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A systematic development is given of the view that in the case of systems with 
long-range forces and which are therefore nonextensive (in some sense) some 
thermodynamic results do not hold. Among  these is the relation U -  TS + pv 
=/~N and the G i b b s - D u h e m  equation. If a search for an equilibrium state is 
made by maximization of the entropy one may obtain misleading results 
because superadditivity may be violated. The considerations are worked out for 
a simple gas model, but  they are relevant to black hole thermodynamics.  Rather 
general conclusions can be drawn which transcend special systems. 

KEY WORDS: Concavity; non-extensivity; superadditivity; thermodynamic 
functions. 

1. INTRODUCTION 

The failure of some thermodynamic results, normally taken to be standard 
for black hole and other nonextensive systems has recently been dis- 
cussed.(1-3) A unified presentation which incorporates new points is given 
here. 

Consider two thermodynamic systems with similar thermodynamic 
equations of state. One may think of two ideal gasses, two van der Waals 
gases, two black holes which are perhaps both nonrotating and uncharged, 
or which are both charged and rotating. When such systems are allowed to 
merge some of their variables are subject to additive conservation laws. For 
a gas these variables are energy U, volume v, and the number of identical 
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particles N. Thus, after merging systems A and B into one system, this 
system has in an obvious notation values of these variables which are given 
by 

XA+ B = X  A + X  8, X ~ ( U , e , N )  (1.1) 

Such variables may be called extensities. (l) For black hole systems there are 
also three extensities, namely, the mass M, the angular momentum J, and 
the charge Q. Thus 

X = (M,J, Q) (1.2) 

The gas and the black hole system differ in an important respect. 
The entropy of a Kerr-Newman black hole is given by 

~k{RGM 2 _ Q 2  2[G2M 4 - e 2 J  2-GM2Q211/2 } (1.3) 
Sb = -~c 

where G is Newton's gravitational constant, k is Boltzmann's constant, c is 
the velocity of light, and h is Planck's constant divided by 2~r. For an ideal 
gas 

Sg = bkNln(aUvg/N h ) (h = g + 1) (1.4) 

where a, b, and g are constants. It is readily seen that if two identical gases 
are merged, the entropy of the merged system is twice the entropy of one of 
the original systems. Alternatively expressed, if the two gases were origi- 
nally in the same equilibrium state, but separated by a partition, the 
entropy of the two part-systems is unaltered by withdrawal of the partition: 
the entropy is an extensive variable. For the present purpose 4 a variable 
f(X) is extensive if it satisfies for all (positive) a 

f (aX) = af(X) (n)  (1.5) 

If f represents the entropy and a = 2, the left-hand side gives the entropy of 
the merged system, the right-hand side gives the entropy of the two 
part-systems. 

If two identical black holes are merged, the presence of long-range 
forces in the form of gravity leads to a more complicated situation, and the 
entropy is not extensive: 

Sg(2X) = 2Sg(X) (1.6) 

sb(2x) ~ 2sb(x) (1.7) 

where an obvious notation has been used. In the merged black hole system 
one has to use 2M, 2J, 2Q and the relation between Sb(2X ) and Sb(X ) has 

4 F o r  a c o m p a r i s o n  of va r ious  def in i t ions  see Ref.  4. 
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to be investigated. It can in fact be shown that 

&(X A + X~) > &(XA) + Sb(X~) (1.8) 

This means that the entropy is "strictly superadditive," and this is consis- 
tent with (1.7) if one takes X A = X B = X. 

We have arrived at two types of functions: extensive ones in the sense 
of (1.5) and nonextensive, but strictly superadditive, ones in the sense of 
(1.8). It is desirable to bridge the gap between these by allowing equality in 
(1.8). The resulting function will be called "superadditive": 

f ( X  A + XB)>~ f ( X A ) + f ( X e )  (S) (1.9) 

This includes the possibilities (1.6) and (1.8). One would expect that an 
entropy function should be superadditive when two systems are merged. 

The functional relations (1.5) and (1.9) have been given the symbols H 
(for homogeneity of order 1) and S (for superadditivity). Logical relations 
involving them and concavity 

f()~X A +[1  - X l X z )  />)tf(XA) + (1 --X)f(Xe) (C) (1.10) 

will be discussed in Section 6. 

