite
colder reservoir. Inverse limits, however, demand the existence of connecting
maps opposing O; this manifests itself through generation of the reverse di-
rection D of the direct limit which acting on its own would likewise lead to a
maximum-entropy roasted “heat death” condition of →X. In communion with
each other, X↔ shares properties of both the opposites with the equilibrium
representing some intermediate state Xm = Xn of Fig. 10.5b. Physically this
represents either (i) a hot body A∗ interacting with another body B to yield
the compound system A∗ (≡ X0)+B (≡ X0) which then evolves with time, or
(ii) an infinite reservoir A∗ that induces a temperature gradient in B; in this
case the heat source remains external to the system. This reading of the dual
limits, suggested by the directions of Fig. 10.5b representing converging se-
quences generated by points in the respective {Xα} and {Xα}, can be viewed
to be the basis of our postulate of an exclusion space leading to dynamical
homeostasis, with the direction of the inverse limit being effectively inhibited
by that of the direct limit. A second related interpretation is to consider, by
the definition of footnote 7, the family of spaces and the restrictions of the
associated projections to generate final and initial topologies on →X and X←

respectively. The dynamically equilibrated steady state

X↔ = Xm = Xn (10.2.48)

is therefore in an ininal state because all sub-diagrams of Fig. 10.5a must
commute and the connecting sequences converge to the respective limits iff
these carry the final and initial topologies of the direct and initial systems.
Note that the dynamic equilibrium of (10.2.48) is effectively a saddle-node
centre manifold, and is in fact the state eq of Eq. (10.2.2).

A thermodynamic analysis of the preceding heuristic rationale for the
existence of a X↔ will be given below that reduces the inverse-direct sys-
tem to a coupled engine-pump dual with the natural inverse-limit engine
E : Th → Tc generating, under proper condition of irreversibility, a direct-
limit pump P : Tc → Th such that X↔ is characterized by an equilibrium
temperature T ∈ [Tc, Th].

In applying these considerations to the iterative evolution of maps, we
take the domain of the interaction f to be a disjoint union C of a physical
space A and an exclusion space B, when f generates bi-directional forward-
backward arrows on C that are quite distinct from the catabolic-direct and
anabolic-inverse limits. Accordingly two sets of arrows, the forward-inverse
and backward-direct, are imposed on an evolving system and the character of
the system depends on which of the two plays the role of an activating partner
and which the restraining, representing a dynamical balance between the com-
petitive collaboration of forward, self-organization and backward emergence,
with new structures appearing only for the first few steps that is subsequently
self-organized into a composite whole. This interpretation of the restoring
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effects implies that with appropriate interactions f , even extreme irreversibil-
ities of non-injective ill-posedness can be effectively reversed with time, fully
or partially depending on the nature of f , through internally generated regu-
lating effects. Irreversibilities therefore need not be only wasteful: given ade-
quate interactive support these can actually be utilized to induce higher-level
order and discipline in the otherwise naturally occurring emerging entropic
disorder, through a regulated process of adaption and self-organization. We
employ this basic characteristic of the synthesis of matter and negative matter
in formulating the definitions of complexity and “life” below.

The Lorenz Equation

To fully appreciate these observations and arrive at an understanding of the
dynamics of difference equations vis-a-vis differential equations, we consider
the Lorenz-Rayleigh-Benard model of two-dimensional convection of a hori-
zontal layer of fluid heated from below involving three dynamical variables: x
proportional to the circulatory convection velocity of the fluid that produces
the flow pattern with positive x indicating clockwise circulation, y propor-
tional to the temperature difference between the ascending warm and de-
scending cold flows at a given height h, and z proportional to the nonlinear
deviation of the vertical temperature profile from equilibrium linearity. The
Lorenz equations

ẋ = σ(−x + y) (10.2.49a)

ẏ = Rx − y − xz (10.2.49b)

ż = xy − bz, (10.2.49c)

with σ the Prandtl number (ratio of the kinematic viscosity of the fluid
to its thermal diffusivity), R = r/rc the relative Rayleigh number (where
r := gαd3 △ T/(κν) is the Rayleigh number — with g acceleration due to
gravity, α, κ, ν coefficients of volume expansion, thermal diffusivity, kinematic
viscosity, △T temperature difference between the upper and lower surfaces of
the fluid separated by a distance d — and rc := (a2 +π2)3/a2 = 27π4/4 is the
critical value that defines a = π/

√
2 to give the lowest r at which convection

starts), and b (ratio of the width to the height of the region in which con-
vection is occurring), represents a state of competing collaboration between
the downward stabilizing arrow of gravity and an upward buoyancy-driven in-
stability of viscous friction and conductive heat losses. The equilibrium fixed
point ẋ = 0 of supercritical pitchfork bifurcation

ẋ = 0 ⇐⇒ x3 − b(R − 1)x = 0

has the roots

C0 = (0, 0, 0), all R (10.2.50a)
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C± = (±
√

bρ, ±
√

bρ , ρ), R > 1, ρ = R − 1. (10.2.50b)

A linear stability analysis about C0 requires the characteristic polynomial
of the combined linearized equation

ẋ =







−σ σ 0

R −1 0

0 0 −b













x

y

z







to satisfy

f(λ) := (λ + b)[λ2 + (1 + σ)λ − σ(R − 1)] = 0 (10.2.51)

with the real eigenvalues

λz = −b

λ± = −1 + σ

2
± 1

2

√

(1 + σ)2 + 4σ(R − 1) (10.2.52)

in which only λ± depends on the control parameter R. It can now be verified
that for all positive R, σ and b:

(a) R < 1: All the zeros λz, −(1+σ) ≤ λ− ≤ −1 (upper and lower bounds
occurring at R = 1 and R = 0), −σ ≤ λ+ ≤ 0 (bounds occurring at R = 0
and R = 1), are negative which means that C0 is a stable node.

(b) R = 1: λz, λ− = −(1+σ) are negative and λ+ = 0 with corresponding
eigenvectors uz = (0, 0, 1)T, u− = (−σ, 1, 0)T, and u+ = (1, 1, 0)T; hence C0

is marginally (neutrally) stable, leading to its pitchfork bifurcation. The three
real equilibria for R > 1 as given in (c) below merge to the single stable node
of R < 1 at R = 1.

(c) R > 1: λz and λ− are negative, λ+ is positive; hence C0 is an unstable
fixed point. The flows along the eigenvectors of λz and λ− are stable that
become unstable along the of λ+ direction. Hence C0 undergoes a saddle node

in three dimensions in this parameter range.
Linearization about the two other equilibrium points C± according to x .→

x ∓√
bρ, y .→ y ∓√

bρ, and z .→ z − ρ leads to the eigenvalue equation

g(µ) :=

∣

∣

∣

∣

∣

∣

∣

σ + µ −σ 0

−1 1 + µ ±√
bρ

∓√
bρ ∓√

bρ b + µ

∣

∣

∣

∣

∣

∣

∣

= µ3 + (1 + b + σ)µ2 + b(σ + R)µ + 2bσ(R − 1) = 0 (10.2.53)

Since all its coefficients are positive and g(0) > 0 when R > 1, there is always
a negative real root µz of Eq. (10.2.53). At R = 1, the three zeros of Eq.
(10.2.53) are µz = −b, µ− = −(1 + σ) and µ+ = 0, there are therefore two
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Fig. 10.6. Dynamics of the Lorenz equations. E and W are spanned by the respective
eigenvectors of {λz, λ−} and λ+ of Eq. (10.2.52). The local directions of the man-
ifolds in panel (E) are determined by the eigenvectors of C± = (±√

bρ,±√
bρ, ρ),

where ρ = R− 1 with R the relative Rayleigh number. Figure adapted from Argyris
et al. [1]
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stable (negative) roots and one marginally stable 0 root, in agreement with
Eq. (10.2.51). From µz +ℜ(µ−)+ℜ(µ+) = −(1+b+σ) < 0, it follows that the
two complex roots cross over from negative to positive real parts, for b = 8/3
and σ = 10, when

µz = −(1 + b + σ) = −13.6667,

µ± = ±i

√

2σb(σ + 1)

σ − b − 1
= ±9.62453 i,

which leads, from g(µz) = 0, to the critical magnitude

Rc = σ

(

σ + b + 3

σ − b − 1

)

=
470

19
≃ 24.7368

of R marking the birth of a subcritical Hopf bifurcation.
The behaviour of the characteristic polynomials f(λ) and g(µ) with vari-

ation of R in the range R < 13.926 is as follows, see Fig. 10.6. For R < 1, λ±

repel each other but for 1 ≤ R < 1.346 the µ± attract as the graph of g(µ)
moves up until at R = 1.34561718 the zeros merge, g(µ−) = g(µ+) = 0, and
complex roots appear maintaining ℜ(µ−) = ℜ(µ+) < 0 which marks the initi-
ation of convective rolls in the flow. At R = 13.926, homoclinic orbits starting
at the origin along the unstable manifolds return to it as stable manifolds,
the real parts thereafter increasing through 0 at R = Rc, with µz remaining
negative along the z-direction for all R > 1. Hence

(d) 1.00 ≤ R < 1.3456 := R0, panel (B). The character of the equilibria
C± change from nodes to spirals in the first appearance of oscillatory behav-
iour. This occurs when the graph of g(µ) becomes tangent to the µ-axis at its
turning point for ℜ(µ+) = ℜ(µ−) < 0. At R = R0, the molecular conduction
of this region becomes unstable yielding place to convection rolls of highly
structured coherent patterns. This increases the rate of heat transfer reducing
the temperature gradient of the system, and constitutes “the system’s response
to attempts to move it away from equilibrium”, [26].

(e) R0 ≤ R < 13.926 := R1, panel (C). The trajectory leaving C0 along
the local unstable manifold of λ+ spirals into the nearer of the two stable
manifolds C− and C+, tangent to the span of the respective eigenfunctions of
µ−, µ+. These spirals of unstable manifolds on looping around C− and C+

increase in size with increasing R, until at
(f) R = R1 they tend toward C− and C+ in wide arcs, eventually returning

as homoclinic orbits to C0 in the “infinite period limit” t → ±∞. While no
qualitative changes in the distribution of the zeros of Eq. (10.2.53) occur
at this value of R, the emergence of homoclinic orbits can be attributed to
the transformation of Eq. (10.2.53) to a monotonically increasing function
of µ for all R > R1. This is a significant event in the time evolution of the
Lorenz equations that eventually leads to chaos at R = Rc. This mechanism to
chaotic transition is common in systems modeled by differential equations and
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is not — unlike for maps — accompanied by any change in the character of
fixed points but is due to interaction of the trajectory with various instabilities.

(g) R1 ≤ R < Rc ≃ 24.7368, panel (D). As R increases beyond R1, the
monotonically increasing g(µ) results in the homoclinic orbits transforming to
increasing finite period unstable orbits that eventually coalesce to disappear
in a subcritical Hopf bifurcation at R = Rc. These increasingly oscillatory
solutions of the pre-chaotic range R1 < R < 24.06 travel back and forth
between C− and C+ many times before finally spiraling into one of them: as
R increases in this range, the generated unstable limit cycles repel Wu(0) so
that the branch leaving C0 in the octant of C− converges to C+ and that
generated in the octant of C+ ends up at C−, with the number of crossings
between C− and C+ increasing with R before eventually converging to one
of them. The unstable limit cycles associated with C−, C+ shrink in size as
R increases, passing over to a subcritical Hopf bifurcation at R = Rc. In the
range 24.06 < R < Rc although the equilibria C± remain stable, some of
the pre-chaotic orbits pass over into true chaos; hence in this region there is
a chaotic attractor beside the two spiral attractors. At R = Rc, the stable
spirals become unstable by absorbing the unstable spirals.

