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Preface

I think the next century will be the century of complexity. We have already
discovered the basic laws that govern matter and understand all the normal

situations. We don’t know how the laws fit together, and what happens
under extreme conditions. But I expect we will find a complete unified

theory sometime this century. There is no limit to the complexity that we
can build using those basic laws.

Stephen Hawking, January 2000.

We don’t know what we are talking about. Many of us believed that string
theory was a very dramatic break with our previous notions of quantum
theory. But now we learn that string theory, well, is not that much of a

break. The state of physics today is like it was when we were mystified by
radioactivity. They were missing something absolutely fundamental. We are

missing perhaps something as profound as they were back then.

Nobel Laureate David Gross, December 2005.

This volume is essentially a compilation of papers presented at the Inter-
national Workshop on Mathematics and Physics of Complex and Nonlinear
Systems that was held at Indian Institute of Technology Kanpur, March 14
– 26, 2004 on the theme ChaNoXity: The Nonlinear Dynamics of Nature.
ChaNoXity — symbolizing Chaos-Nonlinearity-compleXity — is an attempt
to understand and interpret the dynamical laws of Nature on a unified and
global perspective. The Workshop’s objective was to formalise the concept
of chanoxity and to get the diverse body of practitioners of its components
to interact intelligently with each other. It was aimed at a focused debate
and discussion on the mathematics and physics of chaos, nonlinearity, and
complexity in the dynamical evolution of nature. This is expected to induce
a process of reeducation and reorientation to supplement the basically linear
reductionist approach of present day science that seeks to break down natural
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systems to their simple constituents whose properties are expected to combine
in a relatively simple manner to yield the complex laws of the whole. There
were approximately 40 hours of lectures by 12 speakers; in keeping with its
aim of providing an open platform for exposition and discourse on the the-
matic topic, each of the 5-6 lectures a day were of 75 minutes duration so
as to provide an adequate and meaningful interaction, formal and informal,
between the speaker and his audience.

The goals of the workshop were to

◮ Create an awareness among the participants, drawn from the research and
educational institutions in India and abroad, of the role and significance
of nonlinearity in its various manifestations and forms.

◮ Present an overview of the strong nonlinearity of chaos and complexity
in natural systems from the mathematical and physical perspectives. The
relevant mathematics were drawn from topology, measure theory, inverse
and ill-posed problems, set-valued and nonlinear functional analyses.

◮ Explore the role of non-extensive thermodynamics and statistical mechan-
ics in open, nonlinear systems.

There were lively and animated discussions on self-organization and emer-
gence in the attainment of steady-states of open, far-from-equilibrium, com-
plex systems, and on the mechanism of how such systems essentially cheat
the dictates of the all-pervading Second Law of Thermodynamics1: where lies
the source of Schrodinger’s negative entropy that successfully maintains life
despite the Second Law? How does Nature defeat itself in this game of the
Second Law, and what might be the possible role of gravity in this enterprise?
Although it is widely appreciated that gravity — the only force to have suc-
cessfully resisted integration in a unified theory — is a major player in the
dynamics of life, realization of a satisfactory theory has proved to be diffi-
cult, with loop quantum cosmology holding promise in resolving the vexing
“big-bang singularity problem”. The distinctive feature of this loop quantiza-
tion is that the quantum Wheeler-DeWitt differential equation (that fails to
remove the singularity, backward evolution leading back into it), is replaced
by a difference equation, the size of the discrete steps determined by an area
gap, Riemannian geometry now being quantized with the length, area, vol-
ume operators possessing discrete eigenvalues. Discrete difference equations,
loops of one-dimensional objects (based on spin-connections rather than on
the metrics of standard General Relativity) considered in the period-doubling

1 The second law of thermodynamics holds, I think, the supreme position among
the laws of Nature. If someone points out to you that your pet theory of the
universe is in disagreement with Maxwell’s equations then so much the worse
for Maxwell’s equations. If it is found to be contradicted by observation, well,
these experimentalists do bungle things sometimes. But if your theory is found
to be against the second law of thermodynamics I can give you no hope; there is
nothing for it but to collapse in deepest humiliation. A. Eddington, The Nature
of the Physical World, Macmillan, New York (1948).
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perspective, the extreme nonlinear curvature of big-bang and blackhole chaotic
spacetimes: do all these point to a radically different paradigm in the chaos-
nonlinearity-complexity setting of discrete dynamical systems?2 Thus is it “a
quantum foam far removed from any classical spacetime, or is there another
large, classical universe” on the “other side of the singularity responsible for a
quantum bounce from an expanding branch to a contracting branch”?3 Could
this possibly be the outcome of the interaction of our classical real world with a
negative partner acting as the provider of the illusory negative entropy, whose
attraction manifests on us as the repulsive “quantum bounce” through the
agency of gravity? Would the complex structure of “life” and of the universe
as we know it exist without the partnership of gravity?

Not all the papers presented at the Workshop appear here; notable excep-
tions among those who gave three or more lectures are S. Kesavan (Institute
of Mathematical Science at Chennai, India) who spoke on Topological Degree
and Bifurcation Theory, and M. Z. Nashed (University of Central Florida,
USA) whose paper Recovery Problems from Partial or Indirect Information:
Perspectives on Inverse and Ill-Posed Problems could not be included due to
unavoidable circumstances. The volume contains three papers by Realpe and
Ordonez, Majumdar, and Johal that were not presented at the Workshop. A
brief overview of the papers appearing follows.

Francisco Balibrea (Universidad de Murcia, Spain) provides a compre-
hensive review of the complicated dynamics of discrete dynamical systems in
a compact metric space using the notions of Li-Yorke and Devaney chaos,
sensitive dependence of initial conditions, transitivity, Lyapunov exponents,
and the Kolmogorov-Sinai and topological entropies. Sumiyoshi Abe (Uni-
versity of Tsukuba, Japan) surveys the fundamental aspects of nonextensive
statistical mechanics based on the Tsallis entropy, and demonstrates how the
method of steepest descents, the counting algorithm and the evaluation of the
density of states can appropriately be generalized for describing the power-law
distributions. Alberto Robledo (Universidad Nacional Autonoma de Mex-
ico, Mexico) gives an account of the dynamics at critical attractors of simple
one-dimensional nonlinear maps relevant to the applicability of the Tsallis
generalization of canonical statistical mechanics. Continuing in this spirit of
non-extensivity, A. G. Bashkirov (R.A.S. Moscow, Russia) considers the
Renyi entropy as a cumulant average of the Boltzmann entropy, and finds that
the thermodynamic entropy in Renyi thermostatistics increases with system
complexity, with the Renyi distribution becoming a pure power-law under ap-
propriate conditions. He concludes that “because a power-law distribution is
characteristic for self-organizing systems, the Renyi entropy can be considered
as a potential that drives the system to a self-organized state”. Karmeshu

2 Gerard ’t Hooft, Quantum Gravity as a Dissipative Deterministic System, Class.
Quantum Grav., 16, 3263-3279 (1999)

3 Abhay Ashtekar, Tomasz Pawlowski, and Parampreet Singh, Quantum Nature of
the Big Bang, ArXiv: gr-qc/0602086
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and Sachi Sharma (J.N.U., India) proposes a theoretical framework based
on non-extensive Tsallis entropy to study the implication of long-range depen-
dence in traffic process on network performance. John Realpe (Universidad
del Valle, Colombia) and Gonzalo Ordonez (Butler University, Indianapo-
lis and The University of Texas at Austin, USA) study two points of view
on the origin of irreversible processes. While the “chaotic hypothesis” holds
that irreversible processes originate in the randomness generated by chaotic
dynamics, the approach of the Prigogine school maintains that irreversibility
is rooted in Poincare non-integrability associated with resonances. Consider-
ing the simple model of Brownian motion of a harmonic oscillator coupled
to lattice vibration modes, the authors show that Brownian trajectories re-
quire resonance between the particle and the lattice, with chaos playing only
a secondary role for random initial conditions. If the initial conditions are
not random however, chaos is the dominant player leading to thermalization
of the lattice and consequent appearance of Brownian resonance character-
istics. R. S. Johal (Lyallpur Khalsa College, India) considers the approach
to equilibrium of a system in contact with a heat bath and concludes, in the
context of non-extensivity, that differing bath properties yield differing equi-
librium distributions of the system. Parthasarathi Majumdar (S.I.N.P.,
India) reviews black hole thermodynamics for non-experts, underlining the
need for considerations beyond classical general relativity. The origin of the
microcanonical entropy of isolated, non-radiant, non-rotating black holes is
traced in this perspective in the Loop Quantum Gravity formulation of quan-
tum spacetime. Russ Marion (Clemson University, USA) applies complexity
theory to organizational sciences and finds that “the implications are so signif-
icant that they signal a paradigm shift in the way we understand organization
and leadership”. Complexity theory, in his view, alters our perceptions about
the logic of organizational behavior which rediscovers the significant impor-
tance of firms’ informal social dynamics that have long been “suppressed or
channeled”. He feels that a complexity appraoch to organizations is particu-
larly relevant in view of the recent emphasis in industrialized nations toward
knowledge-based, rather than production-based, economies. A. Sengupta
(I.I.T. Kanpur, India) employs the topological-multifunctional mathematical
language and techniques of non-injective illposedness to formulate the notion
of chanoxity in describing the specifically nonlinear dynamical evolutionary
processes of Nature. Non-bijective ill-posedness is the natural mode of expres-
sion for chanoxity that aims to focus on the nonlinear interactions generating
dynamical evolution of real irreversible processes. The basic dynamics is con-
sidered to take place in a matter-negmatter kitchen space of Nature which
is inaccessible to both the matter and negmatter components, distinguished
by opposing evolutionary directional arrows. Dynamical equilibrium is consid-
ered to be represented by such competitively collaborating homeostatic states
of the matter-negmatter constituents of Nature, modelled as a self-organizing
engine-pump system.
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Chaos, Periodicity and Complexity on

Dynamical Systems

Francisco Balibrea

Departamento de Matemáticas. Universidad de Murcia.30100-Murcia (Región de
Murcia), Spain
E-Mail: balibrea@um.es

Summary. In the setting of discrete dynamical systems (X, f) where X is a com-
pact metric space and f is a continuous self-mapping of X into itself, we introduce
two ways of appreciating how complicated the dynamics of such systems is. First
through several notions of chaos like Li-Yorke and Devaney chaos, sensitive depen-
dence of initial conditions, transitivity, Lyapunov exponents, and the second through
different notions of entropy, mainly the Kolmogorov-Sinai and topological entropies.
In particular Kolmogorov-Sinai is introduced in a very general way. Also we review
some known relations among these notions of chaos and entropies.

Complicated dynamics can be also understood via periodic orbits. To this aim we
concentrate in the forcing relations among the periods of the orbits in the simplest
cases such that I = [0, 1], S1 and in other more complicated spaces. Additionally,
we resume some results recently obtained for delay difference equations of the form
xn+k = f(xn) for k ≥ 2.

1.1 Introduction

Roughly speaking we understand by a dynamical system a set of states (called
the space of states) evolving with time. More precisely, a dynamical system is a
triple (X, Φ,G) where X denotes the state space usually given by a topological
space, Φ is the flow of the system, that is, the rule of evolution, given by a
continuous map from G × R into X and G ⊆ R a semigroup of times. When
G = Z or G = Z+ ∪ 0 the dynamical system is called discrete and it is
denoted by the pair (X, f) where X is a nonempty metric space and the flow
is Φ(n, x) = fn(x) where f is a continuous map form X into itself. Given X,
we will denote by C(X) the set of continuous maps from X into itself. For
f ∈ C(X) we define its nth-iterate by fn = f ◦ fn−1, n ≥ 1, f0 = identity,
with f ◦ g denoting the composition of f and g. When G = R the system is
called continuous.

The main goal when considering dynamical systems is to understand the
long term behavior of states in evolving according with the flow. The sys-
tems often involve several variables and are usually nonlinear. In a variety

F. Balibrea: Chaos, Periodicity and Complexity on Dynamical Systems, StudFuzz 206, 1–52
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006



2 Francisco Balibrea

of settings, very complicated behavior is observed even though the equations
themselves describing the system are not very complicated. Thus simple al-
gebraic forms of the equations do not mean that the dynamical behavior is
simple; in fact, it can be very complicated or even chaotic. One aspect of
the chaotic nature of systems is described by the sensitive dependence on
initial conditions which means that initial close states of the system evolve
separately.

Definition 1.1. The dynamical system (X, f) has sensitive dependence on
initial conditions (s.d.i.c.) on Y ⊆ X if there exists an r > 0 (independent of
the points of Y ) such that for each point x ∈ Y and for each ǫ > 0, there exist
y ∈ Y with ρ(x, y) < ǫ and n ≥ 0 such that ρ(fn(x), fn(y)) ≥ r.

One of the first situations where s.d.i.c. appeared was observed by E.Lorenz
in his simplified well known system of three differential equation stated as a
model for the prediction of the weather .

For such systems, if the initial conditions are only approximately speci-
fied, then the evolution of the state may be very different. This fact leads to
important difficulties when using approximate, or even real, solutions to pre-
dict future states based on present knowledge. To develop an understanding
of these aspects of chaotic dynamics, we want to find situations which exhibit
this behavior and yet for which we can still understand the important features
of how solutions evolves with time.

Sometimes we cannot follow a particular solution with complete certainty
because there is round off error in the calculations or we are using some nu-
merical scheme to find it. We are interested to know whether the approximate
solution we calculate is related to a true solution of the exact equations. In
some of the chaotic systems, we can understand how an ensemble of different
initial conditions evolves, and prove that the approximate solution traced by
a numerical scheme is shadowed by a true solution with some nearby initial
conditions. One typical example of such behavior is given by the weather, see
[61].

If the system models the weather, people may not be content with the
range of possible outcomes of the weather that could develop from the known
precision of the previous conditions, or to know that a small change of the pre-
vious conditions would have produced the weather which had been predicted.
However, even for a subject like weather, for which quantitative as well as
qualitative predictions are important, it is still useful to understand what fac-
tors can lead to instabilities in the evolution of the state of the system. It
is now realized that no new better simulation of weather on more accurate
computers of the future will be able to predict the weather more than about
fourteen days ahead, because of the very nonlinear nature of the evolution of
the state of weather. This type of knowledge can by itself be useful.