2. THE FOURTH LAW OF THERMODYNAMICS 

The circumstance that the main variables of thermodynamics in the 
absence of long-range forces are intensive or extensive, cannot be deduced 
from the so-called "laws" of thermodynamics. Nonetheless it is a very 
important characteristic of "normal" thermodynamic systems, and that is 
why it was recognized as such long ago, before the advent of black 
holes. (5'6) It was labeled the fourth law of thermodynamics, though few 
people have commented on this suggestion, P. G. Wright (7~ and Kestin (8) 
being exceptions. Thus black holes lead one to consider the implications of 
the failure of the fourth law in these systems. In any case, any treatment of 
"normal" thermodynamics should rule out long-range forces early on in the 
discussion. Anyone who wants to check carefully which parts of thermody- 
namics may, or may not, be used when long-range forces play a part will 
find little in the archival literature. This paper seeks to alleviate this 
situation by giving the following example. 

Assuming (1.5), 

S (a) ==- S(aU, av, A N )  = aS (') (2.1) 

Differentiating with respect to a, using d(aU) /da  = U, etc., and also 

[OS(a)/O(aU)]~,N=[OS(')/OU]~,N= l / T ,  etc. (2.2) 
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one finds, if/~ is the chemical potential, 

U + pv  ~N = S(1) = S (2.3) 
T T T 

Also 

T d S  = dU + p d v -  izdN (2.4) 

Let the Gibbs free energy be defined by 

G =-- U + p v -  TS  (2.5) 

Then the fourth law in the form (2.1) has enabled us to deduce in (2.3) 

G =/xN (2.6) 

Also by differentiating (2.3), and combining with (2.4), one obtains the 
Gibbs-Duhem equation, 

S d T -  vdp  + N d ~  = 0 (2.7) 

Neither (2.6) nor (2.7) can be expected to hold once the fourth law has been 
jettisoned, as it must be for thermodynamic discussions of black holes. 

This leads to the need for a simple model system, or theoretical 
laboratory, to investigate this matter. In order not to be side-tracked by 
black hole peculiarities let us construct an analogous gas which departs 
from the ideal gas just enough to violate the fourth law. 

. A GENERALIZED GAS 

If b and g are constants let us use from ideal gas theory 

U = bNkT ,  pv  = g b N k T  = gU 

Then 

( 3S  ~ _ 1 _ bNk___~ S =  b k N l n  U + f l ( v , N )  
- ~  ] v,N T U 

0 ~ ~ = g b k N  v + f2( U, ) S \ P g b N k  
S in N 

! U,N T v 

(3.1) 

(3.2) 

(3.3) 

where fi, f2 represent constants of integration. One arrives at 

S = b k N l n  Uv g + f3(N) 

Choose f 3 ( N ) = - b k N l n N  h, where h is a constant. Hence the "theo- 
retical laboratory" will be based on systems with 

S(X) = b k N  in aUvg Nh (3.4) 
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Three cases arise~2~: 

h < g + 1 (3.5) 

h = g + 1 (3.6) 

h > g + 1 (3.7) 

The ideal gas corresponds to (3.6) when (1.5) holds and the fourth law is 
satisfied. 

One can verify at once that the chemical potential does not always 
satisfy (2.6). Using Eqs. (3.1)-(3.4) one finds 

( ~S u,~- T = S - hbk (3.8) 

whence 

/~N = G + (h - g -  1)U (3.9) 

Thus (2.6) holds only in the case (3.6). Many other ideal gas relations 
remain valid. For example, the heat capacities at constant pressure and 
volume are 

cp = ( g  + 1 ) ~ / 7  ~, c~ = u / T ,  c~/Cv = g + 1 (3.10) 
Among the amendments needed one finds, starting with (3.9) instead 

of (2.6), an amended Gibbs-Duhem relation 

S d T - v d p +  N d ~ = ( h - g -  1)bkd(UT)  (3.11) 

Thus 

= (h t ) ( b k T / N )  
~N ) T,p -- _ 

g 

whereas the left-hand side vanishes in normal thermodynamics. 