This dynamics of the Lorenz equation summarized in Fig. 10.6 allows us to
draw the following correspondences with the logistic interaction {fλ}λ∈[0,4].

◮ 0 ≤ R < 1.00 ⇔ 0 ≤ λ < 1, panel (A). Heat is transferred from the hot
bottom to the cold top by molecular thermal conduction. The tendency
of the warm, lighter fluid to rise is inhibited by viscous damping and loss
by conduction from the hot fluid to the surrounding cooler medium, and
the temperature varies linearly with the height of separation between the
plates. Recall that the only logistic fixed point x0 = 0 is stable in this
range, like the Lorenz C0. See Fig. 10.8a

◮ 1.00 ≤ R < 1.3456 ⇔ 1 ≤ λ < 2, panel (B). This λ-region of loss of stabil-
ity of x0 at λ = 1 and the simultaneous birth of a new stable fixed point
marks the onset of a radial R-interaction between the now unstable C0

and the new stable pair C±, Fig. 10.8a.

◮ 1.3456 ≤ R < 13.926 ⇔ 2 ≤ λ < 3, panel (C). Oscillations occur in the
stable evolution of the logistic map, Fig. 10.8a(iv), corresponding to the
appearance of the circular convective rolls in the Lorenz equations along
the second angular θ-direction consequent of the appearance of complex
roots of g(µ), Eq. (10.2.53).

◮ 13.926 ≤ R < 24.7368 ⇔ 3 ≤ λ < 1 +
√

6 = 3.4495, panel (D). This region
of the initiation of period doubling of the one-dimensional map relates to
the homoclinic orbit and the unstable limit cycles representing radial inter-
action between C0 and C± that activates the third angular ϕ-direction at
C0. Note that as in the logistic interaction, this R-region is distinguished
by the coexistence of the opposite directions due to the stable fixed points
C− and C+ corresponding to the stable 2-cycle of the map of Fig. 10.8b.
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The important point to note here is that unlike for period doubling of the lo-

gistic map, the supercritical pitchfork bifurcation in a multidimensional space

enables the unstable C0 to interact with the stable C± by opening up new

pathways along the angular coordinate directions. In the one dimensional lo-
gistic case where the luxury of the new directions acting as additional tun-
able parameters are unavailable, a tiered hierarchal communication system is

established between the unstable and stable points in order to utilize the ad-
ditional λ-resource available to carry the evolutionary dynamics forward. In
fact, compared to the sufficient conditions

f = 0,
∂f

∂x
= 0, (x, µ) = (0, 0) (10.2.54a)

and

∂f

∂µ
= 0,

∂2f

∂x2
= 0,

∂2f

∂x∂µ
�= 0,

∂3f

∂x3
�= 0 (10.2.54b)

for non-hyperbolicity and pitchfork bifurcation respectively of a one-parameter,
one-dimensional vector field ẋ = f(x, µ), a one-dimensional map x .→ f(x, µ)
with non-hyperbolic fixed points

f = 0,
∂f

∂x
= ±1, (x, µ) = (0, 0), (10.2.55a)

not only undergoes pitchfork bifurcation at ∂f/∂x = 1 for the same conditions
as given by Eq. (10.2.54b), but more importantly a period doubling bifurcation
appears whenever the non-hyperbolic slope ∂f/∂x = −1 emerges and the
second iterate of the map passes through a pitchfork

∂f2

∂x
= 1,

∂f2

∂µ
= 0,

∂2f2

∂x2
= 0,

∂2f2

∂x∂µ
�= 0,

∂3f2

∂x3
�= 0 (10.2.55b)

at (x, µ). More generally, any increase in λ is gainfully employed by the logistic
map through a series of period doublings such that a 2N cycle is generated
to effectively utilize the resource λ in N bifurcations, as can be verified from
Figs. 10.8b, c and 10.8d that show how the emerging structure develops in N
steps terminating with the period-doubling-pitchfork

∂f2N−1

∂x
= −1, (period-doubling) (10.2.56a)

∂f2N

∂x
= 1, (pitchfork) (10.2.56b)
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combination at 2N−1 stable-unstable fixed points marking the complete uti-

lization of λ, with the slopes of f2N

and f2N−1

simultaneously moving out of
the stable unit interval in opposite directions into the unstable region |x| > 1,
in the classic bidirectional competitive collaboration mode. In the absence of
this typical double bound of the stable region for differential equations, the
possible structures supported by these dynamical systems are comparatively
simpler. Specifically it does not possess the hierarchal towered form that is
the characteristic feature of two-component ill-posed maps such as the logistic
where Eqs. (10.2.56a,b ) actually determine the fixed-point x∗ and the corre-
sponding λ-value of the end of period 2N−1 and beginning of period 2N . It
is this distinction in the relationship between the stable and unstable points
that is responsible for the difference between arbitrary complex systems and
dissipative structures made below.

◮ Rc ≤ R ⇔ λ1 < λ ≤ 4, panel (E). This R-ray symbolizing total chaos, is
characterized as in the logistic case, by the complete lack of stabilizing
effects, as the orbits generated by C− and C+ endlessly wander between
them. Unlike the one-dimensional map, however, the three dimensional
differential system does not display characteristic bifurcations beyond Rc,
taking advantage instead of the added dimensional latitude in generating
an entangled attractor with non-periodic orbits and sensitivity to initial
conditions.

Although it is possible, as has been argued above, to establish an overall
correspondence between the dynamics of discrete and continuous systems, a
careful consideration reveals some notable fundamentally distinctive charac-
teristics between the two that ultimately reflects on the higher number of
space dimensions — (r, θ, ϕ) in the Lorenz case — available to the differential
system16. This has the consequence that continuous time evolution governed
by differential equations is reductionally well-defined and unique — unlike in
the discrete case when ill-posedness and multifunctionality forms its defin-
ing character — with the system being severely restrained in its manifesta-
tion, not possessing a set of equivalent yet discernible possibilities to choose
from. In fact, the dynamics of differential equations cannot generate attrac-
tors composed of isolated points like the Cantor set, and it is our premise

that the kitchen of Nature functions in an one-dimensional iterative analogue,

16 Thus, for example, as in Eq. (10.2.41a,b), the equivalent Lorenz difference equa-
tion

xn+1 = xn(1 − σ) + σyn

yn+1 = Rxn − xnzn

zn+1 = zn(1 − b) + xnyn

would have a distinct and different dynamical evolution that is expected to
have little bearing or similarity with the solution of its differential counterpart
(10.2.49a−c).
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not merely to take advantage of the multiplicities inherent therein, but more

importantly to structure its dynamical evolution in a hierarchal canopy, so

essential for the evolution of an interactive, non-trivial, complex system. The
3-dimensional serving table of physical space only provides a convenient and
palatable presentation of nature’s produce in its uni-dimensional kitchen. A
closed system can gain overall order while increasing its entropy by some of
the system’s macroscopic degrees of freedom becoming more organized at the
expense of microscopic disorder. In many cases of biological self-assembly, for
instance metabolism, the increasing organization of large molecules is more
than compensated by the increasing disorder of smaller molecules, especially
water. At the level of whole organisms and longer time scales, though, biolog-
ical systems are open systems feeding on the environment and dumping waste
into it.

The special significance of one-dimensional dynamics relative to any other
finds an appealing substantiation from the following interpretation of the
Sharkovskii Theorem. Recall that the distinguished Sharkovskii ordering

3 ≻ 5 ≻ 7 ≻ · · · ≻ 2 · 3 ≻ 2 · 5 ≻ 2 · 7 ≻ · · · ≻ 2n · 3 ≻ 2n · 5 ≻ 2n · 7 ≻
· · · ≻ 2n ≻ · · · ≻ 22 ≻ 2 ≻ 1

of positive integers implies the Sharkovskii Theorem which states that if
f : [a, b] → R is a continuous function having a n-periodic point, and if n ≻ m,
then f also has a m-periodic point: observe the significance of the upper and
lower bounds of this ordering. Noting that the periodicity of an f -interaction
between two spaces essentially denotes the number of independent degrees
of freedom required to completely quantify the dynamics of f , it is inferred
that while a fixed point of “dimension” 1 embodies the basic informations of
all other periods, a period-3 embodies every other dimension within itself.
Hence it can be concluded that dynamics on 1-dimension, by being maxi-
mally restrained compared to any other, allows for the greatest emergence of
structures as mutifunctional graphical limits, while dimension 3 by being the
least restrained is ideally suited for an outward well-defined, and aesthetically
appealing, simultaneous expression of the multitude of eventualities that the
graphical limits entail.

The convection rotating cells of the Lorenz system that appear sponta-
neously in the liquid layer when heated from outside is an example of Pri-
gogine’s dissipative structure [15]. At first when the temperature of the bot-
tom plate Th is equal to that of the top Tc, the liquid will be in equilibrium
with its environment. Then as the temperature of the bottom is increased,
the fluid resists the applied temperature gradient ∆T = (Th − Tc) ∽ R by
setting up a backward arrow of inter-molecular conductive dissipation, and
the temperature increases linearly from top to bottom to establish thermal
equilibrium in the fluid. If the temperature of the bottom is increased fur-
ther, there will be a far from equilibrium temperature T0 corresponding to
R0 of Fig. 10.6 at which the system becomes unstable, the incoherent mole-
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cular conduction yields place to coherent convection, and the cells appear
increasing the rate of dissipation. The appearance of these ordered convec-
tive structures — a “striking example of emergent coherent organization in
response to an external energy input” [28] — dissipates more energy than
simple conduction, and convection becomes the dominant mode of heat trans-
fer as R increases further. The microscopic random movement of conduction
spontaneously becomes macroscopically ordered with a characteristic corre-
lation length generated by convection. The rotation of the cells is stable and
alternates between clockwise to counter-clockwise horizontally, and there is
spontaneous symmetry breaking.

According to Schneider and Kay [28], the basic role of dissipative struc-
tures, like the Lorenz convection cells, is to act as gradient dissipators by
“continually sucking orderliness from its environment” in hindering motion of
the system away from equilibrium due to the increasing temperature gradi-
ents. The dissipative structures increase the rate of heat transfer in the fluid
thereby utilizing this exergy in performing useful work in generating the struc-
tures. With increasing gradient, more work needs to be done to maintain the
increased dissipation in the far-from-equilibrium state, more exergy must be
destroyed in creating more entropy, the boundary layers become thinner, and
the original vertically uniform temperature profile is restored in the bulk of
the fluid. The structures developed in the Lorenz system thus organize the dis-
order of the backward convective cells by dissipation of an increasing amount
of exergy in the activating, forward “sucking-orderliness” direction of heating.

Thermodynamics of Bidirectionality: Optimized Adaptation in
Engine-Pump Duality

They know enough who know how to learn.