In recent years, dynamical systems has had many applications to science
and engineering, some of which have gone under the related headings of chaos
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theory or nonlinear analysis. Behind these applications there lies a rich math-
ematical subject. The subject centers usually on the orbits of iteration of a
nonlinear map or on the solutions of nonlinear ordinary differential equations.
Nevertheless we restrict ourselves to the setting of discrete dynamical systems
(X, f).

The sequence (fn(x))∞n=0 is called the orbit of the point x ∈ X under the
action of f or simply the orbit of x. The simplest behavior for one orbit is
when f(x) = x, we say that x is a fixed point of the system and if fm(x) = x
for some m, we say that x is periodic of period m and the minimal number m
is the period of x. Of course if x is periodic of period m then it is also periodic
of periods km where k is any positive integer.

From now on we are dealing with topics connected with chaos and its
measurement and with the effect of nonlinearity in the systems. These topics
started to be developed in the 1960’s and nowadays has become a fruitful field
of research in mathematics, physics, experimental sciences and engineering.

In dynamical systems there are several notions of chaos which depend on
the characteristic we would consider as the most important to indicate the
disorder or the complexity on the system. Roughly speaking, a dynamical
system is chaotic if its dynamics is complicated in an invariant set Y (f(Y ) ⊆
Y ). The use of the word chaos in dynamical systems was introduced in [49]
by L. Li and J. Yorke in 1975. In that paper they showed that if an interval
or line map into itself has a periodic points of period three, then the map
has periodic points of all periods. The existence of a lot of periodic points
was considered as a chaotic situation for the system. They proved also that
if there exists a periodic point of period three then there is an uncountable
invariant set S ⊂ X where X = I = [0, 1] or R (called a scrambled set) such
that for all x, y ∈ S with x �= y we have

lim sup
n→∞

| fn(x) − fn(y) | > 0 (1)

lim inf
n→∞

| fn(x) − fn(y) | = 0 (2)

In fact for X = I, if there are two distinct points x and y whose orbits satisfy
these two conditions, then there exists an uncountable invariant scrambled set
containing the two points, [44]. Conditions (1) and (2) mean that the orbit of
different points x and y separate and are close at infinite iterations. We see
that such behavior is also connected with the sensitive dependence on initial
conditions property.

Definition 1.2. The dynamical system (X, f) where X is a metric space, is
LY2-chaotic (in the sense of Li and Yorke) if there are two different points
x, y in the space (a L-Y pair) such that (1) and (2) hold.

Since in the general setting of metric spaces is not true that if there is a
L-Y pair then there is an uncountable scrambled set (see the examples of [31])
then it is taken as adequate the following
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Definition 1.3. The dynamical system (X, f) where X is a metric space is
LYu-chaotic (in the sense of Li and Yorke) if there is an uncountable scrambled
set.

The notion of (s.d.i.c.) is weaker than the closely related notion of expan-
siveness. Roughly speaking, a map is expansive if the distance between any
two orbits become at least a constant.

Definition 1.4. The dynamical system (X, f) is expansive on Y ⊆ X if there
exists an r > 0 (independent of the points of Y ) such that for each pair of
points x, y ∈ Y , there exists n ≥ 0 such that ρ(fn(x), fn(y)) ≥ r. When f is
an homeomorphism, then n can belong to Z.

It is easy to prove that when X is a perfect (without isolated points) metric
space, if f is expansive, then f has (s.d.i.c.).

Considering the above notions and that of transitivity (for any two open
neighborhoods U and V of X there is n > 0 such that f−n(U)∩V �= ∅). When
X has not isolated points, transitivity is equivalent to the existence of a dense
orbit in X). Devaney introduced in [26] the following notion of chaotic system,
which will be called D-chaotic,

Definition 1.5. The dynamical system (X, f) is D-chaotic on Y ⊆ X if:

1. f is transitive
2. f has in Y a dense set of periodic points
3. f has in Y (s.d.i.c.)

In [14] was proved that the first two conditions imply the third and more-
over, in line or interval maps, the first is equivalent to the second. That is, in
such case D-chaotic is equivalent to the existence of a dense orbit, that is, to
transitivity.

As a weaker definition, in [9] (see also [61]) it is introduced as chaotic
system the following

Definition 1.6. The dynamical system (X, f) is chaotic on Y ⊆ X if in Y
are held:

1. f is transitive
2. f has (s.d.i.c.)

Related to this Definition, in [9] are constructed examples of homeomor-
phisms which have not (s.d.i.c.) which proves hat in general, condition (1) is
not equivalent to (2).

There are others properties which a chaotic system tends to have. One
of them can be understood throughout the notion of Lyapunov exponent of
an orbit. This notion generalizes that of eigenvalue for a periodic orbit and
associates to an orbit a growth rate of the infinitesimal separation of nearby
points. This quantity can be also defined even when the invariant set does
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not have a hyperbolic structure like the Cantor set for the quadratic map
f(x) = 4x(1− x) . The Lyapunov exponents are often used to measure chaos
since it is the most computable quantity in a computer. These Lyapunov
exponents can be defined also in higher dimensions.

Definition 1.7. Let f : R → R be a C1 map. Given x ∈ R the Lyapunov
exponent of x is

λ(x) = lim sup
n

1

n
log(|(fn)′(x)|)

= lim sup
n

1

n

n−1∑

j=0

log(|f ′(xj |)

where xj = f j(x)

Clearly the right hand side of the formula is an average on an orbit of the
logarithm of the derivative. Applying the above formula it can be calculated
the Lyapunov exponents in the following typical examples:

◮ Let

t(x) =

{
2x, 0 ≤ x ≤ 1

2 ,

2(1 − x), 1
2 ≤ x ≤ 1.

be the tent map. For any point y ∈ [0, 1] except those holding tj(y) = 1
2

where the derivative does not exist, the Lyapunov exponent is λ(y) = log 2.
◮ Let q(x) = 4x(1 − x) the quadratic map. Then if y ∈ [0, 1] is a pre-image

of 1
2 , is λ(y) = −∞. For y = 0, 1 is λ(y) = log 4. In the rest of points is

λ(y) = log 2.

When we want to give a quantitative measure of chaos, the notion of topological
entropy is more adequate than the previously considered, since it gives a
number between zero and infinite, describing and evaluating in some sense,
the complexity of the system. It will be introduced after the section devoted to
the Kolmogorov-Sinai entropy. Let us only say that zero topological entropy
means that the system (or the corresponding map f) is not chaotic while
positive topological entropy (h(f) > 0) describes various degrees of chaos.

There are other notions of chaos, some of them like distributional chaos
are connected with a probabilistic and ergodic point of view (see [70] and
[13]).

Among the notions of chaos there are several implications. Here we will
present a few of them, first in the general setting of compact metric spaces
and then in dynamical systems on I = [0, 1].

Theorem 1.1. Let (X, f) be a dynamical system with X a compact metric
space. Then the following hold:

1. D-chaos⇒ LY2-chaos (see [37])
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2. h(f) > 0 ⇒ LY2-chaos (see [17])

Theorem 1.2. Let (I, f) be a dynamical system. Then the following condi-
tions hold:

1. D-chaos⇒ h(f) > 0 ⇒ LYu-chaos (see [35] and [5]
2. L-Y chaos � h(f) > 0
3. h(f) > 0 � D-chaos

In fact here are maps f ∈ C(I) of type {2∞} which are LYu chaotic but
with h(f) = 0 (see [69]) and also maps with h(f) > 0 which are not transitive
(see [35]).

There is an interesting implication between the existence of positive Lya-
punov exponents and the fact that topological entropy is positive. In fact in
[38], it is proved that if a map preserves a non-atomic (continuous) Borel
probability measure µ such that µ-almost all initial conditions have non-zero
Lyapunov exponents, then the topological entropy is positive and therefore
the system is chaotic in such sense.

We have pointed out some notion of chaos, but there are others not con-
sidered here (scattering chaos, space-temporal chaos, etc). In most cases there
are connections among them difficult to see. One pending question is to clar-
ify such connections and to state what are the ideas of complexity that those
notions represent.

1.2 On the periodic structure of some dynamical systems

The existence of an infinite number of periodic orbits in a system must be
interpreted to represent complicated dynamics. In some situations like in low-
dimensional dynamical systems, the existence of an orbit of a determined
period forces the existence of periodic orbits of other periods, even infinite
many. The first result we are dealing with in this part was obtained by A.N.
Sharkovsky in 1964 and it is concerned with the relations of forcing among the
periods of all periodic orbits of the map which defines the discrete system. This
theorem does not deal exactly with complicated dynamics and in principle it
is not connected with any chaotic behavior, but according to it, if a map f has
a periodic point of odd period, then f has infinitely many different periods
and we can consider this is a chaotic situation.

The existence of infinitely many different periods is an indication of the
complexity of such a map. After the publication in 1964 of the result, a new
branch on the dynamics of discrete dynamical systems started which was
called Combinatorial Dynamics in [5]. It deals with objects of a combinatorial
nature, such as permutations, graphs, periodic points, etc. Complementary, in
most papers written in the subject, a measure of complexity of the maps (the
topological entropy) is also treated. In the excellent monograph [5] and in the
tutorial papers [52] and [6], the current work in Combinatorial Dynamics is
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presented jointly with new trends and open problems. Currently, some of the
problems presented continue open and in other cases some progress has been
done, even new trends have appeared since then. To complete this view, see
[7] for the state of art in what is called minimal models in graph maps and
[48] for a complete treatment of the periodic structure of continuous maps on
the 8 graph.

Since the theory has been developed in one-dimension systems and can be
followed in the above cited references, we will concentrate in discrete dynam-
ical systems of dimension greater than one, in order to present less known
results.

From now on we will be concerned with continuous maps only. First of
all it is natural to extend the Sharkovsky result on interval I or line maps to
maps on the unit square I2, R2 or T2. There are good reasons for this. Nonlin-
ear difference equations, models on population dynamics, models on economic
theory, Poincaré transformation, etc, can be studied through dynamical sys-
tems of dimension two. In some cases the extensions can be made easily to
In, Rn or Tn with n > 2.

The aim of this section is to present some results on combinatorial dy-
namics on some particular dynamical systems of low-dimension and use them
to interpret the dynamical complexity of such systems and to state the peri-
odic structure of delayed difference equations of the form xn = f(xn−k), with
k ≥ 2, for f ∈ C(I) and f ∈ C(S1). We remark that these periodic struc-
tures are a consequence of the knowledge of the above general combinatorial
properties and the particular periodic structure of interval and circle maps,
respectively. Thus, the strategy followed in In and Tn to obtain the periodic
structure of σ-permutation maps can be applied to more general and compli-
cated spaces (see Remark 1.1). In subsection 2.2 we will link delayed difference
equations of the form xn = f(xn−k) with appropriate σ-permutation maps.
This allows us to deduce the periodic structure of such equations, when f is
either an interval or a circle map. Finally, we obtain also other results con-
cerning the existence of global attractors for the same type of equations.

1.2.1 Periodic structure of σ-permutation maps

Given a nonempty metric space X, for f ∈ C(X) we denote by Per(f), P(f) and
Fix(f) the sets of periods, periodic points and fixed points of f, respectively.
We denote by gcd(p, q) and lcm(p, q) the greatest common divisor and the
lowest common multiple of two positive integers p, q, respectively, and we
write p | q if p divides q, and p ∤ q if p does not divide q.

The well known Sharkovsky theorem ([67]) establishes the periodic struc-
ture of interval and line maps. By periodic structure we mean a type of forc-
ing relation among all the periods which a map can have. When we try to
extend this result to spaces of greater dimension and for general continuous
maps, we find that it is not possible. Nevertheless for some classes of maps
contained in the continuous, we obtain a result similar to Sharkovsky’s for
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σ-permutation maps on appropriate spaces (see [10]), where with σ we denote
the standard cyclic permutation of the set of numbers {1, 2, · · · , n}, that is,
σ(i) = i + 1 and σ(n) = 1. We prove also that without loss of generality we
can use the σ transform as representative of any other permutation on the
numbers {1, 2, ..., n}, since the resultant systems are conjugate and therefore
similar from the dynamics point of view.

The map F : Xn → Xn is called a σ-permutation if

F (x1, x2, · · · , xn) = (fσ(1)(xσ(1)), fσ(2)(xσ(2)), · · · , fσ(n)(xσ(n))),

where fi ∈ C(X) for i = 1, 2, · · · , n. We denote them by Cσ(Xn).
This class of maps appear in connection with problems of economic theory,

for example in the Cournot duopoly model (see [25]) where two firms are
producing the same good and their productions depend on the production
of the rival firm in the previous period. In this case, we have the dynamical
system (X, F ), where

F (x, y) = (g(y), f(x))

and X2 = I2.
The periodic structure of a σ-permutation map F is closely related with

those of the maps f (n)
i : X → X given by

f
(n)
i = fσ(i) ◦ fσ2(i) ◦ · · · ◦ fσn(i), i ∈ {1, · · · , n}.

In fact, the following results establish that relationship (see [11]).

Proposition 1.1. Let F : Xn → Xn be a σ-permutation map. Then {p :

p|n} ⊆ Per(F ) if and only if f
(n)
1 has at least two different fixed points.

Proposition 1.2. Let F : Xn → Xn be a σ-permutation map. Suppose t ∤ n.

If 1/ gcd(t, n) ∈ Per(f
(n)
1 ), then t ∈ Per(F ).

Observe that these results can be stated in the setting of a general set X,
so it is not necessary that X be endowed with a metric, even with a topological
structure. Moreover, the Propositions work if the hypothesis of continuity of
F and f

(n)
i is removed. Therefore, the nature of Proposition 1.1 and 1.2 is

merely combinatorial.
When Xn = In or Rn for n ≥ 2 it is possible to obtain the periodic

structure of σ-permutation maps, including converse results.
The Sharkovsky ordering of N ∪ 2∞ = N∗, denoted by ≥s, is as follows

3 >s 5 >s 7 >s · · · >s 3 · 2 >s 5 · 2 >s · · · >s 3 · 22 >s 5 · 22 >s · · ·
· · · >s 3 · 2n >s 5 · 2n >s · · · >s {2∞} >s · · · >s 2n+1 >s 2n >s · · · > 1.