(3.12) 

. ENTROPY MAXIMIZATION: AN UNPHYSICAL RESULT 

Consider two generalized gases A and B separated by a partition. The 

a ( U -  U A)(v - vA) g 

(N - N A )h 
(4.1) 

total entropy is 

S -- S(XA) + S(XB) 

= kbNAln aUAVgA + k b ( N  - N A )ln 
Ug 

For an extremum, 

a S )  = 0  (4.2) 
= ~ UA,~A 
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These conditions imply equality of intensive variables. Using (3.2), (3.3) 
and (3.8), 

T A = TB--+ U A / b N A k  = U a / b S B k  (4.3) 

PA = PB --> gU~/VA = g U s / v B  (4.4) 

Iza = 1*8 ---~ S A / N A  = S ~ / N ~  (4.5) 

One finds from (4.3) and (4.4) the normal and sensible conditions 

we ~ NB 
U a - v A - N~ ( ~  ~') (4.6) 

Inserting this into (4.5) a new and unexpected condition is found: 

IzA -- 1'8 = bkTA(  g + 1 - h)ln)t (4.7) 

In the nonextensive cases (3.5), (3.7) an extremum requires a specific value 
of ~, namely, ~. = 1, so that for an extremum to be possible for the function 
(4.1) with respect to X A , one needs X A = X 8. In other cases the conditions 
for an extremum are not satisfied. 

This seems a rather unphysical result since one may have pairs of 
systems with other 2~ values. The unphysical nature of this result is con- 
firmed below. First evaluate (4.1) using (4.6) with )~ = 1. One finds the 
entropy at the extremum to be 

S i = b k U [ ( h -  g -  1)In2 + l n a U v g / N  hI 

The subscript i stands for "initial" with the separating partition in position. 
Upon withdrawal of the partition the final entropy is exactly (3.4), U, v, N 
being the total values of the extensities in the sense of (1.1). Hence 

S f -  Sg = - b k N ( h - g -  1)ln2 (4.8) 

Thus 

the entropy rises upon merging only if h < g + l, 
(4.9) 

it falls i f h > g +  1 J 
To ensure the extremum is a maximum the quantity (4.1) must satisfy 

three further conditions at the extremum (4.6) with ~ = 1 {j): 

02S t < 0 ,  
OUg I~A,NA 

O2S/O tl) 
O~S/OvA 0 UA 
02S/ONA 0 uA 

02s/3 u~ o2s/o uA ova 
02S/OVA OU A 228/21) 2 

02S/0 UA OVA 02S/OUA ONA < 

02810v 2 O2S/OGA ON A 

02S/ONA OvA 02S/0N~ 

> 0 (4.10) 

0 (4.11) 
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There is no problem about the conditions (4.10) which are identically 
fulfilled for our gas: 

-2bkNA/U 2 < O, g(ZbkNA/UAvA)2> 0 (4.12) 

(4.12) may be reinterpreted in the more familiar form 

- -  > 0  ( 4 . 1 3 )  
c . ~ v ~  > ~  v~ ~ TA,NA 

which one obtains if one is not committed to a particular equation of state. 
The third condition, i.e. (4.11), leads to h > g + 1 since it requires 

8gb3k3NA 
(g  + 1 - h) < 0 (4.14) 

U)v~ 

Using (3.12) it may be interpreted to mean 

(OIXA/ONA) TA,P, > 0 (4.15) 

There is sufficient repulsion between the particles for the chemical potential 
at constant temperature and pressure to increase upon addition of a 
particle. 

The condition for an extremum led to (4.9). The condition for a 
maximum fastens on to the second case, namely, (3.7). Thus on merging of 
the two identical systems the entropy drops, and this is unphysical. After 
all, the removal of a constraint is expected to increase the entropy. Against 
one's expectation the determinantal condition did not pick out the first case 
(4.9) which would seem more physical. 

In the case (3.6) of an extensive entropy no complications arise: ~. in 
(4.6) can be left general, the condition (4.7) is automatically fulfilled and so 
are the determinantal conditions. 

5. E N T R O P Y  S U P E R A D D I T I V I T Y  

The last case (4.9) is ruled out if we adopt the view that superadditivity 
of the entropy for the whole range of the variables X A is a key requirement, 
overriding, if necessary, entropy maximization. To find the condition for 
superadditivity consider 

F(X.)  -- S(X) - S(X~) - S(X - X~) 

for the system (3.4). One requires F(XA) > 0 and finds 

I 1 iu o ,l Eu   ,l exp bkN = u(T,T) u(7, T) u(3,,3,)~g+l-h)r< 1 

(5.1) 

(5.2) 
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Here 

and 

UA VA ?CA 
a =  U '  f l=-  7 =  v ' N 

U ( O ~ , ' y ) Y ~  OLY(1 - -  Or) 1 Y 

The function u satisfies (2) 

u ( a , y )  -< u(Y,Y) 

and the function u(y ,y)  has the value unity at y = 0, 1 and a minimum 

u(5 ,5)  = � 8 9  1 Thus, exponents apart, each factor in the central term of (5.2) 

lies between 0 and 1. Thus (5.2) is satisfied for whole range of X A's values if 

h < g + 1 (5.3) 

This is the physically more realistic first option in (4.9). For equality in (5.2) 
one needs a = f i = y  and h = g + l .  This is identical to (4.6) with 
unspecified. Thus for an extensive entropy function entropy maximization 
and the superadditivity condition yield identical results. 