Henry Adams

This subsection is an investigation into the relationship of our steady state
X↔ to the entropy principle of non-equilibrium thermodynamics. In recent
papers Dewar [9] establishes the Maximum Entropy Principle for stationary
states of open, non-equilibrium systems by maximizing the path information
entropy S = −∑Γ pΓ ln pΓ with respect to pΓ subject to the imposed con-
straints. In this non-equilibrium situation, the maximum entropy principle
amounts to finding the most probable history realizable by the largest num-
ber of microscopic paths rather than microscopic states typical of Boltzmann-
Gibbs equilibrium statistical mechanics. This approach to non-equilibrium
MEP is supported by many investigations: the earth-atmosphere global fluid
system, for example, is believed to operate such that it generates maximum
potential energy and the steady state of convective fluid systems, like that
of the Lorenz model, have been suggested to represent a state of maximum
convective heat transfer, [23].
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E
Qh Q q

P
qc

T↔

TcTh

W = (1 − ι)(1 − Tc/Th)Qh

WP

Fig. 10.7. Reduction of the dynamics of opposites of Fig. 10.5b to an equivalent
engine-pump thermodynamic system. The fraction W = (1 − ι)WC of the available
maximum reversible work WC = ηC Qh := (1 − Tc/Th) Qh of a reversible engine
operating between [Tc, Th] is internally utilized to self-generate a heat pump P to
inhibit, by gradient dissipation, the entropy that would otherwise be produced in
the system. This permits decoupling natural irreversibility to a reversible engine-
pump dual that uses the fraction ι of the available exergy in running the pump.
The coefficient of performance q/W = q/(q − qc) = T↔/(T↔ − Tc) of P establishes
the reverse arrow of q := qc + W . The two parameters T↔ and ι are obtained as
described in the text.

An effective reduction of the inverse-direct model of Fig. 10.5b as a coupled
thermodynamic engine-pump system is illustrated in Fig. 10.7 in which heat
transfer between temperatures Th > Tc is reduced to a engine E-pump P com-
bination operating respectively between temperatures T < Th and Tc < T . We
assume that a complex adaptive system is distinguished by the full utilization
of the fraction W := (1− ι)WC = (1 − ι)ηCQh = (1 − ι)(1 − Tc/Th)Qh of the
work output of an imaginary reversible engine running between temperatures
Th and Tc, to generate a pump P working in competitive collaboration with
a reversible engine E, where the irreversibility index

ι
def
=

WC − W

WC
∈ [0, 1] (10.2.57)

accounts for that part ιWC of available energy (exergy) that cannot be gain-
fully utilized but must be degraded in increasing the entropy of the universe.
The self-induced pump effectively decreases the temperature gradient Th −Tc

operating the engine to a value Th − T , Tc ≤ T < Th, thereby inducing a de-
gree of dynamic stability to the system.17 With q = qc +(1− ι)WC = qc +WP ,
the coefficient of performance ζP = q/WP = T/(T − Tc) of P yields

q = (1 − ι)Qh

(

T

Th

)(

Th − Tc

T − Tc

)

.

Let the irreversibility ι be computed on the basis of dynamic equilibrium18

17 More generally, W is to be understood to be indicative of the exergy of Eq.
(10.2.2).

18 Note that this is WE = WP = ιWC.
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Qh

(

Th − T

Th

)

:= WE(T ) = WP (T ) := q

(

T − Tc

T

)

of the engine-pump system; hence

ι =
T − Tc

Th − Tc

(10.2.58)

=
(Th − Tc) − (Th − T )

Th − Tc

where Th − Tc represents the original reversible work that is split up into the
non-entropic Th − T shaft output internally utilized to generate the pump
P , and a T − Tc manifestation of entropic work by P with the equilibrium
temperature T defining this recursive dynamics. The irreversibility ι can be
taken to have been adapted by the engine-pump system such that the induced
instability due to P balances the imposed stabilizing effort of E to the best
possible advantage of the system and its surroundings. This the system does
by adapting itself to a state that optimizes competitive collaboration for the
greatest efficiency consistent with this competitiveness. This distinguishing
feature of the non-equilibrium situation with corresponding equilibrium case
lies in the mobility of the defining temperature T : for the introverted self-
adaptive systems, the dynamics organizes to the prevailing situation by best
adjusting itself internally for maximum possible global advantage.

Define the equilibrium steady-state representing X↔ of optimized E-P
adaptability between E and P be given in terms of the adaptability function

αP (TP ) := ηEζP =

(

Th − TP

TP − Tc

)(

TP

Th

)

that represents an effective adaptive efficiency of the engine-pump system to
the environment (Tc, Th). Hence

TP =
1

2

[

(1 − αP )Th +
√

(1 − αP )2T 2
h + 4αP ThTc

]

. (10.2.59a)

Alternatively if the system induces P to act as a refrigerator rather than a
pump then the defining equations, with ζR := qc/(q − qc) = Tc/(TR − Tc),
become

qc = (1 − ι)Qh

(

Tc

Th

)(

Th − Tc

TR − Tc

)

,

with the adaptability criterion

αR(TR) := ηEζR =

(

Th − TR

TR − Tc

)(

Tc

Th

)

leading to
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TR =
(1 + αR)ThTc

Tc + αRTh

. (10.2.59b)

For the reversible (ι = 0) ⇒ (T = Tc), α → ∞ case, with no en-
tropy production and no generation of P , the resulting inverse-system op-
erates uni-directionally as an ordering agent, while in the absence of E at
(ι = 1) ⇒ (T = Th), α = 0, the self-generation of P cannot, infact, occur.
An intermediate, non-zero, finite value of α is what the self-emergent system
seeks for its optimization that we take to be the maximum at α := 1−Tc/Th.
Hence

α = ηC =⇒



















TP =
1

2

[

Tc +
√

T 2
c + 4Tc(Th − Tc)

]

TR =
(2Th − Tc)Tc

Th

,

(10.2.60)

leads to ιR = Tc/Th := 1 − α for the E-R system. The original temperature
gradient Th − Tc is shared by the E−P system in the true spirit of synthetic
cohabitation of opposites in the proportion E : Th − T , P : T − Tc thereby
optimizing its adaptability to the environment.

E-P E-R E-P E-R

T 426.5860 412.5000 qc 19.7791 28.1250

ι 0.7033 0.6250 S1 0.09375 0.09375

WC 28.1250 28.1250 S↔ 0.06593 0.05859

WE 8.3459 10.5469 η 0.1113 0.1406

Qc 66.6541 64.4531 η↔ 0.1113 0.1406

Q 55.6541 64.4531 ζ 8.9865 6.1111

q 28.1250 38.6719 ζ↔ 3.3699 2.6667

Table 10.5. Comparison of engine-pump and engine-refrigerator bi-directionality.
The equations used for E-R are (with corresponding ones for E-P ): α = 0.375,
WC = [1 − (Tc/Th)]Qh, WE = [1 − (T/Th)]Qh, Qc = Qh − (1 − ι)WC, Q = Qh −
WE , q = (1 − ι)(T/(T − Tc))WC, qc = (1 − ι)(Tc/(T − Tc))WC, S1 = WC/Tc,
S↔ = ιWC/Tc = (Qh/Th)[(T/Tc) − 1], η = (Qh − Qc)/Qh, η↔ = (Th − T )/Th,
ζ = Qc/(Qh − Qc), ζ↔ = qc/(qh − qc) = Tc/(Th − Tc). The role of the pump as
a “gradient dissipator” is to decrease the irreversibility (and chanoxity) index from
the metallic conduction value of 1 to (T − Tc)/(Th − Tc).

As an example, in the conduction of heat along a bar from Th = 480◦K
to Tc = 300◦K for Qc = Qh − W (= 0) = 75 kJ-min−1 involving an entropy
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increase of Sι=1 = −75/480 + 75/300 = 0.09375 kJ-(min-K)
−1

. If the bar is
replaced by a reversible ι = 0 engine between the same temperatures, then
WC = 28.125 kJ-min−1, Qc = Qh − W = (WC) = 46.875 kJ-min−1, and the
entropy change of Sι=0 = −75/480+46.875/300 = 0 precludes any emergence
in this reversible case. If, however, bi-directionality of X↔ is to be established
by an induced pump or refrigerator then the results, summarized in Table
10.5, shows that the actual entropy increases are 70% of the unmoderated
value S1 with an increase of the shaft work to (1 − ι)WC from 0.

This self-generation of bi-directional stability is to be compared and
contrasted with the entropy generation when a hot body is brought in
thermal contact with a cold body: As in the bi-directional case, the en-
tropy increase m1c1 ln(T/Th) + m2c2 ln(T/Tc) of the universe is maximum
at T = Th and minimum for T = Tc. Unlike in self-organizing com-
plexes however, the equilibrium system has a well-defined temperature T =
(m1c1Th +m2c2Tc)/(m1c1 +m2c2) that is not amenable to adjustment by the
system for its best possible advantage, with the resultant negative entropy
m1c1 ln(Tc/Th) implying that order must be imported from outside if such
a condition is to be physically realizable. Thus for m1/m2 = 30 kg/150 kg,
c1/c2 = 0.5 kJ/kg-

◦
K/2.5 kJ/kg-

◦
K, and Th/Tc = 480◦K/300◦K, whereas the

equilibrium temperatute of T = 306.92◦K generates 1.8477 kJ/K of entropy,
for a self-organizing system reversibility would impose T = 305.472◦K as the
solution of 0 = m1c1 ln(T/Th) + m2c2 ln(T/Tc), import 7.05 kJ/K of order
from the enlarged environment at T = Tc, and export 176.25 kJ/K of disorder
when T = Th.19

19 In a revealing analysis of What is Life? [29], the theoretical biologist Robert
Rosen contends [25] that it is precisely the duality between “how a given material
system changes its own behaviour in response to a force, and how that same
system can generate forces that change the behaviour of other systems” that
Schrodinger was addressing in the context of Mendelian genes and molecules and
“the mode of forcing of phenotypes (the actual physical properties of a molecule)
by genotypes (the genetic profile of the molecule)”. While the phenotype and
genotype are related, they are not necessarily identical with the environment
playing an important role in shaping the actual phenotype that results, Rosen
proceeds to argue that “We cannot hope for identical relations between inertial
and gravitational aspects of a system, such as are found in the very special realms
of particle mechanics. Yet, in a sense, this is precisely what Schroedinger essay
is about. Delbruck was seeking to literally reify a forcing (the Mandelian gene),
something ’gravitational ’, by clothing it in something with ’inertia’, by realizing it
as a molecule. Schrodinger, on the other hand understood that this was not nearly
enough, that we must be able to go the other way and determine the forcings
manifested by something characterized inertially: just as we realize a force by
a thing, we must also, perhaps more importantly, be able to realize a thing by
a force (emphasis added). It was in this later connection that Schrodinger put
forward the ’principle of order from order’ and the ’feeding of negative entropy’.
It was here that he was looking for the new physics”.
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In the Lorenz system, the potential energy of the top-heavy liquid cre-
ated by the imposed temperature gradient ∆T = Th − Tc, taking Tc to be
fixed, leads to conversion of the input heat energy to mechanical work of con-
vective viscous mixing that acts as a gradient dissipator. Taking Qh = 1,
Wr corresponds to R and ι = (R − Rg)/R to that fraction of R that is not
utilized in gravitational gradient dissipation through convection. In an arbi-
trary non-equilibrium steady state, the temperature induced upward potential
energy production must be balanced by the dissipations which includes an
atmospheric loss component also. In general for the non-equilibrium steady
state X↔, the increase in internal stability due to viscous dissipation leads
to a backward-forward synthesis, when the direct arrow of entropy increasing
emergence is moderated by the inverse arrow of order and self-organization.
This is when all irreversible motivations guiding the system must cease, and
the dead state of a “local non-equilibrium maximum entropy” — of magnitude
less than that of the completely irreversible “global” equilibrium conductive
state — consistent with the applied constraint of viscous damping, is reached.
Refer Fig. 10.5b.

