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Disorder and entropy are formally decoupled in such a way that it is possible for an expanding universe to have periods 
in which both entropy and order increase simultaneously. Some other consequences of this decoupling are traced and ap- 
plications in statistical mechanics and to biological systems become possible. 

Notable problems to which entropy concept has 
given rise include: (1) How can a structured or "order- 
ly"  universe have arisen from the initial hot  big bang 
with a high degree of  disorder and therefore presum- 
ably a large entropy.  (2) How can additional "infor- 
mat ion" ,  which is normally presumed to lower the es- 
t imate of  the entropy of  a system, sometimes increase 
it. An example of  the latter situation occurs when a 
previously single energy level is found to be a doublet.  
The first problem has been discussed by cosmologists, 
most recently in refs. [ 1 - 3 ] ,  by noting that the maxi- 
mum entropy at any cosmological time may well in- 
crease faster than the actual entropy of  the universe 
(or more precisely of  the model universe). The second 
problem is related to questions of  coarse-graining which 
have been much discussed for many years, see for ex- 
ample refs. [1,4]. 

Our purpose here is to decouple entropy and dis- 
order. In normal thermodynamics where entropies, 
internal energies, etc. are extensive variables, this is 
easily achieved by defining disorder by [4] 

O(n) = S(n)/k In n(t),  (1) 

where n is the number of  accessible microstates, S(n) 
is the entropy of  the system and k is Boltzmann's con- 
stant. The denominator  is needed so that a doubled 
system, which has n 2 states, has the same disorder as 
the original system: 

D(n 2) = S(n2)/Zk Inn  = D(n). (2) 
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If  we take the entropy as 

n(t) 

S(n(t)) = - k  ~ Pi In Pi, (3) 
i=1 

where the Pi are the probabilit ies of  the different 
states, then S(n) has, for given n(t), k In n(t) as an 
upper bound, i.e. D(n) is intensive, with 

0 <~ D(n) ~< 1. (4) 

Thus "order"  can be regarded as given by 1 - D(n). 
The key idea is that in actual situations S(n) can in- 
crease with time less rapidly than k i n  n(t). Hence or- 
der can increase and the time rate the change 

19(n) = [S(n)/S(n) - ft/n in n]D(n) 

can be negative, even though S(n) is positive. The new 
features arise from the variability ofn( t ) ,  which is con- 
sidered a constant in normal theories. 

We intend the disorder concept to be used with any 
of  the usual statistical ensembles. Thus Pi = 1In(t) or 
Pi = exp(-Ei /kT) /Z  in (3) leads to 

S = k l n n ( t )  or k l n Z + U / T  

which apply to the microcanonical and the canonical 
ensembles respectively with 

n(t) n(t) 

z -  = exp(-Ei// T), V- -  P i l l .  
i=1 i=1 

In the former case n(t) is the number of  accessible 
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states at a given energy, in the second case n(t) is the 
number of  accessible states over a whole range of  ener- 
gies owing to a contact  with a heat reservoir, provided 
only the number of  particles is fixed. This latter re- 
striction can also be removed by considering a Pi ap- 
propriate to the grand canonical ensemble. All of  these 
possibilities, and others, are intended to be allowed 
for here. 

A whole class of examples is furnished by biologi- 
cal systems where growth implies increasing n(t), but 
they are not easy to quantify and such examples are 
not discussed here. 

Example 1. This illustrates that information can 
increase entropy and also that it can change entropy 
and disorder in opposite directions. A system has two 
equally populated levels; the upper one is found to be 
a double level in a more accurate experiment.  The 

• • - 1 1" , .  11 1 1"~ 
probabdlnes go from (~, ~) to ( i ,  g, Z) and the changes 
in entropy and disorder are respectively 

k l n 2 ~ l . 5 k l n 2 ,  l ~ 0 . 9 5 ( = l . 5 1 n 2 / l n 3 ) .  

Normally one thinks of  " informat ion" as decreasing 
entropies by virtue of  the probabilit ies which were 
initially equal becoming unequal, it being assumed 
that n(t) is unaffected. But here it is n(t) which is ad- 
justed. 