We denote by S(m) the initial segment of the Sharkovsky ordering which ends
at m ∈ N∗, that is,
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S(m) = {n ∈ N∗ : n ≤s m} if m ∈ N, and

S(2∞) = {1, 2, 22, · · · , 2n, · · · }.

For any interval map f, Sharkovky’s theorem establishes that there exists m ∈
N∗ such that Per(f) = S(m). In the case of a line map g either Per(g) = S(m)
or Per(g) = ∅.

When X = In the periodic structure of σ-permutation maps is known (see
[12]). Next, we explain it. For k ∈ N and m ∈ N∗, we introduce

Sk(m) =

{
t ∈ N : t ∤ k and

t

gcd(t, k)
∈ S (m)

}⋃ {1} .

Obviously t ≥s m implies Sk(m) ⊆ Sk(t). Moreover, it is easily seen that

Sk(m) = {pt : p | k, t ∈ (S(m) \ {1}) , gcd(k/p, t) = 1}⋃ {1} .

Theorem 1.3. (Periodic structure of σ-permutation maps on Ik)

1. Let F be a σ-permutation map on Ik, k ≥ 2. Then there exists m ∈ N∗

such that

Per(F ) = Sk(m) or

Per(F ) = Sk(m)
⋃ {p : p|k}.

We have Per(f
(k)
i ) = S(m) for every i ∈ {1, 2, · · · , k}.Moreover, Per(F ) �=

Sk(m) if and only if f
(k)
i possesses at least two different fixed points.

2. Suppose that P = Sk(m) or P = Sk(m) ∪ {p : p|k} for some m ∈ N∗.
Then there exists a σ-permutation map F : Ik → Ik with Per(F ) = P.

The key of the proof is to use the periodic structure of the interval maps
f

(k)
i (see [12]). It can be also extended to the case Xk = Rk, obtaining a

similar result to the case Ik, except in the fact there is another possibility for
the direct and converse statements, the case Per(F ) = ∅.

In order to visualize better the above periodic structure, we present the
situations k = 2, 3. We are using the notation a ⇒ b to indicate that the
period a forces the presence of period b in the map, and (a ⇔ b) indicates
that periods a and b are mutually forced.

Theorem 1.4. (Periodic structure on I2) For k = 2, the periodic structure of
a σ-permutation map I2 → I2 is described in the frame of forcing on N \ {2}

(3 ⇔ 2 · 3) ⇒ (5 ⇔ 2 · 5) ⇒ · · · ⇒ (2n+ 1 ⇔ 2 · (2n+ 1)) ⇒ · · ·
22 · 3 ⇒ 22 · 5 ⇒ · · · ⇒ 22 · (2n+ 1) ⇒ · · ·
23 · 3 ⇒ 23 · 5 ⇒ · · · ⇒ 23 · (2n+ 1) ⇒ · · ·

· · ·
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2k · 3 ⇒ 2k · 5 ⇒ · · · ⇒ 2k · (2n+ 1) ⇒ · · ·
· · ·

· · · ⇒ 2m+1 ⇒ 2m ⇒ · · · ⇒ 23 ⇒ 22 ⇒ 1.

Moreover, 2 ∈ Per(F ) if and only if f
(2)
i has at least two different fixed points.

Theorem 1.5. (Periodic structure on I3) For k = 3, the periodic structure of
a σ-permutation map I3 → I3 is described in the frame of forcing on N \ {3}

3 · 3 ⇒ (3 · 5 ⇔ 5) ⇒ (3 · 7 ⇔ 7) ⇒ 3 · 9 ⇒ (3 · 11 ⇔ 11) ⇒ · · ·
3 · 2 · 3 ⇒ (3 · 2 · 5 ⇔ 2 · 5) ⇒ (3 · 2 · 7 ⇔ 2 · 7) ⇒ 3 · 2 · 9 ⇒ · · ·

· · ·
3 · 2k · 3 ⇒ (3 · 2k · 5 ⇔ 2k · 5) ⇒ (3 · 2k · 7 ⇔ 2k · 7) ⇒ 3 · 2k · 9 ⇒ · · ·

· · ·
· · · ⇒ (3 · 2m ⇔ 2m) ⇒ · · · ⇒ (3 · 22 ⇔ 22) ⇒ (3 · 2 ⇔ 2) ⇒ 1.

Moreover, 3 ∈ Per(F ) if and only if f
(3)
i has at least two different fixed points.

Now we consider X = S1, where S1 = {z ∈ C : |z| = 1} is the unit circle.
We wonder about the periodic structure of σ-permutations maps on the k-
dimensional torus XkTk = S1 × k... × S1 with k ≥ 2. The periodic structure
will depend on the periodic structure of maps on S1 which in turn depends on
the degree of the map. We need to use now results on periodic structure from
circle maps. A complete and detailed treatment of the subject can be seen in
[5]. The degree of a σ-permutation map F on Tk, denoted by D, is defined as

D = deg(F ) = deg(f
(k)
1 ) = deg(f

(k)
2 ) = · · · = deg(f

(k)
k ) =

k∏

i=1

deg(fi).

In a general sense, D plays an important role since the periodic structure of F
depends on the periodic structure of f (k)

1 , and in turn it is influenced by the
degree of the composition above. We separate the cases D �= 1 and D = 1. In
the first case we use the same notation with the same meaning for the initial
segments Sk(m) than in the case Ik.

For D �= 1 we obtain (see [11])

Proposition 1.3. Let F : Tk → Tk be a σ-permutation map. Suppose t ∤ k

and D �= 1. Then t ∈ Per(F ) if and only if t/ gcd(t, k) ∈ Per(f
(k)
1 ).

This result and Proposition 1.1 allow us to obtain the main result for
D �= 1 ([11]).

Theorem 1.6. Let F : Tk → Tk be a σ-permutation map.

1. If |D| > 2, then Per(F ) = N.
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2. If D = −2, then Per(F ) = N or Per(F ) = N \ {2p : p | k, 2p ∤ k}.
3. If D = 2, then Per(F ) = N or Per(F ) = N \ {p : p | k, p ≥ 2}.
4. If D = −1 then there exists m ∈ N∗ such that Per(F ) = Sk(m)∪{p : p | k}.
5. If D = 0, then there exists m ∈ N∗ such that Per(F ) = Sk(m) or Per(F ) =
Sk(m) ∪ {p : p | k}.
Now we establish the result on periodic structure for σ-permutation maps

F with D = 1. We need to introduce the following notation. For α, β ∈ R,
mα,mβ ∈ N∗ and t ∈ N, we define

S̃k(t) = {m ∈ N : m ∤ k,
m

gcd(m, k)
= t},

S̃k(α, β,mα,mβ) =
⋃

t∈S(α,mα)∪M(α,β)∪S(β,mβ)

S̃k(t),

where for ρ ∈ {α, β}

S(ρ,mρ) =

{
∅, if ρ /∈ Q
{nρp : p ∈ S(mρ)}, if ρ = kρ/nρ, gcd(kρ, nρ) = 1,

M(α, β) =

{
∅, ifα = β
{n ∈ N : α < t/n < β for some t ∈ Z}, ifα < β

As in the case of Sk(m) we find that

S̃k(α, β,mα,mβ) =

{pt : p | k, t ∈ S(α,mα)
⋃
M(α, β)

⋃
S(β,mβ), t �= 1, gcd(k/ρ, t) = 1}

When D = 1 a new situation appears. In general, there exist some excep-
tions in order to establish the converse result of Proposition 1.2 (see [11]).

Let F = (fσ(i))
k
i=1 be a σ-permutation map with D = 1. We say that F

is exceptional if the rotation interval of f (k)
1 equals [α, β], where α, β ∈ Q,

α = sα/nα with gcd(sα, nα) = 1, β = sβnβ with gcd(sβ , nβ) = 1, nα �= nβ ,

Per(f
(k)
1 ) = nαS(mα) ∪M(α, β) ∪ nβS(mβ) for some mα,mβ ∈ N∗, β − α =

1/lcm(nα, nβ), lcm(nα, nβ) /∈ Per(f
(k)
1 ) and 1 /∈ Per(f

(k)
1 ). In this case we put

Eα,β = {(qe) lcm(nα, nβ) : e = gcd(k, lcm(nα, nβ)), qe | k, qe �= 1,

(qe) lcm(nα, nβ) ∤ k}

Now we can give the result for the case D = 1 (see [11]).

Proposition 1.4. Let F : Tk → Tk be a σ-permutation map. Suppose that
D = 1 and F is exceptional. Set e = gcd(k, lcm(nα, nβ)). Then qe | k,
(qe)lcm(nα, nβ) ∤ k and (qe) �= 1 imply (qe)lcm(nα, nβ) ∈ Per(F ). Moreover,
lcm(nα, nβ) /∈ Per(F ) if e = 1.
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To complete Proposition 1.2, in the case D = 1 we distinguish the excep-
tional case from the rest and obtain (see [11])

Proposition 1.5. Let F : Tk → Tk be a σ-permutation map with D = 1, and
let m ∈ N with m ∤ n.

1. Suppose that F is not exceptional. Then m ∈ Per(F ) if and only if

m/ gcd(m, k) ∈ Per(f
(k)
1 ).

2. Assume that F is exceptional. Thenm ∈ Per(F ) if and only ifm/ gcd(m, k)

∈ Per(f
(k)
1 ) orm = (qe)lcm(nα, nβ) for some q ∈ N with qe | k and qe �= 1,

where e = gcd(k, lcm(nα, nβ)).

Using this result we deduce ([11])

Theorem 1.7. Let F : Tk → Tk be a σ-permutation map with D = 1. Then
one of the following situations holds:

1. Per(F ) = ∅.
2. Per(F ) = S̃k(α, β,mα,mβ)

⋃
Eα,β , for some α, β ∈ Q and for some

mα,mβ ∈ N∗, if F is exceptional.
3. Otherwise there exist α, β ∈ R and mα,mβ ∈ N∗ such that Per(F ) = ℘ =

S̃k(α, β,mα,mβ), or Per(F ) = ℘ ∪ {1}, or Per(F ) = ℘ ∪ {p : p | k}.

The corresponding converse results can be also given (see [11]), that is,
given one of the set of periods P appearing in Theorems 1.6 and 1.7, it is
possible to construct a σ-permutation map F : Tk → Tk in such a way that
Per(F ) = P.

The following example is given to illustrate and clear the exceptional case
mentioned in the statement of the previous result.

Example 1.1. Consider t = 12, k = 2. Therefore γ := gcd(t, n) = 2 and
t/γ = 6. We are going to choose a σ−permutation map F : T2 → T2 such

that t = 12 ∈ Per(F ) but k/γ = 6 /∈ Per(f
(2)
1 ). According to [5, Section

3.10], for any given α, β ∈ R, and mα,mβ ∈ N∗, we can find f ∈ C(S1) such
that deg(f) = 1 and Per(f) = S(α,mα) ∪M(α, β) ∪ S(β,mβ). In particular,
if α = 1/3, β = 1/2, mα = mβ = 1, nα = 3, nβ = 2, it is Per(f) =
{3} ∪M(1/3, 1/2) ∪ {2}, with M(1/3, 1/2) = {5, 7, 8, 9, 10, 11, 12, 13, ...}. In
this case, t/γ = 6 = lcm(nα, nβ).

β − α =
1

2
− 1

3
=

1

6
=

1

lcm(nα, nβ)

and 1 /∈ Per(f). Now we define F : T2 → T2 by

F (x1, x2) = (x2, f(x1))
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We deduce that f (2)
i = f for i = 1, 2, and F is exceptional. Hence k/γ =

6 /∈ Per(f
(2)
1 ). Finally we prove that t = 12 ∈ Per(F ). Since F is exceptional,

according to Theorem 1.7 we have

S̃k(α, β,mα,mβ) =

{pt : p | k, t ∈ S(α,mα)
⋃
M(α, β)

⋃
S(β,mβ), t �= 1, gcd(k/ρ, t) = 1}

= 2Per(f)
⋃ {m : m �= 1, m ∈ Per(f), m odd = N \ {1, 2, 8, 12}}

and

Eα,β = {(qe) lcm(nα, nβ) : e = gcd(k, lcm(nα, nβ)), qe | k, qe �= 1,

(qe) lcm(nα, nβ) ∤ k}
= {2 · q · 6 : 2q | 2, 2q �= 1, 2 · q · 6 ∤ 2} = {12}

Therefore Per(F ) = N \ {1, 2, 8}. Observe that in this example we have
t = 12 ∈ Per(F ) but t/ gcd(t, k) = lcm(nα, nβ) = 6 /∈ Per(f).

In Theorems 1.6 and 1.7 we include the finite sets of periods which a σ-
permutation map on Tk can have. To be more precise, in the next result we
state a simple characterization of these finite sets of periods, specially in the
case D = 1 and k = 2. In general we have (see [11])

Proposition 1.6. Let F : Tk → Tk be a σ-permutation map. Suppose that
Per(F ) is a finite set. Then

1. D ∈ {−1, 0, 1}.
2. If D = −1 then there exists 0 ≤ r < ∞ such that Per(F ) = Sk(2r) ∪ {p :
p | k}.

3. If D = 0, then there exists 0 ≤ r < ∞ such that Per(F ) = Sk(2r) or
Per(F ) = Sk(2r) ∪ {p : p | k}.

4. If D = 1, then Per(F ) = ∅ or there exist integers m, r with m ≥ 1 and
r ≥ 0 such that

Per(F ) =

{
pm2i : p | k, gcd

(
k

p
,m2i

)
= 1, i = 0, 1, · · · , r

}

for m > 1, or

Per(F ) =

{
p2i : p | k, gcd

(
k

p
, 2i

)
= 1, i = 1, 2, · · · , r

} ⋃ {p : p | k}

for m = 1 and r ≥ 1. In the case m = 1, r = 0, only one of the following
situations can occur

Per(F ) = {p : p | k},
Per(F ) = {1}.
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5. If D = 1 and k = 2, then Per(F ) = ∅ or there exists 0 ≤ r < ∞
such that Per(F ) = {m, 2m, · · · , 2r+1m} for some m odd, Per(F ) =
{2m, 22m, · · · , 2r+1m} for some m even or Per(F ) = {1}.