The earth-atmosphere system offers another striking example of this non-
equilibrium local principle, in which the earth is considered as a two-region
body of the hot equator at Th and the cold poles at Tc, with radiative heat
input at the equator and thermal dissipation at the poles. A portion of the
corresponding Wr is utilized in establishing the P induces pole ↔ equator
atmospheric circulation resulting in internal stabilization, structuring, and
inhibitory gradient dissipation. The radiative polar heat loss constitutes the
entropy increasing direct arrow that is moderated by the that makes this
planet habitable.

As a final illustration, mention can be made to the interesting example of
frost heaving [22] as a unique model of a “reverse Lorenz system” where the
temperature gradient is along the direction of gravity. A regular Lorenz under
such conditions would be maximally irreversible, as an effective conductive
entity, without any internal generation of P -stabilization. In frost heaving,
however, ice and supercooled water are partitioned by a microporous material
permeable to the water, the pressure of the ice on the top of the membrane
being larger than that exerted by the water below: thus the temperature and
pressure of the water below are less than that of the ice above. If the water
is sufficiently supercooled however, it flows up against gravity due to P , into
the ice layer, freezes and in the process heaves the ice column up.

Thus according to Rosen, Schroedinger supreme contribution in posing his now
famous question elevated the object of his inquiry from a passive adjective to an
active noun by suggesting the necessity of a “new physics” for investigating how in
open, non-equilibrium systems, every forward-indirect arrow of phenotype inertia
engine E is necessarily coupled to a backward-direct impulse from some genotype
gravity pump P . For Schrodinger while a Mandelian gene was surely a molecule,
it was more important to investigate when the molecule becomes a gene.
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The non-equilibrium steady-state X↔, Equation (10.2.48), is therefore a
local maximum-entropy state that the dynamics of the non-linear system seeks
as its most gainful eventuality, given the constraint of conflicting and contra-
dictory demands of the universe it inhabits, with the constraints effectively
lowering the entropic sum S = −∑j pj ln pj . Accordingly while the entropy
of a partition of unconstrained elementary events in the rolling of a fair die
with {pj}6

j=1 = 1/6 is ln 6 = 1.7918, the entropy of a constrained partition
satisfying p1 + p3 + p5 = 0.6 and p2 + p4 + p6 = 0.4 in the appearance of
odd and even faces is 0.6 ln(0.2) + 0.4 ln(0.1333) = 1.7716. The applied con-
straints therefore reduce the number of faces of the die to an unconstrained
effective value of exp(1.7716) = 5.88, thereby reducing the disorder of the sys-
tem, which can be interpreted as a corresponding lowering of the temperature
gradient ∆T of the irreversible ι = 1 instance of W = 0. In the examples
above the respective constraints are the convection rolls, atmospheric con-
vection currents, and anti-gravity frost heaving. Without this component of
the energy input, emergent internal structuring in natural systems would be
absent. It may therefore be inferred that the two-component decomposition
(10.2.1) of entropy corresponds to the break-up we propose here.

10.2.3 An Index of Nonlinearity

At the moment there is no formalization of complexity that enables it to
overcome its current rather confused state and to achieve the objective of

first becoming a method and then a bonafide scientific theory. The
complexity approach that has recently appeared in modern scientific circles
is generally still limited to an empirical phase in which the concepts are not

abundantly clear and the methods and techniques are noticeable lacking.
This can lead to the abuse of the term “complexity” which is sometimes used

in various contexts, in senses that are very different from one another, to
describe situations in which the system does not even display complex

characteristics.

Formalizing complexity would enable a set of empirical observations, which
is what complexity is now, to be transformed into a real hypothetical-

deductive theory or into an empirical science. Therefore, at least for the
moment, there is no unified theory of complexity able to express the

structures and the processes that are common to the different phenomena
that can be grouped under the general heading of complexity. There are

several evident shortcomings in modern mathematics which make the
application of a complexity theory of little effect. Basically this can be put

down to the fact that mathematics is generally linear.

We are now faced with the following problem. We are not able to describe
chaotic phenomenology or even that type of organized chaos that is

complexity by means of adequate general laws; consequently we are not able
to formulate effective long-term predictions on the evolution of complex
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systems. The mathematics that is available to us does not enable us to do
this in an adequate manner, as the techniques of such mathematics were
essentially developed to describe linear phenomena in which there are no

mechanisms that unevenly amplify any initial uncertainty or perturbation.

Bertuglia and Vaio [3]

With ininality in the cartesian space C × C serving as the engine for the
increase of evolutionary entropic disorder, we now examine how a specifically
nonlinear index can be ascribed to chaos, nonlinearity and complexity to serve
as the benchmark for chanoxity. For this, we first recall two non-calculus
formulations of entropy that measure the complexity of dynamics of evolution
of a map f .

Let A = {Ai}I
i=1 be a disjoint partition of non-empty subsets of a set X;

thus
⋃

I
i=1Ai = X. The entropy

S(A) = −
I
∑

i=1

µ(Ai) ln(µ(Ai)),

I
∑

i=1

µ(Ai) = 1 (10.2.61)

of the partition A, where µ(Ai) is some normalized invariant measure of the
elements of the partition, quantifies the uncertainty of the outcome of an ex-
periment on the occurrence of any element Ai of the partition A. A refinement
B = {Bj}J≥I

j=1 of the partition A is another partition such that every Bj is a
subset of some Ai ∈ A, and the largest common refinement

A • B = {C : C = Ai

⋂

Bj for some Ai ∈ A, and Bj ∈ B}

of A and B is the partition whose elements are intersections of those of A and
B. The entropy of A • B is given by

S(A • B) = S(A) + S(B | A) (10.2.62)

= S(B) + S(A | B),

where the weighted average

S(B | A) =

I
∑

i=1

P (Ai)S(B | Ai) (10.2.63a)

of the conditional entropy

S(B | Ai) = −
J
∑

j=1

P (Bj | Ai) ln(P (Bj | Ai)) (10.2.63b)

of B given Ai ∈ A, is a measure of the uncertainty of B if at each trial it is
known which among the events Ai has occurred, and

P (Bj | Ai) =
P (Bj ∩ Ai)

P (Ai)
(10.2.63c)
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yields the probability measure P (Bj ∩ Ai) from the conditional probability
P (Bj | Ai) of Bj given Ai, with P (A) the probability measure of event A.

The entropy (10.2.61) of the refinement An, rather than (10.2.62), that
has been used by Kolmogorov in the form

hKS(f ;µ) = sup
A0

(

lim
n→∞

1

n
S(An)

)

(10.2.64)

to represent the complexity of the map as measuring the time rate of creation
of information with evolution, yields ln 2 for the tent transformation. Another
measure — the topological entropy hT(f) := supA0

limn→∞(ln Nn(A0)/n)
with Nn(A0) the number of divisions of the partition An derived from A0,
that reduces to

hT(f) = lim
n→∞

1

n
ln I(fn) (10.2.65)

in terms of the number of injective branches I(fn) of fn for partitions gen-
erated by piecewise monotone functions — also yields ln 2 for the entropy of
the tent map. For the logistic map,

I(fn) = I(fn−1) +
〈

{x : x = f−(n−1)(0.5)}
〉

(10.2.66)

is the number of injective branches arising from the solutions of

0 =
dfn(x)

dx
=

df(fn−1)

dfn−1

dfn−1(x)

dx

=
df(fn−1)

dfn−1

df(fn−2)

dfn−2
· · · df(f)

df

df(x)

dx

that yields
x = f−(· · · (f−(f−(0.5))) · · · )

where 〈{· · · }〉 is the cardinality of set {· · · }. Note that in the context of the
topological entropy, I(f) is only a tool for generating a partition on D(f) by
the iterates of f .

Example 10.1. (1) In a fair-die experiment, if A = {even, odd} and the refine-
ment B = {j}6

j=1 is the set of the six faces of the die, then for i = 1, 2

P (Bj | Ai) =







1

3
, j ∈ Ai

0, j /∈ Ai,

and S(B | A1) = ln 3 = S(B | A2) by (10.2.63b). Hence the conditional
entropy of B given A, using P (A1) = 0.5 = P (A2) and Eq. (10.2.63a), is
S(B | A) = ln 3. Hence
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S(A • B) = S(A) + S(B | A)

= ln 6.

If we have access only to partition B and not to A, then S(B) = ln 6 is the
amount of information gained about the partition B when we are told which
face showed up in a rolling of the die; if on the other hand the only partition
available is A, then S(A) = ln 2 measures the information gained about A on
the knowledge of the appearance of an even or odd face.

(2) The dynamical evolution of Fig. 10.3 provides an example of conditional
probability and conditional entropy. Here the refinements of basic partition
A0 = {matter, negmatter} = {A01, A00} generated by the inverses of the tent
map, are denoted as An = {t−n(A0i)}0,1 for n = 1, 2, · · · to yield the largest
common refinements

An = A0 • A1 • A2 • · · · • An, n ∈ N, (10.2.67)

where the refinements are denoted as indicated in the figure, and An = An.
Taking the measure of the elements of a partition to be its euclidean length,
gives

P (Anj | A0i) =







1

2n−1
, j ∈ A0i

0, j /∈ A0i,

S(An | A0i) = (n − 1) ln 2, i = 0, 1, (Equation 10.2.63b), S(An | A0) =
(n− 1) ln 2, and finally S(An •A0) = n ln 2. In case the initial partition A0 is
taken to be the whole of D(t), then (10.2.61) gives directly S(An) = n ln 2.

(3) Logistic map fλ(x) = λx(1 − x), [21]. For 0 ≤ λ < 3, Fig. 10.8a,
the dynamics can be subdivided into two broad categories. In the first, for
0 ≤ λ ≤ 2, I(fn

λ ) = 2 gives hT(fλ) = 0. This is illustrated in Fig. 10.8a (i),
(ii), and (iii) which show how the number of subsets generated on X by the
increasing iterates of the map tend from 2 to 1 in the first case and to the
set {{0} , (0, 1), {1}} for the other two. The figure demonstrates that while in
(a) the dynamics eventually collapses and dies out, the other two cases are
equally uneventful in the sense that the converged multifunctional limits —
of (0, [0, 1/2])∪ ((0, 1), 1/2)∪ (1, [0, 1/2])} in figure (iii), for example — are as
much passive and has no real “life”; this is quantified by the constancy of the
lap number and the corresponding topological entropy hT(f) = 0. Although
the partition induced on X = [0, 1] by the evolving map in (iv) is refined with
time, the stability of the fixed point x∗ = 0.6656 prevents the dynamics from
acquiring any meaningful evolutionary significance with its multifunctional
graphical limit being of the same type as in (ii) and (iii): as will be evident
in what follows, instability of fixed points is essential for the evolution of

meaningful complexity. λ(0) = 2 of (iii) — obtained by solving the equation
fλ(0.5) = 0.5 — is special because its super-stable fixed point x = 0.5 is the
only point in D(f) at which f is injective and therefore well-posed by this
criterion.
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Fig. 10.8a. Non-life dynamics of the first 10 iterates of the logistic map fλ =
λx(1 − x) generated by its only stable fixed point x∗ = (λ − 1)/λ.