Let us now take h = g = 1 for simplicity. Such a generalized gas has a 
strictly superadditive entropy; it violates the condition for a maximum in 
the entropy of two separated systems as a function of X A. Two such 
systems therefore merge with an increase in entropy just as in the black 
hole case. Maximization of the entropy leads to the unphysical possibility 
of an equilibrium state between the systems only because superadditivity of 
the entropy is not ensured in this procedure. 

A summary of the properties of the gas is given in Table I. Here H 
means that the expression for S is not homogeneous of first order in X A 
according to (1.5), while H means that it is. A similar notation is used with 
respect to (1.9) and (1.10). We repeat our earlier assertion ~) that super- 
additivity must take the place of concavity (or maximization) when these 
two conditions cannot beth be true. 

6. C O N C L U S I O N S  

The generalized gas has now served its purpose and it is desirable to 
summarize the theoretical situation in general, without reference to it. 

We first observe that for continuous function the three principles 
introduced in Section 1 are related by (3) 

C + S ~ H  (6.1) 

The proof notes that by concavity (1.10) with h = n - l ,  XA = y and X 8 -- 0 
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implies 

S(n-'Y) > n- IS(Y)  (6.2) 

On the other hand, superadditivity (1.9) with X a = X B applied repeatedly 
implies S(nX) >t nS(X), i.e., with nX = Y, 

S(Y) ) nS(n-iy) 
From (6.2) and (6.3) 

whence H given by (1.5) 

(6.3) 

S(nX) = nS(X) (6.4) 

follows by extending (6.4) first to rational 
multiples of X and then to all multiples. Given that the thermodynamic 
functions to be considered are continuous in their arguments, it follows that 
if H fails then C and S cannot both be true. The following eight logical 
possibilities may therefore be enumerated for a thermodynamic system: 

I(S,H,C)] (S, , C) (S, n, e) t (S, H , C) ] 

(S, H, C) (S,H,C) [ (g, H, C) (S,H, C) 
(6.5) 

The three underlined possibilities are logically inconsistent by virtue of, in 
turn, (6.1) and 

S + H ~ C  (Refs. 9, 10, 1) (6.6) 

and 

C + H-->S (Refs. 9, 10, t) 

If one shares the view, (l) reiterated here, that the essence of the second law 
resides in superadditivity particularly under conditions (of which nonex- 
tensivity is one) when superadditivity and concavity cannot both be true, 
then the bottom line (6.5) is also ruled out, not on logical but on physical 
grounds. The three possibilities illustrated in Table I have been boxed, one 
of them being unphysical, as was noted in the table. There remain only two 
cases which are acceptable on logical and physical grounds and they have 
been illustrated in columns II and III of Table I. 

The scheme outlined can be applied in various ways. Here we investi- 
gate what negative heat capacity, C < 0, implies. Note that C implies C > 0 
as in (4.13). Hence, using the validity of S for thermodynamics systems, 
invert (6.6), S + H--~ C---) (C > 0), to find the failure of both H and C: 

(C < 0) --> H and (C < 0) --~ C (6.7) 
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This result enables one to establish a link with microscopic investigations. 
Notable  among  these are those which, studying gravitating fermions, arrive 
at their well-known property C < 0 (see, for example, Refs. 11 and 12). 
Again systems of high-density hadronic  matter, treated by the statistical 
bootstrap model,  also arrive at C < 0 (see, for example, Refs. 13 and 14). It 
has not been put  in these papers quite in this way, but  one can say about  
these models that, assuming superadditivity of the entropy function, they 
must  imply lack of homogenei ty  and concavi ty  of the entropy. The assump- 
tion of superadditivity is vital for this statement. It is clearly desirable that 
these models be examined in detail to see if they are indeed of the type 
( S , H , C )  in (6.5). Because amendments  to normal  thermodynamics  are 
brought  about  by H [see, for example, Eq. (3.9)], it is also of interest to 
examine arguments  concerning gravitational phase transitions (see, for 
example, Ref. 15 and papers cited therein) f rom the point  of view of the 
present paper. 
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