Remark 1.1. Given a σ-permutation map F : Xk → Xk, where X is simply a
set, without specifying a particular topology or metric, Proposition 1.1 holds
(see [11]). Hence we can know if the divisors of k belong or not to Per(F ).
This is obviously a combinatorial result. On the other hand, for nondivisors
of k, Proposition 1.2 also holds for any set X, (see [11]). Therefore in order to
know completely the periodic structure of F ∈ Cσ(X) we must study if there
exist some exceptions to the converse result of this property. For X = I there
are no exceptions (see [12], and the same occurs for X = S1 in the case D �= 1
(see Proposition 1.3). However, in the case X = S1, D = 1, we have seen that
exceptional maps do not verify the converse result which we must separate
from the rest.

In view of these results, if we would know the periodic structure of a
map f : X → X (for example, in dimension one, the periodic structure of
continuous maps on trees, graphs, dendrites, dendroids, etc., for definitions
see [55]) we could establish the periodic structure of σ-permutation maps on
Xk and describe in what cases is possible to obtain finite sets of them.

1.2.2 Periodic structure of delayed difference equations
xn = f(xn−k), k ≥ 2

Let
xn = f(xn−k) (1.2.1)

be a delayed difference equation, where f : X → X, and X is any set. Observe
that for all r ≥ 0, s ≥ 1 we have

fr(xs) = xs+rk, (1.2.2)

and consider the dynamics generated by the initial condition

C0 = (x1, x2, · · · , xk) ∈ Xk.

In the simplest situation, the periodic case, we say that the sequence {xn}∞n=1

generated by (1.2.1) from the initial condition C0 is periodic whenever xn+p =
xn for some p ∈ N and for all n ∈ N. The smallest of these values p is called
the period of {xn}n. We use PerDE(f) to denote the set of periods of the
equation. To study its periodic structure, consider the map

F (z1, z2, · · · , zk) = (z2, z3, · · · , zk, f(z1))

defined from Xk into itself. The following result is concerned with the general
expression of any iterate of F and it is straightforward to obtain.
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Lemma 1.1. Let F (z1, z2, · · · , zk) = (z2, z3, · · · , zk, f(z1)). Then

Fn+k+j((xi)
k
i=1) =

(fn(xj+1), f
n(xj+2), · · · , fn(xk), fn+1(x1), f

n+1(x2), · · · , fn+1(xj))

for every n ≥ 0 and 1 ≤ j ≤ k.

Then we can study the periodic points of the equation with the periodic
points of F.

Proposition 1.7. We have

Per(F ) = PerDE(f).

Proof. Let (x1, x2, · · · , xk) ∈ Xk be an initial condition which generates a
periodic solution of (1.2.1) {xn}∞n=1 of period p. If p = nk+ j, with n ≥ 0 and
0 ≤ j < k, by (1.2.2) and Lemma 1.1 we have

F p(x1, x2, · · · , xk)=(fn(xj+1), f
n(xj+2), · · · , fn(xk), fn+1(x1), · · · , fn+1(xj))

=(xj+1+nk, xj+2+nk, · · · , xk+nk, x1+(n+1)k, · · · , xj+(n+1)k)

=(xp+1, xp+2, · · · , xk+p−j , xk+1+p−j , · · · , xp+k)

=(x1, x2, · · · , xk−j , xk−j+1, · · · , xk)

=(x1, x2, · · · , xk).

So (x1, x2, · · · , xk) is a periodic point of F, and q = ordF ((xi)
k
i=1) verifies q|p.

We have to prove that in fact q = p. Suppose that q < p, q|p, and q = mk+ i,
with 0 ≤ i < k. According to Lemma 1.1, if F q((xi)

k
i=1) = (xi)

k
i=1 we find

x1 = fm(xi+1), · · · , xk−i = fm(xk), xk−i+1 = fm+1(x1), · · · , xk = fm+1(xi).
(1.2.3)

On the other hand, from (1.2.2) and (1.2.3) we obtain

xs = xs+i+mk = xs+q

for 1 ≤ s ≤ k − i, and

xt = xt−k+i+(m+1)k = xt−k+k+q = xt+q

for k − i+ 1 ≤ t ≤ k.
If r ≥ 1, with r = ark + br, 1 ≤ br ≤ k − 1, ar ≥ 0, now

xk+r = x(ar+1)k+br
= far+1(xbr

) = far+1(xbr+q) = x(ar+1)k+br+q = xk+r+q.

Then {xi}∞i=1 is periodic for (1.2.1) and its period is smaller or equal than q,
which is a contradiction since q < p. This proves that PerDE(f) ⊆ Per(F ).

If (x1, x2, · · · , xk) is a periodic point of F of order p, then it is easy to
obtain that the sequence xn

∞
n=1 has also period p and therefore Per(F ) ⊆

PerDE(f). �
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From this result we deduce that the study of the periodic structure of
(1.2.1) is equivalent to analyze the periodic structure of F. In the case
of X = I and C(I) this periodic structure is known (see Theorem 1.3).
Therefore, using Proposition 1.7 and Theorem 1.3, with F (z1, z2, · · · , zk) =
(z2, z3, · · · , zk, f(z1)), we obtain

Corollary 1.1. (Periodic structure of difference equations of type xn =
f(xn−k) on I, k ≥ 2)

1. Let xn = f(xn−k) be a delayed difference equation, with f ∈ C(I) and
k ≥ 2. Then there exists m ∈ N∗ such that

PerDE(f) = Sk(m) or

PerDE(f) = Sk(m)
⋃ {p : p|k}.

2. Given P = Sk(m) or P = Sk(m) ∪ {p : p|k}, with m ∈ N∗, there exists
a difference equation of type xn = f(xn−k), with f ∈ C(I), such that
PerDE(f) = P.

Now we will obtain the periodic structure of delayed difference equations
of the type given in (1.2.1) for circle maps f ∈ C(S1). It can be easily done
knowing the periodic structure of σ-permutation maps on Tk. If deg(f) �= 1,
let us consider F ∈ C(Tk) given by F (z1, z2, · · · , zk) = (z2, z3, · · · , zk, f(z1)),
k ≥ 2. Applying Theorem 1.6 and Proposition 1.7 we have

Corollary 1.2. Let xn = f(xn−k) be a delayed difference equation defined on
the circle S1, with f ∈ C(S1) and k ≥ 2. Let d = deg(f) �= 1.

1. If |d| > 2, then PerDE(f) = N.
2. If d = −2, then PerDE(f) = N or PerDE(f) = N \ {2p : p | k, 2p ∤ k}.
3. If d = 2, then PerDE(f) = N or PerDE(f) = N \ {p : p | k, p ≥ 2}.
4. If d = −1 then there exists m ∈ N∗ such that PerDE(f) = Sk(m)∪{p : p |
k}.

5. If d = 0, then there exists m ∈ N∗ such that PerDE(f) = Sk(m) or
PerDE(f) = Sk(m) ∪ {p : p | k}.

The converse result is also true.

Corollary 1.3. Given one of the sets P of periods stated in Corollary (1.2)
there exists a circle map f ∈ C(S1) such that the associate delayed difference
equation xn = f(xn−k) holds PerDE(f) = P.

Given one of the sets of periods P appearing in Theorem 1.7, in ([11])
we construct σ-permutation maps F on Tn with Per(F ) = P, and with
F (x1, x2, · · · , xn) = (x2, x3, · · · , xn, f(x1)). Then as an immediate conse-
quence of Proposition 1.7 we have
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Corollary 1.4. Let xn = f(xn−k) be a delayed difference equation defined on
the circle S1, with k ≥ 2. Suppose that d = deg(f) = 1. Then one of the
following situations holds:

1. PerDE(f) = ∅.
2. PerDE(f) = S̃k(α, β,mα,mβ)

⋃
Eα,β , for some α, β ∈ Q and mα,mβ ∈

N∗.
3. Otherwise there exist α, β ∈ R and mα,mβ ∈ N∗ such that PerDE(f) =

℘ = S̃k(α, β,mα,mβ), or PerDE(f) = ℘∪{1}, or PerDE(f) = ℘∪{p : p |
k}.

Corollary 1.5. Given one of the sets P of periods stated in Corollary 1.4
there exists a circle map f ∈ C(S1) such that the associate delayed difference
equation xn = f(xn−k) holds PerDE(f) = P.

Finally, according to Remark 1.1, if we know the periodic structure of
continuous maps defined from a topological space into itself, we can know the
periodic structure of delayed difference equations xn = f(xn−k). To do it,
the divisors of the dimension k are analyzed in Proposition 1.3, and for non-
divisors of k we must obtain the exceptional cases for which the property:
t ∈ Per(F ) implies k/ gcd(k, n) ∈ Per(f

(n)
1 ) whenever k ∤ n is not completely

fulfilled.

1.2.3 Further results

Analogously to the periodic situation, we can consider other properties of the
sequences defined in equation (1.2.1) by an initial condition (x1, x2, · · · , xk).
For example, we can study the existence of global attractors of (1.2.1) in terms
of

F (x1, x2, · · · , xk) = (x2, · · · , xk, f(x1))

We say that x is a global attractor of the general difference equation xn+1 =
Φ(xn, xn−1, · · · , xn−k) defined from Rk+1 into R if limn→∞ xn = x for any
initial conditions x−k, x−k+1, · · · , x0. We obtain the following result.

Proposition 1.8. Let f : R → R be continuous.

1. Suppose that f has a unique fixed point x, and assume that x is a global
attractor of the difference equation xn = f(xn−1). Then x is a global
attractor of the delayed difference equation xn = f(xn−k) for all k ≥ 2.

2. Conversely, suppose that x is a global attractor of xn = f(xn−k) for some
k ≥ 1. Then P(f) = Fix(f) = {x} and x is a global attractor.

In Corollary 2.4.1 of [43] it is stated the following result concerning the
existence of global attractors of the difference equation xn+1 = αxn+f(xn−k).
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Proposition 1.9. Let α ∈ [0, 1) and let k ∈ N. Let f ∈ C([0,∞), (0,∞)) be
decreasing. Suppose that f has a unique fixed point x ∈ (0,∞) and that x is
a global attractor of all positive solutions of the first order difference equation

yn+1 =
f(yn)

1 − α
, n = 0, 1, · · · ,

where y0 ∈ (0,∞). Then x is a global attractor of all positive solutions of

xn+1 = αxn + f(xn−k). (1.2.4)

Now we are going to prove that this result works even in the case in which
f is not decreasing. Moreover, the hypotheses imply that α = 0, so we can
apply Proposition 1.8 in order to conclude that x is a global attractor of
xn+1 = f(xn−k).

Proposition 1.10. Let f ∈ C([0,∞), (0,∞)). Suppose that f has a unique
fixed point x ∈ (0,∞) and that x is a global attractor of all positive solutions
of the first order difference equation

yn+1 =
f(yn)

1 − α
, n = 0, 1, · · · , α ∈ [0, 1), y0 ∈ (0,∞).

Then α = 0 and x is a global attractor of

xn+1 = f(xn−k),

for all k ≥ 1.

Proof. Since x is a global attractor of yn+1 = f(yn/(1 − α), by continuity of
the map g(z) = f(z)/(1 − α) we find x = f(x)/(1 − α). This implies that
f(x) = (1 − α)x. On the other hand, x is a fixed point of f, so x = (1 − α)x.
Since x �= 0, we obtain α = 0, and the difference equation (1.2.4) reduces
to xn+1 = f(xn−k). According to Proposition 1.8, x is a global attractor of
xn+1 = f(xn−k), for all k ≥ 1.

Besides the results on periodic structure, in one dimensional dynamical
systems coming from population dynamics is interesting the detection of such
periodic points. In practical situations, such detection can be difficult due
to irregular prediction of them ([34]). In the computation of periodic points
their stability plays also a relevant role. Another relevant problem (in systems
depending on parameters) is to state the robustness of such periodic points.

The above treated situations are related to one dimensional systems on
the interval with or without delay and in dimension two with σ-permutation
maps. Nevertheless in the applications are stated other problems. We present
here some of them and add some examples:
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◮ Nonlinear difference equations xn+1 = f(xn, xn−1) It is equivalent to con-
sider the plane dynamical systems (F,R2) where F (x, y) = (y, f(x, y)). It
is not known if in this situation there are forcing relations among peri-
ods. The following example are dynamical systems equivalent to the cor-
responding difference equations. The Henón transformations

1. F (x, y) = (1 − ax2 + by, x)
2. F (x, y) = (y, (x+ ay2 − 1)/b)

or logistic two-dimensional transformations

– F (x, y) = (y, ay(1 − x))
– F (x, y) = (y, ay − bxy))

are good examples.
◮ Nonlinear systems of difference equations:

1. xn+1 = F (xn, yn)
2. yn+1 = G(xn, yn)

In this more complicate case, we have positive and negative answers to the
same question. For the triangular systems

1. xn+1 = f(xn)
2. yn+1 = g(xn, yn)

and for the anti-triangular systems

1. xn+1 = g(yn)
2. yn+1 = f(xn)

the answer is positive, that is, there are forcing relations among the peri-
ods. In the triangular case it is held a Sharkovsky ordering [39] and the
anti-triangular case has been treated before.

The Lotka-Volterra systems equivalent to the corresponding systems of differ-
ence equations, are the great interest in the applications.

F (x, y) = (x(a1 + b1x+ c1y), y(a2 + b2x+ c2y))

There are many examples in the literature, like

F (x, y) = ((1 + a− bx− cy)x, dxy)

with a, b, c and d real parameters, was introduced in 1968 by Maynard Smith
in the setting of the population dynamics [50]. In the same setting, Scudo et
al in [47] proposed to consider the transformation

F (x, y) = ((5 − 1.9x− 10y)x, xy)

From Electronics we have the transformation proposed by Sharkovsky ([71]).

F (x, y) = (x(4 − x− y), xy)

In all these cases, it is not known if there exists or not forcing relations.
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When we are looking for periodic points, it is useful to consider some
stability results like the following. For a continuous map f and a periodic
point of period n, there exists a neighborhood of f in the C(I, I) topology,
such that every g belonging to this neighborhood keeps periodic points of all
periods in the Sharkovsky ordering (see [18]). In this setting it is relevant to
see when the periodic points disappear or not after small perturbation in the
map of the system under consideration.