For 3 ≤ λ ≤ 4, hT(fλ) = 0 whenever I(fλ) ≤ 2n which occurs, from Fig.
10.8b, for λ ≤ λ(1) = 1 +

√
5 = 3.23607; here λ(m) is the λ value at which a

super-stable 2m-cycle appears. The super-stable λ for which x = 0.5 is fixed
for fn, n = 2m, m = 0, 1, 2, · · · leads to a simplification of the dynamics of
the map, possessing as they do, the property of the stable horizontal parts of
the graphically converged multifunction being actually tangential to all the
turning points of every iterate of f . The immediate consequence of this is
that for a given 3 < λ < λ∗ = 3.5699456, the dynamics of f attains a state
of basic evolutionary stability after only the first {2m}m=0,1,··· time steps in
the sense that no new spatial structures emerge after this period, any further
temporal evolution being fully utilized in spatially self -organizing this basic
structure throughout the system by the generation of equivalence classes of
the initial 2m time steps. As seen in Fig. 10.8b, the unstable fixed point x∗ is
directly linked to its stable partners of f2 that report back to x∗. Compared
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Fig. 10.8b. Dynamics of stable 2-cycle of the logistic map, where each panel dis-
plays the first four iterates superposed on the graphically converged multifunction
represented by iterates 1001 and 1002. Panel (iv) in this and the following two fig-
ures, illustrates Eqs. (10.2.56a, b) in the birth of new period doubling cycles. The

di := f2
i−1

λi
(0.5) − 0.5 in these figures define the universal Feigenbaum constant

−α := limi→∞ di/di+1 = 2.502907 · · · , while the super-cyclic parameters (λi)i gen-
erate the second constant δ := limi→∞(λi − λi−1)/(λi+1 − λi) = 4.669201 · · · of
period doubling.

to (i) however, where the relative simplicity of the instability of x∗ allows its
stable partners to behave monotonically as in Fig. 10.8a (ii), the instability of
10.8b (iii) is strong enough to induce the oscillatory mode of convergence of
10.8a (iv). Case (ii) of the super-stable cycle for λ(1) = 1+

√
5 — obtained by

solving the equation f2
λ(0.5) = 0.5 — reflecting well-posedness of f at x = 0.5

represents, as in Fig 10.8a (iii), a mean of the relative simplicity of (i) and the
complex instability of (iii) that grows with increasing λ.
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When λ > λ(1) as in Figs. 10.8b (iii) and 10.8c, the number of injective
branches lie in the range 2n ≤ I(fn

λ ) ≤ 2n and the difficulty in actually ob-
taining these numbers for large values of n is apparent from Eq. (10.2.66). The
unstable basic fixed point x∗ in Fig. 10.8c is now linked to its unstable part-
ners denoted by open circles arising from f2, who report back to the overall
controller x∗ the information they receive from their respective stable sub-
committees. Compared to the 2-cycle of Fig. 10.8b, the instability of principal
x∗ is now serious enough to require sharing of the responsibility by two other
instability governed partners who are further constrained to delegate author-
ity to the subcommittees mentioned above. Case (ii) of the super-stable cycle
for λ(2) = 3.49856 is obtained by solving f4

λ(0.5) = 0.5 denotes as before
the mean of the relative simplicity of (i) and the large instability of (iii). For
λ = 4, however I(fn

4 ) = 2n and the topological entropy reduces to the sim-
ple h(f4) = ln 2; hT(f) > 0 is sufficient condition for fλ to be chaotic. The
tent map behaves similarly and has an identical topological entropy, see Fig.
10.10a.

The difficulty in evaluating I(fn) for large values of n and the open ques-
tion of the utility of the number of injective branches of a map in actually
measuring the complex dynamics of nonlinear evolution, suggests the signif-
icance of the role of evolution of the graphs of the iterates of fλ in defining
the dynamics of natural processes. It is also implied that the dynamics can
be simulated through the partitions induced on D(f) by the evolving map as
described by graphical convergence of the functions in accordance with our
philosophy that the dynamics on C derives from the evolution of f in C2

as observed in D(f). The following subsection carries out this line of reason-
ing, to define a new index of chaos, nonlinearity and complexity, that is of
chanoxity.

ChaNoXity

The really interesting comparison (of Windows) is with Linux, a product of
comparable complexity developed by an independent, dispersed community
of programmers who communicate mainly over the internet. How can they

outperform a stupendously rich company that can afford to employ very
smart people and give them all the resources they need? Here is a possible

answer: Complexity.

Microsoft’s problem with Windows may be an indicator that operating
systems are getting beyond the capacity of any single organization to handle
them. Therein may lie the real significance of Open Source. Open Source is
not a software or a unique group of hackers. It is a way of building complex
things. Microsoft’s struggles with Vista suggests it may be the only way to

do operating systems in future.

John Naughton, Guardian Newspapers Limited, May 2006.
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Fig. 10.8c. Dynamics of stable 4-cycle of the logistic map, where each panel dis-
plays the first four iterates superposed on the graphically “converged” multifunction
represented by iterates 1001-1004.

The magnified view of the stable 8-cycle, Fig. 10.8d, graphically illustrates
evolutionary dynamics of the logistic interaction. The 23 unstable fixed points
marked by open circles interact among themselves as indicated in the figure
to generate the stable periodic cycle, providing thereby a vivid illustration of
competitive collaboration between matter-negmatter effects. The increasing
iterations of irreversible urge toward bijective simplicity of ininality consti-
tutes the activating backward-direct direction of increasing entropic disorder
that is effectively balanced by restraining forward-inverse exergy destruction
of expansion, increasing order, and self-organization that eventually leads to
the stable periodic orbit. The activating effect of the direct limit appears in
the figure as the negative slope associated with each unstable fixed points ex-
cept the first at x = 0 which must now be paired with its equivalent image at
x = 1. Display (iii) of the partially superimposed limit graphs 1001-1008 on
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the first 8 iterates — that remain invariant with further temporal evolution —
illustrate that while nothing new emerges after this initial period, further in-

creasing temporal evolution propagates the associated changes throughout the

system as self-generated equivalence classes guiding the system to a state of

local (that is spatial, for the given λ) periodic stasis. As compared to Fig.
10.3 for the tent interaction, this manifestation of coeffects in the logistic for
λ < λ∗ = 3.5699456 has a feature that deserves special mention: while in
the former the negative branch belongs to distinct fixed points of equivalence
classes, in the later matter-negmatter competitive-collaboration is associated
with each of the 2N generating branches possessing bi-directional character-
istics with the activating effect of negmatter actually initiating the genera-
tion of the equivalence class. In the observable physical world of D(f), this
has the interesting consequence that whereas the tent interaction generates
matter-negmatter intermingling of disjoint components to produce the homog-
enization of Fig. 10.3, for the logistic interaction the resulting behaviour is a
consequence of a deeper interplay of the opposing forces leading to a higher
level of complexity than can be achieved by the tent interaction.

This distinction reflects in the interaction pair (f, f) that can be repre-
sented as

x .−→ 2x .−→
{

2x, if 0 ≤ x < 0.5
2(1 − x), if 0.5 ≤ x ≤ 1

, x .−→ 2x .−→ 4x(1 − x),

(10.2.68)
which leads — despite that “researchers from many disciplines now grapple
with the term complexity, yet their views are often restricted to their own
specialties, their focus non-unifying; few can agree on either a qualitative or
quantitative use of the term” [6] — to the

Definition 10.2 (Complex System, Complexity). The couple ((X,U), f)
of a compound topological space (X,U) and an interaction f on it is a complex
system C if (see Fig. 10.9 and Eq. (10.2.72))

(CS1) The algebraic structure of D(f) is defined by a finite family

{Aj}n
j=0, n = 1, 2, · · · , N , of progressively refined hierarchal partitions of non-

empty subsets induced by the iterates of f , with increasing evolution building

on this foundation the overall configuration of the system.

This family interacts with each other through
(CS2) The topology of (D,U) such that the subbasis of U at any level of

refinement is the union of the open sets of its immediate coarser partition and

that generated by the partition under consideration where all open sets are

saturated sets of equivalence classes generated by the evolving iterates of the

interaction.

The complexity of a system is a measure of the interaction between the
different levels of partitions that are generated on D(f) under the induced
topology on X. Thus as a result of the constraint imposed by (CS1), under
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Fig. 10.8d. Magnified view of the stable 8-cycle graphically illustrates how the
evolutionary dynamics of the logistic interaction, under the synthetic influence of
its stable-unstable components, spontaneously produces for any given resource 3 ≤
λ < λ∗, a set of 2n uniquely stable configurations between which it periodically
oscillates. Thus in this case the “unpredictability” of nonlinear interactions manifests
as a “surprise” in the autonomous generation of a set of well-defined stable states,
which as we shall see defines the “complexity” of the system.

the logistic interaction complex structures can emerge only for 3 ≤ λ < λ∗

which in the case of the stable 2-cycle of Fig. 10.8b(ii), reduces to just the
first 2 time steps that is subsequently propagated throughout the system by
the increasing ill-posedness, thereby establishing the global structure as seen
in Fig. 10.9. With increasing λ the complexity of the dynamics increases as
revealed in the succeeding plots of 4- and 8-cycles: compared to the single
refinement for the 2-cycle, there are respectively 2 and 3 stages of refinements
in the 4- and 8-cycles and in general there will be N refining partitions of
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(i) λ = 3.23607

A1

A1

A3

1

x∗

x∗x∗

A1

A2

(iii) λ = 3.55463

A2

(ii) λ = 3.49856

Fig. 10.9. The role of unstable fixed points in generating the partitions {Aj}n
j=0,

n = 1, 2, · · · , N required in the definition of complexity, where the {Aj} are ap-
propriately defined as the inverse images of fi,j :=

∣

∣f i(0.5) − f j(0.5)
∣

∣, refer Eq.
(10.2.72), and A0 = D(f). The open circles in (i) and (ii) represent the unstable
fixed points that have been omitted from (iii) for the sake of clarity. The converged
multifunctional graphical limits are also shown for the 2- and 4-cycles.

D(f) for the 2N -stable cycle. The equilibrated X↔, by Fig. 10.5b and the

subsequent discussion, corresponds to the {D, f(D), · · · , f2N

(D)} on D(f).
Below λ = 3, absence of instabilities allows no emergence of new features,
while above λ = λ∗ the absence of stabilizing effects prevent self-organization
from moderating the dynamics of the system.The motivating saturated open
sets of X on D(f) and R(f) are the projections of the boxes of the converged
multi-limits in Figs. 10.8b, c, d onto the x- and y−axes, with their boundary
being represented by the members of the equivalence class [x∗] of the unstable
fixed point x∗.

Complexity therefore, represents a state of dynamical balance between
a catabolic emergent, destabilizing, backward, bottom-up pump direction,
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opposed by an anabolic top-down, stabilizing forward engine arrow of self-
organization. This may be represented, with reference to Fig. 10.5a, b, as

forward-inverse arrow

Synthesis of E-expansion,
order, entropy decreasing top-

down self-organization C←















⊕















backward-direct arrow

Analysis of P-contraction,
disorder, entropy increasing
bottom-up emergence →C

⇐⇒
Synthetic cohabitation of opposites C = C↔,

(10.2.69)

with ⊕ denoting a non-reductionist sum of the components of a top-down
engine and a bottom-up pump as elaborated in Sec. 10.2.2. A complex sys-
tem behaves in an organized collective manner with properties that cannot be
identified with any of the individual parts but arise from the entire structure
acting as a whole: these systems cannot be dismantled into their components
without destroying itself. Analytic methods cannot simplify them because such
techniques do not account for characteristics that belong to no single compo-
nent but relate to the parts taken together with all their interactions. This
analytic base must be integrated into a synthetic whole with new perspectives
that the properties of the individual parts fail to add up to. A complex system
is therefore a

◮ dynamical, C-interactive, interdependent, hierarchal homeostasy of P-

emergent, disordering instability competitively collaborating with adaptive
E-self-organized, ordering stability generating thereby a non-reductionist
structure that is more than the sum of its constituent parts.