Example 2. This illustrates that order can increase 
when entropy is constant. We adopt a Robe r t son -  
Walker model with a single cosmological fluid which 
satisfies p V = gU where p, V are pressure and volume, 
U is the internal energy and g is a constant. For black- 
body radiation g = ½. The Einstein equations show that 
the entropy o fa  comoving volume, and therefore uvg,  
is t ime-independent.  Thus (1) shows that disorder de- 
crease or "order" ,  1 - D(n), increases even though en- 
t ropy is constant. The reason is that for a given extent 
of  the expansion [e.g. a given scale parameter R(t)]  
the number of  accessible states can be taken as pro- 
portional to R( t )  3. But for the present example any 
positive power of  R will do and then n(t) increases 
while S(n(t)) remains constant. 

Example 3. This illustrates that order and entropy 
can increase together. We adopt a two-fluid oscillating 
cosmological model in which there are long periods of  
only slowly increasing entropy [5,6]. For the observ- 

14 M a y  1 9 8 4  

able universe n(t) ~ (ct) 3 and eq. (1) gives decreasing 
disorder so long asS increases less rapidly than 3k In t. 
If a typical comoving volume is considered, n(t) ccR(t) 3 
c~ t3/(q+l) where we have assumed for simplicity a con- 
stant deceleration parameter q =- -RRIt~ 2 ( > _  1). In 
either case eq. (1) yields 

D = S(t)/k 
a + b l n t  

and as long as the entropy does not increase too fast, 
"order"  increases as well. Here a is a constant and b 
is 3/(q + 1). For a survey of  recent estimates of  q see 
ref. [7]. 

So far it has been assumed that the system obeys 
normal thermodynamics.  It was therefore possible to 
have for the number nN(t ) of states of  a N-particle 
system 

nN(t ) = nl( t)  N, 

whence 

nzN( t  ) = n l ( t )2N = nN(t)2 , 

as used in (2). If  the entropy is non-extensive, as it is 
for black holes, (2) fails• Let (1) be replaced by 

D = S / S m a x ,  (5) 

provided S and Sma x refer to the same equation of' 
state. Then if, for example, S ccM 2, as in black holes, 
then also Sma x cxM 2, and D remains intensive and sub- 
ject to (3). One can then again regard 1 - D as a mea- 
sure of  order which is intensive and (1) becomes a 
special case of  (5). This shows also that disorder de- 
creases whenever Sma x increases sufficiently rapidly. 

Example 4. If a cavity of  adjustable radius R con- 
tains energy E and if only a black hole of  massM 
makes a significant contribution to the entropy,  then 
from the Bekenstein-Hawking entropy formula [8,9] 
the maximum entropy of  the system, 

Sma x = 47rGkM2/hc = 27rkRE/~c, (6) 

corresponds to all of  the energy being in a black hole. 
We have used 2GM/R = c 2 or 

2GM2/R = E .  (7) 

From (5) and (6) one finds a noncontroversial example 
of  the Bekenstein inequality [10] 
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S/E <~ 2nkR/hc 

for the black hole case. (How general it is a more con- 
troversial question, but the answer to it is not needed 
here.) We merely note that (5) yields a measure of dis- 
order for this system, namely 

O = (MbhC2/E)R bh/R, 

where R, E refer to the cavity and the suffix bh refers 
to the black hole. The maximum can be attained only 
if E and R are related by (7). 

I fS  in (5) were to be used for a gas of particles or 
photons (extensive) and Sma x for a black hole system 
(nonextensive), D in (5) would cease to be an inten- 
sive variable. That problems arise from nonextensivity 
has been discussed elsewhere [1 1]. 

In more standard situations than those considered 
here, in which n(t) is time independent, D and S will 
increase in proportion to each other. This holds in 
many cases (in fact, the usual cases) in statistical me- 
chanics. 

A more detailed estimate of "order" and entropy 

as a function of time based on various cosmological 
models will be given in due course. 
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