1.3 Metric entropy or Kolmogorov-Sinai entropy (KS)

When one deals with chaotic behavior of a dynamical system, one interesting
problem is to find a measure of the complexity of the system. It is generally
assumed that KS entropy means a scale of measure of such complexity. Since
we move from zero to positive KS entropy, it establishes and describes the
transition from regular to chaotic behavior. More precisely, the claim is that
having positive KS entropy is a sufficient condition for a dynamical system
to be chaotic (see [15]). The notion is important and has been introduced in
several books and papers (see for example [73]). Nevertheless we have chosen
a more general way using the approach introduced by J. Canovas in [24] in
his Doctoral Dissertation.

In some settings, chaos is explained in terms of random behavior, and ran-
dom behavior is explained in turn in terms of having positive KS entropy. The
connection between this entropy and random behavior is justified in some pa-
pers (see for example [30]), proving that in Hamiltonian systems, KS es equiv-
alent to a generalized version of Shannon’s communication-theoretic entropy
under certain assumptions.

By a probability space (X,β(X), µ) we will understand a set X, a σ-
algebra on X, β(X), and a probability measure µ defined on β(X). Consider
a sequence of measure preserving transformations T1,∞ = (Ti)

∞
i=1, that is,

measurable transformations Ti : X → X satisfying the condition µ(T−1
i A) =

µ(A) for any A ∈ β(X) and for any i ∈ N. By a measure theoretical non-
autonomous system (in short m.t.n.s.) we understand the pair (X,T1,∞). If
x ∈ X, then the orbit of x is given by the sequence

(x, T1(x), T2(T1(x)), · · · ).

When Ti = T for all i ∈ N where T is a measure preserving transformation
T , the pair (X,T ) is a classical measure theoretical dynamical system (shortly
m.t.d.s ) deeply studied in the literature (see eg. [73] or [28]).

Sequences of measure preserving transformations have been studied from
the point of view of Ergodic Theory. In few words, it deals with the conver-
gence of the sequence

1

n
Sn(f, x) =

1

n

n−1∑

i=0

f ◦ Ti ◦ · · · ◦ T1(x),
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where f : X → R is a continuous map and x ∈ X (see [33] [21], [22], [23], [16]
or [20]).

A useful tool to study classical m.t.d.s. is the metric entropy or Kolmogorov-
Sinai entropy of T , introduced by Kolmogorov and Sinai (KS) (see the defin-
ition below). In this chapter and motivated by a paper of Kolyada and Snoha
[40], we extend this notion in the setting of sequences of measure preserving
transformations and study its properties and make an special emphasis on the
properties of metric sequence entropy. In order to give a complete account of
the subject we have given proofs of some results when they are difficult to
get mostly taken from [24]; otherwise, we introduce the results giving some
references.

1.3.1 Metric entropy of a finite partition

First of all, we recall some necessary notions and notation. A set A =
{A1, · · · , Ak} is called a finite partition of X if Ai ∈ β (X) for i = 1, 2, · · · , k,
Ai ∩ Aj = ∅ if i �= j, and ∪k

i=1Ai = X. Let Z denote the set containing all
the finite partitions of X. If B = {B1, · · · , Bl} is also a finite partition of X,
A ∨ B = {Ai ∩Bj : (Ai ∈ A), (Bj ∈ B)}. We write A ≤ B to mean that each
element of A is a union of elements of B. We also say that B is finer than A.
Under the convention that 0 log 0 = 0, we have (see for example [73]):

Definition 1.8. Let A = {A1, · · · , Ak} ∈ Z. The metric entropy of the finite
partition A is

Hµ(A) = −
k∑

i=1

µ(Ai) log µ(Ai)

We also introduce the metric conditional entropy as:

Definition 1.9. Let A = {A1, · · · , Ak} and B = {B1, · · · , Bl} be finite parti-
tions of X. The metric conditional entropy of A relative to B is

Hµ(A/B) =
∑

µ(Bj)�=0

µ(Bj)

k∑

i=1

µ(Ai

⋂
Bj)

µ(Bj)
log

µ(Ai

⋂
Bj)

µ(Bj)

=
∑

µ(Bj)�=0

k∑

i=1

µ(Ai

⋂
Bj) log

µ(Ai

⋂
Bj)

µ(Bj)
.

Let A,B be finite partitions of X. We introduce a relation between these
partitions by ρ(A,B) = Hµ(A/B) +Hµ(B/A). It can be easily checked that
ρ is a distance and then (Z, ρ) is a metric space.

The main properties of metric entropy and metric conditional entropy of
partitions are summarized in the following result (see Theorem 4.3 of [73]).

Theorem 1.8. If A,B, C ∈ Z then
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(a) Hµ(A ∨ B/C) = Hµ(A/C) +Hµ(B/A ∨ C).
(b) Hµ(A ∨ B) = Hµ(A) +Hµ(B/A).
(c) If A ≤ B then Hµ(A/C) ≤ Hµ(B/C).
(d) If A ≤ B then Hµ(A) ≤ Hµ(B).
(e) If B ≤ C then Hµ(A/C) ≤ Hµ(A/B).
(f) Hµ(A) ≥ Hµ(A/B).
(g) Hµ(A ∨ B/C) ≤ Hµ(A/C) +Hµ(B/C).
(h) Hµ(A ∨ B) ≤ Hµ(A) +Hµ(B).
(i) If T : X → X is a measure preserving transformation then

Hµ(T−1A/T−1B) = Hµ(A/B).

(j) If T : X → X is a measure preserving transformation then

Hµ(T−1A) = Hµ(A).

1.3.2 Metric entropy of a sequence of measure preserving
transformations

Let T1,∞ = (Ti)
∞
i=1 be a sequence of measure preserving transformations Ti :

X → X with i ∈ N. Denote by Tn
1 = Tn ◦ · · · ◦ T1, and by T−n

1 (A) =
T−1

1 (· · · (T−1
n A)) for any A ∈ β (X).

Definition 1.10. Let A be a finite partition of X. The metric entropy of
T1,∞ relative to the partition A is

hµ(T1,∞,A) = lim sup
n→∞

1

n
Hµ

(
n−1∨

i=0

T−n
1 A

)
.

and the metric entropy of T1,∞

hµ(T1,∞) = sup
A
hµ(T1,∞,A).

We will denote the partition
∨n−1

i=0 T
−n
1 A by An(T1,∞) if it is necessary.

Let B = (bi)
∞
i=1 be a sequence of positive integers. The sequence A =

(ai)
∞
i=1 defined by ai =

∑i
k=1 bk is an increasing sequence of positive integers.

Consider the sequence of measure preserving transformations T1,∞ = (T bi)∞i=1,
where T : X → X is a measure preserving transformation. Then its metric
entropy hµ(T1,∞) = hµ,A(T ) coincides with the metric sequence entropy of
T (see [45]). When the sequence B is the constant sequence bi = 1, then
hµ(T1,∞) = hµ(T ) is the metric entropy of T (see Chapter 4 from [73]).

The basic properties of the metric entropy of sequences of measure pre-
serving transformations are summarized below.

Theorem 1.9. Let T1,∞ = (Ti)
∞
i=1 be a sequence of measure preserving trans-

formations. Let A,B ∈ Z. Then:
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(a) hµ(T1,∞,A) ≤ Hµ(A).
(b) hµ(T1,∞,A ∨ B) ≤ hµ(T1,∞,A) + hµ(T1,∞,B).
(c) If A ≤ B then hµ(T1,∞,A) ≤ hµ(T1,∞,B).
(d) hµ(T1,∞,A) ≤ hµ(T1,∞,B) +Hµ(A/B).
(e) hµ(T1,∞,A) = hµ(T2,∞,A) where T2,∞ = (T2, T3, · · · ).
(f) |hµ(T1,∞,A) − hµ(T1,∞,B)| ≤ ρ(A,B). Hence the map hµ(T1,∞, ·) : Z →

R+ ∪ {0} is continuous.

Proof. By Theorem 1.8 (h) and (j) we have that

Hµ

(
n∨

i=1

T−i
1 A

)
≤

n∑

i=1

Hµ(T−i
1 A) ≤ nHµ(A),

and this gives (a).
Now, using Theorem 1.8 (h) it follows that

Hµ

(
n∨

i=1

T−i
1 (A ∨ B)

)
≤ Hµ

(
n∨

i=1

T−i
1 A

)
+Hµ

(
n∨

i=1

T−i
1 B

)
,

and this proves (b).
Since A ≤ B we have that

∨n
i=1 T

−i
1 A ≤ ∨n

i=1 T
−i
1 B, and so applying

Theorem 1.8 (d) it holds

Hµ

(
n∨

i=1

T−i
1 B

)
≤ Hµ

(
n∨

i=1

T−i
1 A

)
,

which gives (c).
To prove (d) we will use first Theorem 1.8 (c) and (b). We have then that

Hµ

(
n−1∨

i=0

T−i
1 A

)
≤ Hµ

((
n−1∨

i=0

T−i
1 A

)
∨
(

n−1∨

i=0

T−i
1 B

))

≤ Hµ

(
n−1∨

i=0

T−i
1 B

)
+Hµ

(
n−1∨

i=0

T−i
1 A/

n−1∨

i=0

T−i
1 B

)
.

On the other hand, by Theorem 1.8 (c), (e) and (i) it follows that

Hµ

(
n−1∨

i=0

T−i
1 A/

n−1∨

i=0

T−i
1 B

)
≤

n−1∑

i=0

Hµ

(
T−i

1 A/
n−1∨

i=0

T−i
1 B

)

≤
n−1∑

i=0

Hµ

(
T−i

1 A/T−i
1 B

)

= nHµ (A/B) .

Since there exists limn→∞(1/n)nHµ(A/B) = Hµ(A/B) it holds that
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hµ(T1,∞,A) = lim sup
n→∞

1

n
Hµ

(
n−1∨

i=0

T−i
1 A

)

≤ lim sup
n→∞

1

n

(
Hµ

(
n−1∨

i=0

T−i
1 B

)
+ nHµ(A/B)

)

= lim sup
n→∞

1

n

(
Hµ

n−1∨

i=0

T−i
1 B

)
+Hµ(A/B)

= hµ(T1,∞,B) +Hµ(A/B).

Now we will prove the property (e). Note that by Theorem 1.8 (b) and (d)
we have that

Hµ

(
n−1∨

i=0

T−i
1 A

)
≤ Hµ(A) +Hµ

(
n−1∨

i=1

T−i
1 A

)

= Hµ(A) +Hµ

(
T−1

1

(
n−1∨

i=1

T−i
2 A

))

= Hµ(A) +Hµ

(
n−1∨

i=1

T−i
2 A

)
.

Dividing by n and taking upper limits when n tends to infinite, we have that

hµ(T1,∞,A) = lim sup
n→∞

1

n
Hµ

(
n−1∨

i=0

T−i
1 A

)

≤ lim sup
n→∞

1

n

(
Hµ(A) +Hµ

(
n−1∨

i=1

T−i
2 A

))

= hµ(T2,∞,A).

On the other hand, by Theorem 1.8 (d), it follows that

Hµ

(
n−1∨

i=0

T−i
2 A

)
= Hµ

(
T−1

1

(
n−1∨

i=0

T−i
2 A

))

= Hµ

(
n∨

i=1

T−i
1 A

)

≤ Hµ

(
n∨

i=0

T−i
1 A

)
.

Dividing by n and taking upper limits when n tends to infinite, we conclude

hµ(T1,∞,A) = lim sup
n→∞

1

n
Hµ(

n−1∨

i=0

T−i
1 A)
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≥ lim sup
n→∞

1

n
Hµ(

n−1∨

i=0

T−i
2 A)

= hµ(T2,∞,A).

The proof of (f) is easy to see. �

In case of metric sequence entropy we have the following interesting prop-
erty which will be useful later.

Proposition 1.11. Let T : X → X be a measure preserving transformation
and let A = (ai)

∞
i=1 be a sequence of positive integers. Then for all A ∈ Z it

holds
hµ,A(T,A) = hµ,A(T, T−1A)

Proof. It follows from the equalityHµ(D)=Hµ(T−1D) where D=
∨n

i=1T
−aiA

for some arbitrary partition A of X. �

Let (Ai)
∞
i=1 be a sequence of finite partitions of X. Denote by

∨∞
i=1Ai the

biggest partition satisfying An ≤ ∨∞
i=1Ai for all n ∈ N. The following lemma

allows us to compute the metric entropy of measurable sequences in a simple
way, and it is analogous to the same lemma in [45].

Lemma 1.2. Let T1,∞ = (Ti)
∞
i=1 be a sequence of measure preserving trans-

formations. Let A1 ≤ A2 ≤ · · · ≤ An ≤ · · · be a sequence of measurable
partitions such that

∨∞
i=1 Ai = ǫ, the partition into individual points. Then

hµ(T1,∞) = lim
i→∞

hµ(T1,∞,Ai).

Proof. Let Zk be the set of finite partitions of X such that for any B ∈ Zk

it holds that B ≤ Ak. It follows from Lemma 2 in [45] that M = ∪k≥1Zk is
everywhere dense in Z. Then

hµ(T1,∞) = sup
A∈Z

hµ(T1,∞,A) = sup
A∈M

hµ(T1,∞,A)

= sup
Ai

hµ(T1,∞,Ai) = lim
i→∞

hµ(T1,∞,Ai),

and the proof ends. �

The following technical lemmas can be found in [73].

Lemma 1.3. Let r ≥ 1 be an integer. Then for all ǫ > 0 there exists δ > 0
such that if A = {A1, · · · , Ar} and B = {B1, · · · , Br} are two finite partitions
with

∑r
i=1 µ(Ai △Bi) < δ, it holds that ρ(A,B) < ǫ.

Lemma 1.4. Let β0 be an algebra such that the σ-algebra generated by β0,
which it is denoted σ(β0), is β (X) . Let A be a finite partition of X containing
elements from β (X) . Then, for all ǫ > 0 there exists a finite partition B
containing elements from β0 and holding ρ(A,B) < ǫ.
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The above lemmas help us to prove the following result.

Proposition 1.12. Let T1,∞ = (Ti)
∞
i=1 be a sequence of measure preserving

transformations. Let β0 be an algebra such that σ(β0) = β (X) . Let Z0 be the
set of finite partitions of X containing elements from β0. Then

hµ(T1,∞) = sup {hµ(T1,∞,A) : A ∈ Z0} .