Emergence implies instability inspired (and therefore “destructive”, anti-stabil-
izing) generation of overall characteristics that do not reduce to a linear com-
position of the interacting parts: complexity is a result of the “failure of the
Newtonian paradigm to be a general schema through which to understand the
world”, [3], and in fact “if there were only Newton’s laws, there could never
have been any motion in the earth” [22].20 As noted earlier, complexity can
be distinguished into two subclasses depending on which of the two limits of
Eq. (10.2.69) serve as activating and which restraining and our classification
of “life” will be based on this distinction.

A complexity supporting interaction will be distinguished as C-interaction.
Examples of C- and non-C-interactions that will be particularly illuminating

20 Darwinian theory of natural selection is different from complexity generated emer-
gence and self-organization. Selection represents a competition between different
systems for the limited resources at their disposal: it signifies an externally di-
rected selection between competing states of equilibria that serves to maximize
the “fitness” of the system with respect to its environment. Complexity, on the
other hand, typifies an internally generated process of “continuous tension be-
tween competition and cooperation”.
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in our work are respectively the λ-logistic map and its “bifurcated” (λ/2)-tent
counterpart

λx(1 − x) .−→















λ

2
x, 0 ≤ x ≤ 0.5

λ

2
(1 − x), 0.5 ≤ x ≤ 1.

(10.2.70)

It will be convenient to denote a complex system C simply as (A,B), with the
interaction understood from the context. The distinguishing point of difference
between the dissipative structures D of multi-dimensional differential system
and evolutionary complex dynamics of a C-interaction is that the former need
not possess any of the hierarchal configuration of the later. This tiered struc-
ture of a complex system is an immediate consequence of the partitioning
refinements imposed by the interaction on the dynamics of the system with
emergence and self-organization being the natural outcome when these refine-
ments, working independently within the global framework of the interaction,
are assembled together in a unifying whole. Hence it is possible to make the
distinction

◮ a dissipative structure D is a special system of spatially multidimensional,
non-tiered, forward-backward synthesis of opposites that attains dynamic
equilibrium largely through self-organization without significant instability
inspired emergence

from a general complex system.

A Measure of ChaNoXity

The above considerations allow us to define, with reference to Fig. 10.5b, the
chanoxity index of the interaction to be the constant 0 ≤ χ ≤ 1 that satisfies

f(x) = x1−χ, x ∈ D(f). (10.2.71a)

Thus if 〈f(x)〉 and 〈x〉 are measures that permit (10.2.71a), then in

χ = 1 − ln 〈f(x)〉
ln 〈x〉 (10.2.71b)

we take
(a) 〈x〉 to be the number of basic unstable fixed points of f responsible

for emergence. Thus for 1 < λ ≤ 3 there is no basic unstable fixed point at
x = 0, followed by the familiar sequence of 〈x〉 = 2N points until at λ = λ∗ it
is infinite.

(b) for f(x) the estimate

〈f(x)〉 = 2f1 +

N
∑

j=1

2j−1

∑

i=1

fi,i+2j−1 , N = 1, 2, · · · , (10.2.72)
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λ N 〈f(0.5)〉 χN λ N 〈f(0.5)〉 χN

(1, 3] − 1.000000 0.000000 3.5699442 9 3.047727 0.821363

3.2360680 1 1.927051 0.053605 3.5699454 10 3.053571 0.838950

3.4985617 2 2.404128 0.367243 3.5699456 11 3.056931 0.853447

3.5546439 3 2.680955 0.525751 3.5699457 12 3.058842 0.865585

3.5666676 4 2.842128 0.623257 3.5699457 13 3.059855 0.875887

3.5692435 5 2.935294 0.689299 3.5699457 14 3.060524 0.884730

3.5697953 6 2.988959 0.736726 ↓ ↓ ↓ ↓?
3.5699135 7 3.019815 0.772220 λ∗ ∞ 3.?????? 1.000000

3.5699388 8 3.037543 0.799637

Table 10.6a. In the passage to full chaoticity, the system becomes increasingly
complex and nonlinear (remember: chaos is maximal nonlinearity) such that at the
critical value λ = λ∗ = 3.5699456, the system is fully chaotic and complex with
χ = 1. For 1 < λ ≤ 3 with no generated instability of which λ = 2 is representative,
χ = 1 − ln(1/2 + 1/2)/0 = 0. The expression for 〈f(x)〉 reduces to 2f1 + f12,
2f1 + f12 +(f13 + f24), 2f1 + f12 +(f13 + f24)+ (f15 + f26 + f37 + f48) for N = 1, 2, 3
respectively.

with fi = f i(0.5) and fi,j = |f i(0.5)−f j(0.5)|, to get the measure of chanoxity
as

χN = 1 − 1

N ln 2
ln



2f1 +
N
∑

j=1

2j−1

∑

i=1

fi,i+2j−1



 , (10.2.73)

that we call the dimensional chanoxity of fλ
21; notice how Eq. (10.2.72) ef-

fectively divides the range of f into partitions that progressively refine with
increasing N . In the calculations reported here, λ is taken to correspond to
the respective superstable periodic cycle, where we note from Figs. 10.8b, c
and d, that the corresponding super-stable dynamics faithfully reproduces the
features of emergence during the first N iterates, followed by self-organization
of the emerging structure for all times larger than N .

The numerical results of Table 10.6a suggest that

lim
N→∞

χN = 1

21 Recall that the fractal dimension of an object is formally defined very similarly:

D =
ln(# self-similar pieces into which the object can be decomposed)

ln(magnification factor that restores each piece to the original)
.
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at the critical λ = λ∗ = 3.5699456. Since χ = 0 gives the simplest linear
relation for f , a value of χ = 1 indicates the largest non-linearly emergent
complexity so that the logistic interaction is maximally complex at the tran-
sition to the fully chaotic region. It is only in this region 3 ≤ λ < λ∗ of
resources that a global synthesis of stability inspired self-organization and
instability driven emergence lead to the appearance of a complex structure.

λ
N

12 14 16 18 20 → ∞

3.5700
〈f(0.5)〉 5.057857 10.69732 31.38651 119.4162 468.8398

χN 0.805123 0.755773 0.689245 0.616675 0.556352
?→ 0.0000

3.6000
〈f(0.5)〉 275.7782 1125.908 4480.310 17996.46 72205.91

χN 0.324386 0.275938 0.241914 0.214699 0.193009
?→ 0.0000

3.7000
〈f(0.5)〉 885.4386 3683.121 14863.74 59511.41 236942.7

χN 0.184146 0.153806 0.133781 0.118840 0.107291
?→ 0.0000

3.8000
〈f(0.5)〉 1167.886 4597.633 18266.08 73197.48 293016.6

χN 0.150860 0.130952 0.115195 0.102249 0.091969
?→ 0.0000

3.9000
〈f(0.5)〉 1381.043 5595.363 22404.29 89472.39 358001.9

χN 0.130705 0.110713 0.096782 0.086158 0.077520
?→ 0.0000

3.9999
〈f(0.5)〉 1691.944 6625.197 26525.88 106254.9 424020.1

χN 0.106294 0.093304 0.081555 0.072379 0.065311
?→ 0.0000

4.0000
〈f(0.5)〉 14.00000 16.00000 18.00000 20.00000 22.00000 → N + 2

χN 0.682720 0.714286 0.739380 0.759893 0.777028 → 1

Table 10.6b. Illustrates how the fully chaotic region of λ∗ < λ < 4 is effectively
“linear” with no self-organization, and only emergence. The jump discontinuity in χ
at λ∗ reflects a qualitative change in the dynamics, with the energy input for λ ≤ λ∗

being fully utilized in the generation of complex internal structures of the system of
emerging patterns and no self-organization .

What happens for λ > λ∗ in the fully chaotic region where emergence per-
sists for all times N → ∞ with no self-organization, is shown in Table 10.6b
which indicates that on crossing the chaotic edge, the system abruptly trans-
forms to a state of effective linear simplicity that can be interpreted to result
from the drive toward ininality and effective bijectivity on saturated sets and
on the component image space of f . This jump discontinuity in χ demarcates
order from chaos, linearity from (extreme) nonlinearity, and simplicity from
complexity. This non-organizing region λ > λ∗ of deceptive simplicity char-
acterized by dissipation and irreversible “frictional losses”, is to be compared
with the nonlinearly complex domain 3 ≤ λ < λ∗ where irreversibility gen-
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erates self-organizing useful changes in the internal structure of the system
in order to attain the levels of complexity needed in the evolution. While the
state of eventual evolutionary homeostasy appears only in 3 ≤ λ < λ∗, the
relative linear simplicity of λ > λ∗ arising from the dissipative losses char-
acteristic of this region conceals the resulting self-organizing thrust of the
higher periodic windows of this region, with the smallest period 3 appearing
at λ = 1 +

√
8 = 3.828427. By the Sarkovskii ordering of natural numbers,

there is embedded in this fully chaotic region a backward arrow that induces
a chaotic tunnelling to lower periodic stability eventually terminating with
the period doubling sequence in 3 ≤ λ < λ∗. This decrease in λ in the face of
the prevalent increasing disorder in the over-heated scorching λ > λ∗ region
reflecting the negmatter effect of “letting off steam”, is schematically indicated
in Fig. 10.10a and is expressible as

x −→ fλ(x)























self-organizing complex system
3 ≤ λ < λ∗, 0 < χ ≤ 1,

ininality−→ λ∗ ≤ λ ≤ 4, χ = 0,
chaotic complex system























regulating←−
Sarkovskii ↑

−→
effects

(10.2.74)

Under normal circumstances dynamical equilibrium is attained, as argued
above, within the temporal, iterational, self-organizing component of the loop
above. If, however, the system is spatially driven by an increasing λ into the
fully chaotic region, the global negworld effects of its periodic stable win-
dows acts as a deterrent and, prompted by the Sarkovskii ordering induces
the system back to its self-organizing region of equilibration. This condition of
dynamical homeostasy is thus marked by a balance of both the spatial and tem-

poral effects, with each interacting synergetically with the other to generate an
optimum dynamical state of stability, with Figs. 10.8b, c, d clearly illustrating
how new, distinguished and non-trivial features of the evolutionary dynamics
occur only at the 2N unstable fixed points of fλ, leading to emerging patterns
that characterize the net resources λ available to the interaction.

Panels (i), (ii), and (iii) of Fig. 10.10a magnifies these features of the defin-
ing fixed points and their classes for 3 ≤ λ < λ∗ that generates the stable-
unstable signature in the graphically convergent limit of t → ∞, essentially
reflecting the synthetic cohabitation of the matter-negmatter components as-
sociated with these points. This in turn introduces a sense of symmetry with
respect to the input-output axes of the interaction that, as shown in panel
(iii), is broken when λ > λ∗ with the boundary at the critical λ = λ∗ signal-
ing this physical disruption with a discontinuity in the value of the chanoxity
index χ. Fig. 10.10b which summarizes these observations, identifying the
self-organizing emergent region 3 ≤ λ < λ∗ as the “life” supporting complex
domain of the logistic interaction fλ. Below λ = 3, the resources of fλ are
insufficient in generating complexity, while above λ = λ∗ too much “heat” is
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Fig. 10.10a. In contrast with the relatively tame (i) and (ii), panel (iii) illustrates
the property of fully chaotic maximal ill-posedness and instability.

produced for support of constructive competition between the opposing direc-
tions, with the drive toward uniformity of ininality effectively nullifying the
reverse competition. χ is in fact the irreversibility index ι in the complexity
range 3 ≤ λ < λ∗. Both these parameters lie in the identical unit interval [0,1],
with absence of disorder-inducing P at (ι = 0)(T = Tc) corresponding to the
order-freezing λ = 3 and absence of order-generating E at (ι = 1)(T = Th)
consistent with the disorder-disintegrating λ = λ∗. The later case is effectively
indistinguishable from the former because when the engine is not present no
pump can be generated that shows up as an identical χ = 0 for λ > λ∗.
Significantly, however, while the former represents stability with reference to
D(f) the later is stability with respect to R(f), and in the absence of an
engine direction at ι = 1 with increasing irreversibility and chanoxity, con-
trol effectively passes from the forward stabilizing direction to the backward
destabilizing sense, thereby bringing the complementary neg-world effects into
greater prominence through the appearance of singularities with respect to
D(f). Finally, Fig. 10.10c which is a plot of the individual increasing and de-
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Fig. 10.10b. The dynamics of panels (i)-(iii) generates this division of the available
resource into order, 0 ≤ λ < 3; chaos, λ∗ ≤ λ; and complex, 3 ≤ λ < λ∗. This
complex region C is distinguished as a synthetic cohabitation of the stable-unstable
opposites of A and B. The feedback of the chaos and the order regions constitutes
the required synthesis to the higher level of complexity.

creasing parts of the logistic map confirms the observation that independent
reductionist evolution of the component parts of a system cannot generate
chaos or complexity. This figure, illustrating the unique role of non-injective
ill-posedness in defining chaos, complexity and “life”, clearly shows how the
individual parts acting on their own in the reductionist framework and not in
competitive collaboration, leads to an entirely different simple, non-complex,
dynamics.

The figures of the dynamics in regions λ < 3 and λ∗ < λ of actual and
deceptive simplicity can be interpreted in terms of symmetry arguments as
follows [3]. In the former stable case of symmetry in the position of the in-
dividual parts of the system, the larger the group of transformations with
respect to which the system is invariant the smaller is the size of the part that
can be used to reconstruct the whole, and symmetry is due to stability in the

positions. By comparison, the unstable chaotic region displays statistical sym-

metry in the sense of equal probability of each component part that, without

any fixed position, finds itself anywhere in the whole, and symmetry is in the
spatial or spatio-temporal averages.
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Fig. 10.10c. Reductionism cannot generate chaos or complexity or “life”. This figure
clearly illustrates the unique role of non-injective ill-posedness in defining chaos,
complexity and “life”, how the individual parts acting independently on their own
in the reductionist framework not in competitive collaboration, leads to an entirely
different simple, non-complex, dynamics.

10.3 What Is Life?

This 1944 question of Erwin Schroedinger [29, “one of the great science classics
of the twentieth century”] credited with “inspiring a generation of physicists
and biologists to seek the fundamental character of living systems” [13], sug-
gests that “the essential thing in metabolism is that the organism succeeds
in freeing itself from all the entropy it cannot help producing while alive”,
thereby maintaining order by consuming the available free energy in generat-
ing high entropy waste. In biology, “life” might mean the ongoing process of
which living things are a part, or the period between birth and death of an or-
ganism, or the state of something that has been born and is yet to die. Living
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organisms require both energy and matter to continue living, are composed
of at least one cell, are homeostatic, and evolve; life organizes matter into
increasingly complex forms in apparent violation of the tenet of the second
law that forbids order in favour of discord, instability and lawlessness.

Among the various characterizations of life that can be found in the liter-
ature, the following are particularly noteworthy.

◮ Everything that is going on in Nature (implies) an increase of entropy of
the part of the world where it is going on. A living organism continually
increases its entropy and thus tends to approach the dangerous state of
maximum entropy, which is death. It can only keep aloof from it, i.e. stay
alive, by continually drawing from its environment “negative entropy”. The
essential thing in metabolism is that the organism succeeds in freeing itself
from all the entropy it cannot help producing while alive by attracting, as it
were, a stream of negative entropy upon itself (in order) to compensate the
entropy increase it produces by living. It thus maintains itself stationery
at a fairly high level of orderliness (= fairly low level of entropy) (by)
continually sucking orderliness from its environment. In the case of higher
animals we know the kind of orderliness they feed upon: the extremely well-
ordered state of matter in more or less complicated organic compounds,
which serve them as foodstuff. After utilizing it they return it in a very
much degraded form — not entirely degraded, however, for plants can
still make use of it. These, of course, have their most powerful supply of
negative entropy in the sunlight. Schroedinger [29].

◮ Life is a far-from-equilibrium dissipative structure that maintains its local
level of self-organization at the cost of increasing the entropy of the larger
global system in which the structure is imbedded. Schneider and Kay
[27].

◮ A living individual is defined within the cybernetic paradigm as a system
of inferior negative feedbacks subordinated to (being at the service of) a
superior positive feedback. Korzeniewski [16].

◮ Living things are systems that tend to respond to changes in their envi-
ronment, and inside themselves, in such a way as to promote their own
continuation; this may be interpreted to mean that a living system contin-
uously computes the solution to the problem of its own continued existence
through a process of internal adjustments to external causation. Morales
[19].

The message of bidirectional homeostasy implicit in the above passages
forms the basis of Cinquin and Demongeot’s Positive and Negative Feedback:

Striking a Balance Between Necessary Antagonists [7] in a wide class of bio-
logical systems that possess multiple steady states. To deal with such classes
of nonequilibrium systems, Schneider and Kay’s [27] reformulation of Kestin’s
Unified Principle of Thermodynamics [14] implies that thermodynamic gra-
dients drive self-organization, and chemical gradients lead to autocatalytic
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self-organizing dissipative reactions with positive feedback, with the activity
of the reaction augmenting itself in self-reinforcing reactions, stimulating the
global activity of the whole. Seen in this perspective, “life is a balance between
the imperatives of survival and energy degradation” identifiable respectively
with the backward and forward directions of Eq. (10.2.69). In the present con-
text, it is more convenient and informative to view these arrows not by affine
translation as was done in Sec. 10.2.2, but by considering the two worlds in
their own reference frames with their forward arrows opposing each other and
establishing a one-to-one correspondence between them; the activating and its
regulating spaces are then equivalent22. This equivalence of the forward with
its corresponding backward will serve to differentiate “life” from the normal
complex system as suggested below.

All multicellular organisms are descendants of one original cell, the fertil-
ized egg (or zygote) with the potential to form an entire organism through a
process of bifurcation called mitosis. The function of mitosis is to first desta-
bilize the zygote by constructing an exact copy of each chromosome and then
to distribute, through division of the original (mother) cell, an identical set of
chromosomes to each of the two progeny (daughter) cells. The two opposites
involved in this process are the male — modeled by the increasing positive
slope half of the logistic map — sperm cell (represented by the fixed point
xM = 0) and the female — modeled by the decreasing, negative slope of the
map — egg (represented by the fixed point xF = (λ − 1)/λ). The first cell
division of the fertilized egg for λ = 3, initiates a chain of some 50 bifurca-
tions to generate the approximately 1014 cells in an adult human, with each
division occurring at equal intervals of approximately twenty hours. All of the
approximately 200 distinct types of cells are derived from the single fertilized
egg xF through a process known as differentiation and specialization by which
an unspecialized cell specializes into one of the many cooperating types, such
as the heart, liver and muscle, each with its own individually distinctive role
collaborating with the others to make up the whole living system. During this
intricately regulated stage of self-organization, certain genes are turned on, or
become activated, while other genes are switched off, or deactivated, so that a
differentiated cell develops specific characteristics and performs specific func-
tions. Differentiation involves changes in numerous aspects of cell physiology:
size, shape, polarity, metabolic activity, responsiveness to signals, and gene ex-
pression profiles can all change during differentiation. Compare this with the
emerging patterns of partitioning induced by the logistic map for number of
iterates ≤ N in the 2N stable cycle that resulted in the definition (10.2.73) of
the chanoxity index in Sec. 10.2.3, followed by the self-organizing iterates for
times larger than N . This sequence of destabilizing-stabilizing cell divisions

22 Thus in R, | a |= | −a | defines an equivalence, and if a < b then −b < −a
when viewed from R+, but a < b in the context of R−. The basic fact used here
is that two sets are “of the same size”, or equipotent, iff there is a one-to-one
correspondence between them.
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represent emerging self-organization in the bidirectional synthetical organi-
zation (10.2.69) of a complex system: through cell cooperation, the organism

becomes more than merely the sum of its component parts.

Abnormal growth of cells leading to cancer occur because of malfunctioning
of the mechanism that controls cell growth and differentiation, and the level of
cellular differentiation is sometimes used as a measure of cancer progression.
A cell is constantly faced with problems of proliferation, differentiation, and
death. The bidirectional control mechanism responsible for this decision is a
stasis between cell regeneration and growth on the one hand and restraining
inhibition on the other. Mutations are considered to be the driving force of
evolution, where less favorable mutations are removed by natural selection,
while more favorable ones tend to accumulate. Under healthy and normal
conditions, cells grow and divide to form new cells only when the body needs
them. When cells grow old and die, new cells take their place. Mutations can
sometimes disrupt this orderly process, however. New cells form when the
body does not need them, and old cells do not die when they should. Each
mutation alters the behavior of the cell somewhat. This cancerous bifurcation,
which is ultimately a disease of genes, is represented by the chaotic region λ ≥
λ∗ where no stabilizing effects exist. Typically, a series of several mutations
is required before a cell becomes a cancer cell, the process involving both
oncogenes that promote cancer when “switched on” by a mutation, and tumor
suppressor genes that prevent cancer unless “switched off” by a mutation.

Life is a specialized complex system of homeostasis between these oppo-
sites, distinguishing itself by being “alive” in its response to an ensemble of
stratified hierarchal units exchanging information among themselves so as to
maintain its entropy lower than the maximal possible for times larger than the
“natural” time for decay of the information-bearing substrates. Like normal
complex systems, living matter respond to changes in their environment to
promote their own continued existence by resisting “the gradients responsible
for the nonequilibrium condition”. A little reflection however suggests that
unlike normal complex systems, the activating direction in living systems cor-
responds not to the forward-inverse arrow of the physical world but to the
backward-direct component with its increase of entropic disorder generating
collaborative support from the restraining self-organizing effect of the forward
component in an equilibrium of opposites. Thus it is the receptor “yin” egg
xF that defines the activating direction of evolution in collaboration with the
donor “yang” sperm xM, quite unlike the dynamics of the Lorenz equation,
for example, that is determined by the activating temperature gradient acting
along the forward arrow of the physical world.

In the present context, let us identify the backward-direct, catabolic, yin
component M of life L := {B,M} as its mind collaborating competitively
with the forward-inverse, anabolic, yang body B, and define
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Definition 10.3 (Life). Life is a special complex system of activating mind

and restraining body.

In this terminology, a non-life complex system (respectively, a dissipative
structure) is a hierarchal (respectively, non-hierarchal) compound system with
activating body and restraining mind. To identify these directions, the follow-
ing illustrative examples should be helpful.

Example 10.2. (a) In the Lorenz model the forward-inverse arrow in the direc-
tion of the positive z-axis is, according to Fig. 10.5b, the activating direction
of increasing order and self-organization. The opposing gravitational direc-
tion, by setting up the convection cells that reduces the temperature gradient
by increasing the disorder of the cold liquid, marks the direction of entropy
increase. Since the forward-inverse body direction is the activating direction,
the Lorenz system denotes a non-life complex system. Apart from these orga-
nizing rolls representing “the system’s response to move it away from equilib-
rium”, availability of the angular variables prevents the Lorenz system from
generating any additional emerging structures in the body of the fluid.