Proof. By Lemma 1.4, given an arbitrary real number ǫ > 0 and B ∈ Z there
exists a finite partition Aǫ ∈ Z0 such that Hµ(B/Aǫ) < ǫ. Then by Theorem
1.9 (d) we have that

hµ(T1,∞,B) ≤ hµ(T1,∞,Aǫ) +Hµ(B/Aǫ)

≤ hµ(T1,∞,Aǫ) + ǫ.

So
hµ(T1,∞,B) ≤ ǫ+ sup {hµ(T1,∞,A) : A ∈ Z0} ,

and since ε was arbitrary it follows that

hµ(T1,∞) ≤ sup {hµ(T1,∞,A) : A ∈ Z0} .

The reverse inequality is obvious, and so the proof ends.�

1.3.3 Isomorphisms of non-autonomous systems

Let (X,β(X), µ) and (Y, β(Y ), ν) be two probability spaces and let T1,∞ =
(Ti)

∞
i=1 and S1,∞ = (Si)

∞
i=1 be two sequences of measure preserving trans-

formations. We define the notion of isomorphism between T1,∞ and S1,∞ as
follows.

Definition 1.11. We say that T1,∞ is isomorphic to S1,∞ if there exist two
measurable sets M1 ⊂ X and M2 ⊂ Y with µ(M1) = 1 = ν(M2) such that

(a) Ti(M1) ⊂M1 and Si(M2) ⊂M2 for any i ∈ N.
(b) There exists an invertible measure preserving transformation φ : M1 →

M2 with φ ◦ Ti = Si ◦ φ for every integer i.

If the measure preserving transformation φ : M1 → M2 is surjective we will
say that S1,∞ is a factor of T1,∞. T1,∞ and S1,∞ are said weakly isomorphic
if S1,∞ is a factor of T1,∞ and viceversa.

In case of constant sequences of measure preserving transformations, we
have the standard isomorphism of classical dynamical systems, and then it is
well known that if T1,∞ = (T ) and S1,∞ = (S) then hµ(T ) = hν(S). If S is a
factor of T we have hµ(T ) ≥ hν(S).

When we consider sequences of measure preserving transformations a sim-
ilar result is obtained.
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Theorem 1.10. Let T1,∞ and S1,∞ be two sequences of measure preserving
transformations. Then

(a) If T1,∞ and S1,∞ are isomorphic, then hµ(T1,∞) = hν(S1,∞).
(b) If S1,∞ is a factor of T1,∞, then hµ(T1,∞) ≥ hν(S1,∞).
(c) If T1,∞ and S1,∞ are weakly isomorphic, then hµ(T1,∞) = hν(S1,∞).

Proof. Let A be a finite partition of Y . If S1,∞ is a factor of T1,∞, by Definition
1.11, there exists a measurable onto (modulo zero measure sets) φ:X → Y.
Then

Hν

(
n∨

i=1

S−i
1 A

)
= Hν

(
n∨

i=1

π−1S−i
1 πA

)
= Hµ

(
n∨

i=1

S−i
1 πA

)
,

which provides the inequality

hν(S1,∞) ≤ hµ(T1,∞),

and this proves (b).
Applying (b) two times we obtain (a) and (c) and this concludes the proof.

�

1.3.4 Examples

In this section, we compute the metric entropy of some sequences of measur-
able maps. We will make an special emphasis on zero metric entropy sequences.

Recall that given a measure preserving transformation T : X → X it can
be defined a linear operator UT : L2(X,µ) → L2(X,µ) given by UT (f) = f ◦T
for all f ∈ L2(X,µ). λ is said an eigenvalue of T if there exists a non zero map
f ∈ L2(X,µ) with UT (f) = λf ; f is said an eigenvector of T associated to λ.
We say that T has discrete spectrum if L2(X,µ) has an orthonormal basis of
eigenvectors.

Proposition 1.13. Let T1,∞ = (Ti)
∞
i=1 be a sequence of measure preserving

transformations. Suppose that for all positive integer i the measure preserv-
ing transformation Ti has discrete spectrum with the same orthonormal basis.
Then hµ(T1,∞) = 0.

Proof. Let f ∈ L2(X,µ) be a characteristic function of a set of measure 1/2
and let M be the set of such functions contained in L2(X,µ). Consider the
map ψ : M → Z such that ψ (f) =

{
f−1 (1) , f−1 (0)

}
. Defining the metric

ρ′ in M as
ρ′(f, g) = µ(f−1(1) △ g−1(1)),

it follows from [45] that ψ is a continuous map and if a set K ⊂M is compact,
then ψ (K) is also compact in ψ (M) . By Lemma 2 in [45], a closed set L ⊂
ψ (M) ⊂ Z is compact if and only if for any sequence {ξi}∞i=1 ⊂ L it holds
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lim
n→∞

1

n
Hµ

(
n∨

i=1

ξi

)
= 0.

Consider the sequence of unitary operators U1,∞ = {UT1
, UT2

, · · · } where
UTi

(g) = g ◦ Ti for all g ∈ L2(X,µ). If each transformation Ti has discrete
spectrum with the same orthonormal basis {ei}∞i=0, then for any f ∈ L2(X,µ)
it follows that the closure of the set {UT1

◦ · · · ◦ UTn
(f)}∞n=0, is compact.

In order to see this, we know that UTi
(ej) = λijej , |λij | = 1 for any pair

(i, j) ∈ N2. For any f ∈ L2(X,µ), f =
∑∞

i=0 aiei with
∑∞

i=0 |ai|2 < ∞, it
follows that:

Cl ({UT1
◦ · · · ◦ UTn

(f)}∞n=0) ⊂
{
g =

∞∑

i=0

biei : |bi| ≤ |ai|
}

= B.

Since B is compact, our set Cl({UT1
◦ · · · ◦ UTn

(f)}∞n=0) is compact.
Let f ∈M ⊂ L2(X,µ). Since Cl({UT1

◦ · · · ◦UTn
(f)}∞n=0) is compact and

the map ψ is continuous, the set

ψ (Cl({UT1
◦ · · · ◦ UTn

(f)}∞n=0)) = Cl({T−n
1 ψ (f)}∞n=0)

is compact in ψ (M) ⊂ Z and then

hµ(T1,∞, ψ(f)) = lim sup
n→∞

1

n
Hµ

(
n−1∨

i=0

T−n
1 ψ (f)

)
= 0.

If we consider the finite partitions of X given by
∨n

i=1 ξi with ξi ∈ ψ(M), then
by Theorem 1.9 we have

hµ(T1,∞,

n∨

i=1

ξi) ≤
n∑

i=1

hµ(T1,∞, ξi) = 0.

Since it follows from [45] that the set of finite partitions
∨n

i=1 ξi with ξi ∈
ψ (M) is everywhere dense in Z, and the map hµ(T1,∞, ·) : Z → R+ ∪ {0} is
continuous, by Theorem 1.9, hµ(T1,∞) = 0 and the proof concludes. �

Let S1 = {z ∈ C : |z| = 1}. Consider a sequence (αi)
∞
i=1, αi ∈ C, and

construct the sequence R1,∞ = (Ri)
∞
i=1 where Ri : S1 → S1 is given by

Ri(x) = αnx, for all x ∈ S1. Then maps Ri are rotations on S1. Every rotation
preserves the normalized Haar measure (see page 20 of [73]). Then we can
prove the following proposition.

Proposition 1.14. Under the above conditions, if µ is the normalized Haar
measure in S1 we have that hm(R1,∞) = 0.

Proof. It is known that every rotation on S1 has discrete spectrum with the
same orthonormal basis (see Section 3.3 from [73]). Applying Proposition 1.13
the proof ends. �
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Now we apply Proposition 1.13 to the sequences of ergodic rotations on a
compact group. Let G be a compact group and a ∈ G. Consider the measure
preserving transformation Ta : G→ G given by Ta(g) = ag called rotation of
angle a. It can be seen that each rotation preserves the Haar measure in G
(see [73]). Then we can prove the following result.

Proposition 1.15. Let (ai)
∞
i=1 be a sequence of elements of an abelian metriz-

able compact topological group G and let T1,∞ = (Tai
)∞i=1 be a sequence of

ergodic rotations over G. If m denotes the Haar measure, then it follows that
hm(T1,∞) = 0.

Proof. Let Ĝ be the set of characters of G, that is, the set of continuous
homomorphisms of G onto S1. It is know (see Section 3.3 of [73]) that Ĝ is a
discrete countable group, whose members are mutually orthogonal members
of L2(G,m).

By Theorem 3.5 from [73], we know that every rotation Tai
has discrete

spectrum with basis Ĝ for all i ∈ N. Now apply Proposition 1.13 to obtain
hm(T1,∞) = 0. �

There are sequences of measure preserving transformations with zero met-
ric entropy T1,∞ = (Ti)

∞
i=1 satisfying that every map Ti, i ∈ N, has no discrete

spectrum . Let us see in the following example.

Example 1.2. Let Σ2 = {0, 1}Z. Denote by β the product σ-algebra of Σ2 and
by µ the product measure satisfying µ([i]) = 1/2 where

[i] = {{xi}∞i=−∞ : x0 = i} with i = 0, 1.

Let σ : Σ2 → Σ2 be the shift map. Since hµ(σ) = hµ(σ−1) = log 2 it
follows σ and σ−1 have not discrete spectrum (see [45]). Consider the periodic
sequence σ1,∞ = (σ, σ−1, σ, σ−1, · · · ). By Theorem 1.18 we have hµ(σ2

1,∞) =
2hµ(σ1,∞). Since σ2

1,∞ = (Id, Id, · · · ) with Id the identity map on Σ2 we have
hµ(σ2

1,∞) = 0 and then hµ(σ1,∞) = 0.

1.4 Properties of the metric entropy of measurable
sequences

In this section we will prove some formulas to compute the metric entropy of
sequences of measure preserving transformations.

The product formula

Proposition 1.12 helps us to prove the following formula. Let (Xj , β(Xj), µj)
be two probability spaces with j = 1, 2 and consider two sequences of measure
preserving transformations T1,∞ = (Ti)

∞
i=1 and S1,∞ = (Si)

∞
i=1 where Ti :
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X1 → X1 and Si : X2 → X2 for i ∈ N. Consider the product probability
space (X1 ×X2, β(X1 ×X2), µ1 ×µ2) and the sequence of measure preserving
transformations T1,∞ × S1,∞ = (Ti × Si)

∞
i=1. Then we prove the following

result.

Proposition 1.16. Under the above conditions it follows that

(a) hµ1×µ2
(T1,∞ × S1,∞) ≤ hµ1

(T1,∞) + hµ2
(S1,∞).

(b) If S1,∞ = T1∞, it follows hµ1×µ2
(T1,∞ × T1,∞) = 2hµ(T1,∞).

Proof. First we will prove (a). Consider two measurable partitions, A1 of X1

and A2 of X2. Then A1 ×A2 is a measurable partition of X1 ×X2. Hence

Hµ1×µ2
(

n−1∨

i=0

(T−i
1 × S−i

1 )(A1 ×A2)) = Hµ1
(

n−1∨

i=0

T−i
1 A1) +Hµ2

(

n−1∨

i=0

S−i
1 A2).

So

hµ1×µ2
(T1,∞ × S1,∞,A1 ×A2)=lim sup

n→∞

1

n
Hµ1×µ2

(
n−1∨

i=0

(T−i
1 × S−i

1 )(A1 ×A2))

≤ lim sup
n→∞

1

n
Hµ1

(

n−1∨

i=0

T−i
1 A1)

+ lim sup
n→∞

1

n
Hµ2

(

n−1∨

i=0

S−i
1 A2)

≤ hµ1
(T1,∞,A1) + hµ2

(S1,∞,A2)

≤ hµ1
(T1,∞) + hµ2

(S1,∞)

Since the algebra β(X1)×β(X2) generates the product σ-algebra β(X1×X2),
using Proposition 1.12, it follows

hµ1×µ2
(T1,∞ × S1,∞) = sup

A1×A2

hµ1×µ2
(T1,∞ × S1,∞,A1 ×A2)

≤ hµ1
(T1,∞) + hµ2

(S1,∞),

and part (a) follows. In order to prove the part (b) consider A a finite partition
of X, then

Hµ1×µ1
(
n−1∨

i=0

(T−i
1 × T−i

1 )(A×A)) = 2Hµ1
(
n−1∨

i=0

T−i
1 A)

Therefore

hµ×µ(T1,∞ × T1,∞,A×A) = lim sup
n→∞

1

n
Hµ1×µ1

(

n−1∨

i=0

(T−i
1 × T−i

1 )(A×A))
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= lim sup
n→∞

1

n
2Hµ(

n−1∨

i=0

T−i
1 A)

= 2hµ(T1,∞,A)

Taking the supremum over all the finite partitions

sup
A
hµ×µ(T1,∞ × T1,∞,A×A) = 2hµ(T1,∞).

Then
hµ×µ(T1,∞ × T1,∞) ≥ 2hµ(T1,∞),

and using part (a), the proof ends. �

Iterated sequence formula

Let T1,∞ be a sequence of measure preserving maps Ti : X → X.We can define

a new sequence of maps T [n]
1,∞ = (Si)

∞
i=1 where Si = Tni ◦Tni−1 ◦ ...◦T(n−1)i+1

for all i ∈ N. Then we obtain the following result.

Proposition 1.17. Under the above conditions hµ(T
[n]
1,∞) ≤ nhµ(T1,∞).

Proof. Let A be a finite partition of X. Then

hµ(T
[n]
1,∞,A) = lim sup

k→∞

1

k
Hµ(Ak(T

[n]
1,∞))

≤ n lim sup
k→∞

1

kn
Hµ(Akn(T1,∞))

≤ n lim sup
m→∞

1

m
Hµ(Am(T1,∞))

= nhµ(T1,∞,A).

Taking the supremum over all the finite partitions the proof ends. �

The equality in Proposition 1.17 does not hold in general (see [27]). How-
ever it is true in some special cases. One of them is the following.

Definition 1.12. Let T1,∞ = (Ti)
∞
i=1 be a sequence of measure preserving

transformations. We say that T1,∞ = (Ti)
∞
i=1 is periodic if there exists a

positive integer n such that Ti+n = Ti for all i ∈ N. The smallest integer
satisfying this property is called the period of T1,∞.