The familiar prototypical example of uni-directional entropy increase re-
quired by equilibrium Second law of Thermodynamics of the gravity domi-
nated egg crashing off the table never to reassemble again is explained, in
terms of Fig. 10.5b, as an “infinitely hot reservoir” dictating terms leading to
eventual “heat death”: unlike in the Lorenz case, the gravitational effect is not
moderated here for example by the floor rising up to meet the level of the
table, with the degree of disorder of the crashed egg depending on the height
of the table.

(b) For the logistic map in the complexity region of λ, the activating
backward-direct arrow {D, {D, f(D)}, {D, f(D), f2(D)} · · · } is of increasing
iterations, disorder, and entropy, while the restraining, expanding direction
of self organization corresponds to decreasing non-injectivity of the increas-
ing inverse iterates. Because the activating direction is that of the mind, the
logistic dynamics is life-like.

The dominance of the physical realization M of M as the brain in de-
termining the dynamics of L is reflected by the significance of sleep in all
living matter. While there is much debate and little understanding of the evo-
lutionary origins and purposes of sleep, there appears, nevertheless, to be a
consensus that one of the major functions of sleep is consolidation and opti-
mization of memories. However, this does not explain why sleep appears to
be so essential or why mental functions are so grossly impaired by sleep de-
privation. One idea is that sleep is an anabolic state marked by physiological
processes of growth and rejuvenation of the organism’s immune and nervous
systems. Studies suggest sleep restores neurons and increases production of
brain proteins and certain hormones. In this view, the state of wakefulness is
a temporary hyperactive catabolic state during which the organism acquires
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nourishment and procreates: “sleep is the essential state of life itself”. Anything
that an organism does while awake is superfluous to the understanding of life’s
metabolic processes, of the balancing states of sleep and wakefulness. In sup-
port of this idea, one can argue that adequate rest and a properly functioning
immune system are closely related, and that sleep deprivation compromises
the immune system by altering the blood levels of the immune cells, result-
ing in a greater than normal chance of infections. However, this view is not
without its critics who point out that the human body appears perfectly able
to rejuvenate itself while awake and that the changes in physiology and the
immune system during sleep appear to be minor. Nevertheless the fact that
the brain seems to be equally — and at times more — active during sleep
than when it is awake, suggests that the sleeping phase is not just designed
for relaxation and rest. Experiments of prolonged sleep deprivation in rats led
to their unregulated body temperature and subsequent death, is believed to
be due to a lack of REM sleep of the dreaming phase. Although it is not clear
to what extent these results generalize to humans, it is universally recognized
that sleep deprivation has serious and diverse biological consequences, not
excluding death. In the context of our two-component activating-regulating
formulation of homeostasy and evolution, it is speculated that sleep, partic-
ularly its dreaming REM period, constitutes a change of guard that hands
over charge of L to its catabolic G component from the anabolic M that rules
the wakeful period. It is to be realized that all living matter are constantly
in touch with their past through the mind; thus anything non-trivial that
we successfully perform now depends on our ability to relate the present to
the past involving that subject. In fact an index of the quality life depends
on its ability to map the past onto the present and project it to the future,
and the fact that a living body is born, grow and flourish without perishing
(which an uni-directional second law would have), thanks to anabolic synthe-
sis due to its immune system, is a living testimony to the bi-directionality of
the direct-inverse arrow manifesting within the framework of the backward-
forward completeness of the living world.

10.4 Conclusions: The Mechanics of Thermodynamics

In this paper we have presented a new approach to the nonlinear dynamics of
evolutionary processes based on the mathematical framework and structure
of multifunctional graphical convergence introduced in [30]. The basic point
we make here is that the macroscopic dynamics of evolutionary systems is in
general governed by strongly nonlinear, non-differential laws rather than by
the Newtonian Hamilton’s linear differential equations of motion

dxi

dt
=

∂H(x)

∂pi

,
dpi

dt
= −∂H(x)

∂xi

, −∞ < t < ∞ (10.4.1)
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of an N particle isolated (classical) system in its phase space of microstates
x(t) = (xi(t),pi(t))

N
i=1. As is well known, Hamiltonian dynamics leads directly

to the microscopic-macroscopic paradoxes of Loschmidt’s time-reversal invari-
ance of Eq. (10.4.1), according to which all forward processes of mechanical
system evolving according to this law must necessarily allow a time-reversal
that would require, for example, that the Boltzmann H-function decreases
with time just as it increases, and Zarmelo’s Poincare recurrence paradox
which postulates that almost all initial states of isolated bounded mechanical
system must recur in future, as closely as desired. One approach — [10], [24]
— to the resolution of these paradoxes require

(1) A “fantastically enlarged ” phase space volume as the causative entropy
increasing drive. Thus, for example, a gas in one half of a box equilibrates on
removal of the partition to reach a state in which the phase space volume
is almost as large as the total phase space available to the system under
the imposed constraints, when the number of particles in the two halves be-
comes essentially the same. In this situation, for a dilute gas of N particles
in a container of volume V under weak two-body repulsive forces satisfying
the linearity condition V/N ≫ b3 with b the range of the force, Boltzmann
identifies the thermodynamic Clausius entropy with SB = k ln |Γ (M)|, where
Γ (M) is the region in 6N -dimensional Lioville phase space of the microstates
belonging to the equilibrium macrostate M in question; the second law of
thermodynamics then simply implies that an observed macrostate is the most
probable in the sense that it is realizable in more ways than any other state.
When the system is not in equilibrium, however, the phase space arguments
imply that the relative volume of the set of microstates corresponding to
a given macrostate for which evolution leads to a macroscopic decrease in
the Boltzmann entropy typically goes exponentially to zero as the number of
atoms in the system increases. Hence for a macroscopic system “the fraction
of microstates for which the evolution leads to macrostates with larger Boltz-
mann entropy is so close to one that such behaviour is exactly what should
be seen to always happen”, [18]. A more recent interpretation[9] is to consider
not the number of microstates of a macrostate M , but the most probable
macroscopic history as that which can be realized by the greatest number
of microscopic paths compatible with the imposed constraints. Paths, rather
than states, are more significant in non-equilibrium systems because of the
non-zero macroscopic fluxes whose statistical description requires considera-
tion of the temporal causative microscopic behaviour.

(2) The statistical techniques implicit in the foregoing interpretation of
macroscopic irreversibility in the context of microscopic reversibility of New-
tonian mechanics rely fundamentally on the conservation of Lioville measures
of sets in phase space under evolution. This means that if a state M(t) evolves

as M(t1)
t1<t2−→ M(t2) such that the evolved phase space Γt2(M(t1)) of M(t1) is

necessarily contained in Γ (M(t2)) by the arguments in (1), then the preserva-
tion of measures requires that Γt2(M(t1)) ⊆ Γ (M(t2)) by the law of increasing
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SB. Conversely, even as M(t2)
t1<t2−→ M(t1) is not prohibited by the microscopic

laws of motion, the exact identification of the subset Γt2(M(t1)) ⊆ Γ (M(t2))
cannot be ensured a priori to enable the system to eventually end up in
Γ (M(t1)); although the macroscopic reverse process is permissible, it is im-
probable enough never to have actually occurred. Identifying the macrostate
of a system with our image f(x) of a microstate x in “phase space” D(f) that
generates the equivalence class [x] of microstates, invariance of phase space
volume can be interpreted to be a direct consequence of the linearity assump-

tion of the Boltzmann interaction for dilute gases that is also inherent in his
stosszahlansatz assumption of molecular chaos which neglects all correlations
between the particles.

(3) Various other arguments like cosmological big bang and the relevance
of initial conditions preferring the forward arrow to the reverse are invoked
to argue a justification for macroscopic irreversibility, that in the ultimate
analysis is a “consequence of the great disparity between microscopic and
macroscopic scales, together with the fact (or very reasonable assumption)
that what we observe in nature is typical behaviour, corresponding to typical
initial conditions”, [10].

In comparison the multifunctional graphical convergence techniques, founded
on difference rather than differential equations, adapted here avoids much of
the paradoxical problems of calculus-based Hamiltonian mechanics, and sug-
gests an alternate specifically nonlinear dynamical framework for the dissi-
pative dynamical evolution of Nature supporting self-organization, adaption,
and emergence in complex systems in a natural manner. The significant con-
tribution of the difference equations is that evolution at any time depends
explicitly on its immediate predecessor — and thereby on all its predecessors
— leading to non-reductionism, self-emergence, and complexity.

To conclude, we recall the following passages from Jordan [11] as a graphic
testimony to chanoxity:

Approximately one hundred participants met for three days at a conference
entitled “Uncertainty and Surprise: Questions on Working with the

Unexpected and unknowable”. The diversity of the conference was vital (as)
bringing together people with very different views strengthened the
probability of extraordinary explanatory behaviour and the hope of

producing entirely new structures, capabilities, and ideas. Out of our
interconnections might emerge the kind of representation of the world that

none of the participants, individually, possess or could possess. One purpose
of the conference was to develop the capacity to respond to our changing

science and to new ideas about the nature of the world as they relate to the
unexpected and unknowable.

Participants recognized early on their difficulties in communicating with one
another across the diversity of their backgrounds. One of the issues the

group tried to resolve was differences in levels of understanding and
experience related to the theme of uncertainty and surprise. The desire for a
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common language was a reoccurring theme among conference participants as
they tried to work out questions and ambiguities regarding even the

fundamental themes of the conference, including the definitions of
complexity, emergence, and uncertainty. Can we name or label what

complexity is? Emergence was an idea that wove itself throughout much of
the informal conversation, yet emergence as a term created confusion among
the participants. There was acknowledgment of a need to state more clearly
our assumptions with regard to fixed structure versus emergence. If you use

“emergence” to mean in the complexity sense, it implies some sort of scale
shift having to do with a fundamentally different structure of the

organization of interactions, or a shift in the nature of the network, or of
knowing, or awareness. Some conference participants cautioned the group

not to equate emergence with miraculous magic.

(It was) recognized that there are tendencies toward stability and tendencies
toward variance. Our assumption about the value of stability may lead us to

to our assumption of the value of permanence. There is evidence that the
value of permanence may be a socially constructed Western trap that is not
shared by Eastern philosophies. Complexity science leads us to understand

that the degree of variability in the distribution of fluctuations in system
dynamics is more important than any average quantity, which is counter to
the traditional paradigms of medicine, management, and scientific research.

We used to believe that equilibrium was the optimal for systems.
Complexity science leads us to believe that stability is death and survivality

is in variability. The tension between stability and variability is similar to
the tension in the social sciences between exploitation and exploration. We

often think of exploitation as a strategy for maintaining stability and
exploration as a strategy for exploiting variability. We may need a balance
between exploration and exploitation, stability and variability, convergence

and divergence within a state.

An issue that resurfaced several times throughout the conference was the
relationship between individual elements and collective elements.

Traditionally Western thought has tended toward the individual over the
collective; the opposite view is often taken by Eastern thought. It is not a

question of either the individual or the collective, but the interaction of the
two that is needed; · · · the individual and the group are the singular and

plural of the same process. In order to honor the tension between the
individual and the collective, a good model might be “If you win I win; if I
lose, you lose”. One participant felt that you can design an organization in
such a way that people profited or lost together based upon how well they
all did. One of our best levers for facing uncertainty and surprise might be

to encourage quasi-autonomy (individuality) but at the same time
willingness to cooperate across disciplines because this kind of collaboration

gives us more capabilities and skills.
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