Then we prove the following result.

Proposition 1.18. Let T1,∞ = (Ti)
∞
i=1 be a periodic sequence of measure

preserving transformations. Then the formula hµ(Tm
1,∞) = mhµ(T1,∞) holds

for any positive integer m.
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Proof. First of all we prove the equality for n the period of T1,∞. Then T [n]
1,∞

is the constant sequence (T
[n]
i )∞i=1 with T [n]

i = Tn
1 for all i ∈ N. For any finite

partition A and t = mn+ r we have:

At(T1,∞) = (A∨T−1
1 A∨· · ·∨T−(n−1)

1 A)
∨

(T−n
1 A∨T−1

1 A∨· · ·∨T (2n−1
1 A)

∨
· · ·
∨

(T−mn
1 A ∨ T−1

1 A ∨ · · · ∨ T−(mn−1)
1 A)

∨
(
r−1∨

i=0

T−i
1 A).

Then

1

m
Hµ(Amn+r(T1,∞)) ≤ 1

m
Hµ(Am(T

[n]
1,∞)) +

1

m
Hµ(

r−1∨

i=0

T−i
1 A),

and therefore

1

m
Hµ(Am(T

[n]
1,∞)) ≥ 1

m
Hµ(Amn+r(T1,∞)) − 1

m
Hµ(

r−1∨

i=0

T−i
1 A).

Since lim supm→∞(1/m)Hµ(
∨r−1

i=0 T
−i
1 A) = 0, we have

hµ(T
[n]
1,∞,

n−1∨

i=0

T−i
1 A) = lim sup

m→∞

1

m
Hµ(Am(T

[n]
1,∞))

≥ lim sup
m→∞

1

m
Hµ(Amn+r(T1,∞))

= n lim sup
m→∞

1

nm+ r
Hµ(Amn+r(T1,∞))

= n(hµT1,∞,A)

and then
hµ(T

[n]
1,∞) ≥ nhµ(T1,∞).

Applying Proposition 1.17 we get the equality.
Now, suppose that m = kn with k ∈ N. Then it holds T [m]

1,∞ is the constant

sequence (T
[m]
i )∞i=1 where T [m]

i = (Tn ◦ · · · ◦ T1)
k and since it is periodic it

holds

hµ(T
[m]
1,∞) = hµ(Tn ◦ · · · ◦ T1)

k)

= khµ(Tn ◦ · · · ◦ T1)

= mhµ(T1,∞).

Finally, suppose that n does not divide m. Then the sequence T [m]
1,∞ is

periodic with the same period as T1,∞. Then
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hµ(Tnm
1,∞) = nhµ(Tm

1,∞),

and on the other hand we have

hµ(Tnm
1,∞) = nmhµ(T1,∞).

Combining both equalities we have that hµ(Tm
1,∞) = mhµ(T1,∞) and the proof

ends. �

The equality in Proposition 1.17 also can be attained in the following case.
First of all we introduce a definition.

Definition 1.13. Let T1,∞ = (Ti)
∞
i=1 be a sequence of measure preserving

transformations. We say that T1,∞ = (Ti)
∞
i=1 is eventually periodic if there

exists a positive integer k such that Tk,∞ is periodic.

Proposition 1.19. Let T1,∞ = (Ti)
∞
i=1 be an eventually periodic sequence

of measure preserving transformations. Then for any m ∈ N it follows that

hµ(T
[m]
1,∞) = mhµ(T1,∞).

Proof. Let k be the first positive integer such that Tk,∞ is periodic. Consider

the sequence T [m]
1,∞ = (Tm−1

1 , T 2m−1
m , · · ·T im−1

(i−1)m, · · · ). This sequence is also

eventually periodic and (T [m])k,∞ = (T 2km−1
km , · · · , T im−1

(i−1)m, · · · ) is periodic.

By Theorem 1.9 (e) and Proposition 1.18 it follows that

hµ(T
[m]
1,∞) = hµ((T [m])k,∞) = mhµ(Tk,∞) = mhµ(T1,∞),

which concludes the proof. �

1.4.1 Some particular formulas for metric entropy

Now we consider periodic sequences of measure preserving transformations
of period 1, that is, T1,∞ = (T ). So the metric entropy of these sequences is
called metric entropy of the transformation T .

The computation of the metric entropy is in general difficult. However,
there exist several formulas which allow us to compute it when the measure
preserving transformations have an special form. The main formulas that we
will consider are the following.

Proposition 1.20. Let T : X → X be a measure preserving transformation.
Then

(a) If T is invertible then hµ(T k) = |k|hµ(T ) for all k ∈ Z.

(b) If T is not invertible then hµ(T k) = khµ(T ) for all k ∈ N.
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Let (Xi, β (Xi) , µi) be two probability spaces for i = 1, 2. Suppose that
Ti : Xi → Xi are measure preserving transformations for i = 1, 2. Con-
sider the product probability space (X1 ×X2, β(X1 ×X2), µ1 × µ2) and the
measure preserving transformation T1 × T2 : X1 × X2 → X1 × X2 given by
T1 × T2 (x1, x2) = (T1 (x1) , T2 (x2)) for all (x1, x2) ∈ X1 × X2. Then the
metric entropy of this transformation can be computed with the following
proposition.

Proposition 1.21. Under the above conditions

hµ1×µ2
(T1 × T2) = hµ1

(T1) + hµ2
(T2) .

Consider again two probability spaces (Xi, β (Xi) , µi) as before. Let g :
X1 → X1 be a measure preserving transformation and let fx1

: X2 → X2 be
a family of measure preserving transformations with x1 ∈ X1. Consider the
product space (X1 × X2, β(X1 × X2), µ1 × µ2) and the triangular measure
preserving transformation T : X1 ×X2 → X1 ×X2 defined by

T (x1, x2) = (g(x1), f(x1, x2)) = (g(x1), fx1
(x2))

for all (x1, x2) ∈ X1 × X2. When g is the identity the following proposition
allows us to compute the metric entropy of T.

Proposition 1.22. Under the above conditions

hµ1×µ2
(T ) =

∫

X1

hµ2
(fx1

)dµ1.

When g is not the identity, there exists a formula proved at the same time
by Abramov and Rokhlin in [2] and by Adler in [3], which allows to compute
the metric entropy of T. Let A be a finite partition of X2 and let x1 ∈ X1.
Define

An
x1

=
n−1∨

k=0

f−1
x1
f−1

g(x1)
...f−1

gk−1(x1)
A,

hµ2,g(f,A) = lim
n→∞

1

n

∫

X1

Hµ2
(An

x1
)dµ1 (x1) ,

hµ2,g (f) = sup {hµ2,g(f,A) : A ∈ Z2} ,
where Z2 is the space of finite partitions of X2. Then

Proposition 1.23. Under the above conditions

hµ1×µ2
(T ) = hµ1

(g) + hµ2,g (f) .

1.4.2 Some particular formulas for metric sequence entropy

It is natural to wonder if the formulas presented in Section 4.01 are or not
true in the setting of metric sequence entropy. In this section we will consider
the same formulas and we will show that the answers are not always positive.
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Iterated map formula

Let T : X → X be a measure preserving transformation and let n ∈ N. The
formula hµ(Tn) = nhµ(T ) is based on an arithmetic property of the sequence
(i)∞i=0. Take the subsequences (ni)∞i=0. Then clearly ni + k is an element of
the sequence (i)∞i=0 for all k ∈ N. This property does not hold in general by
arbitrary sequences of positive integers. For example, if we take the sequence
(2i)∞i=0 the above property does not hold. Using similar properties we can prove
some formulas in the case of metric sequence entropy. To this end we need a
previous result. Let I be the set of increasing sequences of positive integers
and consider the shift map σ : I → I given by σ((ai)

∞
i=1) = (ai+1)

∞
i=1.

Lemma 1.5. Let T : X → X a measure preserving transformation and let
A = (ai)

∞
i=1 be a sequence of positive integers. Let k ∈ N. Then:

hµ,A(T ) = hµ,σk(A)(T ).

Proof. Let A ∈ Z. By Theorem 1.8 (h) we have

Hµ(

n∨

i=1

T−aiA) ≤ Hµ(

k∨

i=1

T−aiA) +Hµ(

n∨

i=k+1

T−aiA).

Since lim supn→∞(1/n)Hµ(
∨k

i=1 T
−aiA) = 0, we have that

hµ,A(T,A) = lim sup
n→∞

1

n
Hµ(

n∨

i=1

T−aiA)

≤ lim sup
n→∞

1

n
Hµ(

n∨

i=k+1

T−aiA)

= hµ,σk(A)(T,A).

Then

hµ,A(T ) = sup
A
hµ,A(T,A) ≤ sup

A
hµ,σk(A)(T,A) = hµ,σk(A)(T ).

On the other hand, since
∨n

i=1 T
−aiA is finer than

∨n
i=k+1 T

−aiA it follows
from Theorem 1.8 (d) that

Hµ(

n∨

i=1

T−aiA) ≥ Hµ

n∨

i=k+1

T−aiA.)

Therefore

hµ,A(T,A) = lim sup
n→∞

1

n
Hµ

(
n∨

i=1

T−aiA
)
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≥ lim sup
n→∞

1

n
Hµ

(
n∨

i=k+1

T−aiA
)

= hµ,σk(A)(T,A).

Then

hµ,A (T ) = sup
A
hµ,A(T,A) ≥ sup

A
hµ,σk(A)(T,A) = hµ,σk(A)(T ),

and we get the equality.�

Lemma 1.5 means that when we try to compute the metric sequence en-
tropy of a measurable transformation, we can remove the first elements of the
sequence A. This fact seems reasonable because the metric sequence entropy
is an asymptotic value. Lemma 1.5 allows us to prove the following formula.

Proposition 1.24. Let T : X → X be a measure preserving transformation
and let A = (mi)∞i=0 with m a positive integer. Let k ∈ N. Then

hµ,A(T ) = hµ,A(Tmk

).

Proof. Let A ∈ Z. Given an arbitrary sequence of positive integer B = (bi)
∞
i=1

it follows that

hµ,B(T k,A) = lim sup
n→∞

1

n
Hµ(

n∨

i=1

T−kbiA) = hµ,kB(T,A).

where kB denotes the sequence of positive integers (kbi)
∞
i=1. Take the sequence

A = (mi)∞i=0. The above formula gives

hµ,A(Tmk

,A) = hµ,mkA(T,A),

where mkA = (mi+k)∞i=0 = (mi)∞i=k. So σk(A) = mkA, and by Lemma 1.5 we
have that

hµ,A(Tmk

,A) = hµ,mkA(T,A) = hµ,A(T,A).

Then

hµ,A(Tmk

) = sup
A
hµ,A(Tmk

,A) = sup
A
hµ,A(T,A) = hµ,A (T ) ,

which concludes the proof. �

Proposition 1.24 can be used to find examples of measure preserving trans-
formations for which the formula hµ,A(Tn) = nhµ,A(T ) does not hold. For that
it is enough to find transformations with finite metric sequence entropy with
respect to the sequence (mi)∞i=0 for any positive integer m. These examples
can be taken from [27], [46] and [45]. We guess if it is possible to find similar
formulas for other type of sequences like for example (im)∞i=0 with m ∈ N.
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The product formula

Given an arbitrary sequence A, the product formula is not true (see [46]), but
it can be replaced by the inequality (see [32])

hµ1×µ2,A (T1 × T2) ≤ hµ1,A (T1) + hµ2,A (T2) .

When T1 = T2 the formula is true, and the same occurs if hµ1,A (T1) or
hµ2,A (T2) are zero.

The triangular formula

Although the formula hµ1×µ2,A (T1 × T2) = hµ1,A (T1)+hµ2,A (T2) is not true
in general, it holds when T1 or T2 are the identity map. Therefore, it is rea-
sonable to think that the formula hµ1×µ2,A (T ) =

∫
X1
hµ2,A(fx1

)dµ1 could
be true. However, it is easy to provide an example showing that it is false
in general. To show this we will consider the following example studied by
Kusnhirenko in [45]. Let us denote by β(S1) the Borel σ-algebra and by µ the
Haar measure. Consider T2 = S1×S1 the two dimensional torus, and let β(T2)
and µ×µ be the product σ-algebra and the product measure respectively. Let
T : T2 → T2 be the triangular map defined by

T (x, y) = (x, xy),

for all (x, y) ∈ T2. We call this map the K-map and was introduced by
Kusnhirenko ([45]). Here it is also proved that hµ×µ,A(T ) = log 2 where
A = (2i)∞i=0.

Note that the transformation T is triangular and its coordinate maps are
rotations. In fact T (x, y) = (x,Rx(x2)), where Rx : S1 → S1 are rotations for
all x ∈ S1. It can also be seen in [73] that every rotation has discrete spectrum,
and therefore for any sequence of positive integers B we have hµ,B(Rx) = 0.
Then for any sequence of positive integers B it follows

∫

S1

hµ,B(Rx)d(µ) = 0.

Taking the sequence A = (2i)∞i=0 we obtain

log 2 = hµ×µ,A(T ) >

∫

S1

hµ,A(Rx)dµ = 0

and Proposition 1.4.2 does not hold for metric sequence entropy.
The metric entropy of sequences of measurable transformations can be

used to compute the metric entropy of a triangular maps for which fn is the
identity map for some n ∈ N.
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Theorem 1.11. Under the above conditions we have

hµ1×µ2
(T ) =

∫

X1

hµ2
(gx

1,∞)dµ1(x),

where gx
1,∞ is the periodic sequence gx

1,∞ = (gx
i )∞i=1 with gi = gfi(x) for all

i ∈ N and x ∈ X1.

Proof. Since fn is the identity, we get by Rokhlin’s formula that

hµ1×µ2
(Tn) =

∫

X1

hµ2
(gfn−1(x) ◦ · · · ◦ gf(x) ◦ gx)dµ1(x).

Since the sequence gx
1,∞ is periodic, by Proposition 1.18 we have

hν(gfn−1(x) ◦ · · · ◦ gf(x) ◦ gx) = nhν(gx
1,∞),

and therefore
hµ1×µ2

(Tn) = nhµ1×µ2
(T )

.�

Some special cases

In some special conditions, the computation of the metric sequence entropy
can be made knowing the metric entropy of the transformation. First we need
a definition (see [57]).

Definition 1.14. Let A = (ai)
n
i=1 be a sequence of integers. Define

UA(n, k) =

n⋃

i=1

{ai, 1 + ai, · · · , k + ai},

SA(n, k) = Card
n⋃

i=1

{ai, 1 + ai, · · · , k + ai},

and

K(A) = lim
k→∞

(
lim sup

n→∞

SA(n, k)

n

)
.

Recall that T is ergodic if the condition T−1(A) = A implies µ(A) = 0 or
1. Then

Theorem 1.12. Let T : X → X be an invertible ergodic transformation.
Then

hµ,A(T ) =





0 if K(A) = 0

K(A)hµ(T ) if 0 < hµ(T ) <∞
0 if 0 < K(A) <∞, hµ(T ) = 0

∞ if 0 < K(A) ≤ ∞, hµ(T ) = ∞
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The hypothesis of Theorem 1.12 can be relaxed and it is true for arbitrary
measure preserving transformations. First of all we need the following result.

Lemma 1.6. Let T : X → X be a measure preserving transformation and let
A = (ai)

∞
i=1 be an increasing sequence of positive integers. Then

hµ,A(T ) ≤
{

0 if K(A) = 0

K(A)hµ(T ) if 0 < K(A) <∞

Proof. Let A ∈ Z, and put bn = 1
n Hµ(

∨n−1
i=0 T

−iA). Then bn decreases to
hµ(T,A) and the sequence ǫn = supj≥n(br − hµ(T,A)) is decreasing and
converges to zero.

Let k, n be positive integers and define UA(n, k) and SA(n, k) like in
Definition 1.14. Divide UA(n, k) into connected segments as follows. For
i, j ∈ UA(n, k) with i ≤ j we say that i ∼ j if i ≤ l ≤ j implies l ∈ UA(n, k).
Clearly ∼ is an equivalence relation, and denote by Ui for i = 1, .., r the
equivalence classes. Moreover Card Ui = si ≥ k for any i = 1, · · · , r. Then

n∨

i=1

T−ai




k∨

j=0

T−jA


 ≤

∨

i∈UA(n,k)

T−iA.

So

Hµ




n∨

i=1

T−ai




k∨

j=0

T−jA




 ≤ Hµ


 ∨

i∈UA(n,k)

T−iA




≤
r∑

j=1

Hµ


 ∨

i∈Uj

T−iA




=

r∑

j=1

Hµ

(
si−1∨

i=0

T−iA
)
.

Since (1/si)Hµ

(∨si−1

i=0 T
−iA

)
≤ hµ(T,A) + ǫk for i = 1, · · · , r

Hµ




n∨

i=1

T−ai




k∨

j=0

T−jA




 ≤

r∑

j=1

sj(hµ(T,A) + ǫk)

= SA(n, k)(hµ(T,A) + ǫk).

Thus

hµ,A


T,

k−1∨

j=0

T−jA


 = lim sup

n→∞

1

n
Hµ




n∨

i=1

T−ai




k∨

j=0

T−jA
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≤ lim sup
n→∞

1

n
SA(n, k)(hµ(T,A) + ǫk)

≤ K(A)(hµ(T,A) + ǫk).

Since hµ,A

(
T,
∨k−1

j=0 T
−jA

)
≥ hµ,A(T,A), and taking the limit when k → ∞

we have

hµ,A(T,A) ≤ K(A)(hµ(T,A) + ǫk)

≤ K(A)hµ(T,A).

Taking the supremum over Z, it follows

hµ,A(T ) ≤ K(A)hµ(T ).

Since hµ(T,A) ≤ Hµ(A) < ∞, if K(A) = 0 then hµ,A(T ) = 0. If K(A) > 0,
we get hµ,A(T ) ≤ K(A)hµ(T ) and the proof ends. �

The following Lemma can be seen in [32].

Lemma 1.7. Let T : X → X be a measure preserving transformation. Let
A = (ai)

∞
i=1 be an increasing sequence of positive integers. Then

hµ,A(T ) ≥
{
K(A)hµ(T ) if 0 < hµ(T ) <∞
∞ if K(A) > 0 and hµ(T ) = ∞

Lemmas 1.6 and 1.7 allow us to prove the following result, which is a
refinement of Theorem 1.12.

Theorem 1.13. Let T : X → X be a measure preserving transformation, and
let A = (ai)

∞
i=1 be an increasing sequence of integers. Then

hµ,A(T ) =





0 if K(A) = 0

K(A)hµ(T ) if 0 < hµ(T ) <∞
0 if 0 < K(A) <∞, hµ(T ) = 0

∞ if 0 < K(A) ≤ ∞, hµ(T ) = ∞

Finally we prove the following result

Theorem 1.14. Let T : X → X be a measure preserving transformation, and
let A = (ai)

∞
i=1 be an increasing sequence of integers. If A and T satisfy one of

the cases of Theorem 1.13, then Propositions 1.20, 1.21, 1.4.2 and 1.23 hold.

Note that the case K(A) = ∞ and hµ(T ) = 0 is indeterminate in Theorem
1.13. In this case Propositions 1.20, 1.21, 22 and 1.23 do not hold in general.
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1.4.3 The metric sequence entropy map

This section is devoted to the study of the map hµ,(·)(T ) : I → R+
⋃{0,∞},

where I denotes the set of all the increasing sequences of positive integers.
Some properties of this map have been studied by Saleski in [64] and Pickel in
[60]. We wonder if this map is surjective, and on the relation between hµ,A(T )
and hµ,B(T ), where B is a subsequence of A.

Lemma 1.8. Let T : X → X be a measure preserving transformation and let
A be an increasing sequence of positive integers such that ∞ > hµ,A(T ) > 0.
Then for all b ∈ [0, hµ,A(T )] there exists a sequence B ∈ I such that hµ,B(T ) =
b.

Proof. If b ∈ {0, hµ,A(T )} the sequences 0 = (0, 0, · · · ) and A give us zero met-
ric sequence entropy and hµ,A(T ) respectively. Suppose that b ∈ (0, hµ,A(T )),
and let r ∈ (0, 1) such that b = rhµ,A(T ).

Construct a new increasing sequence B ∈ I by repeating elements in A
such that if

rn = Card{bi �= 0 : 1 ≤ i ≤ n},
then limn→∞(rn/n) = r. Let A be a finite partition of X, and then

hµ,B(T,A) = lim sup
n→∞

1

n
Hµ

(
n∨

i=1

T−biA
)

= lim sup
n→∞

rn
n

1

rn
Hµ

(
rn∨

i=1

T−aiA
)

= lim
n→∞

rn
n

lim sup
n→∞

1

rn
Hµ

(
rn∨

i=1

T−aiA
)

= rhµ,A(T,A).

Taking the supremum over Z we have that hµ,B(T ) = rhµ,A(T ), and the proof
ends. �

Now we study when the map hµ,(·)(T ) : I → R ∪ {0,∞} is surjective.

Proposition 1.25. Let T : X → X be a measure preserving transformation
with ∞ > hµ(T ) > 0. Then the map hµ,·(T ) is surjective.

Proof. Let ∞ > hµ(T ) > 0. Since hµ(T ) is finite, by Lemma 1.8, there exists
a sequence B ∈ I such that hµ,B(T ) = b for all b ∈ [0, hµ(T )].

Let b > hµ(T ). Since hµ(T ) is positive and finite, there exists a positive
integer nb such that hµ(Tnb) = hµ,A(T ) ≥ b where A = (nbi)

∞
i=0. Applying

Lemma 1.8 we find a sequence B for which hµ,B(T ) = b.
Now we consider a sequence B satisfying
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lim
k→∞

(
lim sup

n→∞

SB(n, k)

n

)
= ∞,

and use Theorem 1.13 to prove that hµ,B(T ) = ∞. �

Remark 1.2. It is possible to construct an example of a measure preserving
transformation T satisfying hµ,A(T ) ∈ {0,∞} for all A ∈ I. To this end
consider the transformation of the example in Section 4.8 from [73]. For this
map hµ(T ) = ∞ and hence, applying Theorem 1.13, our assertion is proved.

We distinguish three basic types of measure preserving transformations
from the point of view of metric sequence entropy. They are summarized in
the following definition.

Definition 1.15. A measure preserving transformation T : X → X is said

(a) Null if sup{hµ,A(T ) : A ∈ I} = 0.

(b) Bounded if ∞ > sup{hµ,A(T ) : A ∈ I} > 0.

(c) Unbounded if sup{hµ,A(T ) : A ∈ I} = ∞.

So we have the following result due to Kusnhirenko (see [45]).

Theorem 1.15. A measure preserving transformation T is null if and only if
it has discrete spectrum.

On the other hand, by Proposition 1.25, any measure preserving transfor-
mation T with positive metric entropy is unbounded. This condition is not
necessary as Hulse pointed out in [36]. On the other hand, by a result due to
Pickel (see [60]) we know that

sup{hµ,A(T ) : A ∈ I} ∈ {log k : k ∈ N ∪∞}.

Let A = (ai)
∞
i=1 ∈ I, and let B be a subsequence of A. We will study

the relation between hµ,A(T ) and hµ,B(T ). To this end define the increasing
sequence of positive integers (S(B, i))∞i=1 given by

S(B, i) = Card{B⋂ {a1, · · · , ai}},

and let

S(B) = lim sup
n→∞

S(B,n)

n
.

Proposition 1.26. Let T : X → X be a measure preserving transformation.
Let A ∈ I and let B,C be two subsequences of A satisfying B ∩ C = ∅. Then

hµ,A(T ) ≤ S(B)hµ,B(T ) + S(C)hµ,C(T ).
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Proof. Let A = (ai)
∞
i=1, B = (bi)

∞
i=1 and C = (ci)

∞
i=1. Let A ∈ Z. By Theorem

1.8 (h) it follows that

1

n
Hµ

(
n∨

i=1

T−aiA
)

≤ S(B,n)

n

1

S(B,n)
Hµ




S(B,n)∨

i=1

T−biA




+
S(C, n)

n

1

S(C, n)
Hµ




S(C,n)∨

i=1

T−ciA




Taking upper limits when n→ ∞ we have

hµ,A(T,A) ≤ lim sup
n→∞

S(B,n)

n

1

S(B,n)
Hµ




S(B,n)∨

i=1

T−biA




+ lim sup
n→∞

S(C, n)

n

1

S(C, n)
Hµ




S(C,n)∨

i=1

T−ciA




≤ lim sup
n→∞

S(B,n)

n
lim sup

n→∞

1

S(B,n)
Hµ




S(B,n)∨

i=1

T−biA




+ lim sup
n→∞

S(C, n)

n
lim sup

n→∞

1

S(C, n)
Hµ




S(C,n)∨

i=1

T−ciA




≤ S(B)hµ,B(T,A) + S(C)hµ,C(T,A).

Taking the supremum over Z we have

hµ,A(T ) ≤ S(B)hµ,B(T ) + S(C)hµ,C(T )

and the proof ends. �

Remark 1.3. Proposition 1.26 can be generalized to an arbitrary number of
subsequences of A in the following way. Let B1, B2, ...Bk be pairwise disjoint
subsequences of A, Define S(Bm, i) = Card{Bm ∩{(a1, · · · , ak)} and consider

lim sup
n→∞

S(Bm, n)

n
= S(Bm).

Following as in the former proof it can be seen that

hµ,A(T ) ≤
n∑

i=1

S(Bi)hµ,Bi
(T ).

Proposition 1.27. Let T : X → X be a measure preserving transforma-
tion and let A,B and C be increasing sequences of positive integers like
in Proposition 1.26, and such that S(C) = limn→∞ S(C, n)/n = 0. Then
hµ,A(T ) = hµ,B(T ).
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Proof. Since S(C) = 0 it follows

S(B) = lim sup
n→∞

S(B,n)

n
= lim sup

n→∞

n− S(C, n)

n
= lim

n→∞

n− S(C, n)

n
= 1.

Let A ∈ Z. By Theorem 1.8 (d) it follows that

1

S(B,n)
Hµ




S(B,n)∨

i=1

T−biA


 ≤ n

S(B,n)

1

n
Hµ

(
n∨

i=1

T−aiA
)
.

Taking the upper limit when n→ ∞ we have

hµ,B(T,A) ≤ lim sup
n→∞

n

S(B,n)

1

n
Hµ

(
n∨

i=1

T−aiA
)

= lim
n→∞

n

S(B,n)
lim sup

n→∞

1

n
Hµ

(
n∨

i=1

T−aiA
)

= hµ,A(T,A).

Taking the supremum over Z we get hµ,B(T ) ≤ hµ,A(T ).
On the other hand, applying Proposition 1.26 we have that

hµ,A(T ) ≤ S(B)hµ,B(T ) + S(C)hµ,C(T ) = hµ,B(T ),

and this concludes the proof. �

We complete our study of metric sequence of subsequences of A with the
following result.

Proposition 1.28. Let T : X → X be a measure preserving transformation
and let A ∈ I. Let B be a subsequence of A such that lim supn→∞ n/S(B,n) =
s(B). If s(B) <∞ or hµ,A(T ) > 0 then it follows that hµ,B(T ) ≤ s(B)hµ,A(T ).

Proof. Let A ∈ Z. By Theorem 1.8 (h)

1

S(B,n)
Hµ




S(B,n)∨

i=1

T−biA


 ≤ n

S(B,n)

1

n
Hµ

(
n∨

i=1

T−aiA
)
.

Taking the upper limit when n→ ∞

hµ,B(T,A) ≤ lim sup
n→∞

n

S(B,n)

1

n
Hµ

(
n∨

i=1

T−aiA
)

≤ lim sup
n→∞

n

S(B,n)
lim sup

n→∞

1

n
Hµ

(
n∨

i=1

T−aiA
)

= s(B)hµ,A(T,A).

Taking the supremum over the set of finite partitions the proof ends. �
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The values s(B) = ∞ and hµ,A(T ) = 0 give us an indeterminate case. In
fact there exist examples with the sequences A = (i)∞i=0 and B = (2i)∞i=0 sat-
isfying hµ,A(T ) = 0 and hµ,B(T ) = log 2 (see [46]) while for discrete spectrum
transformations, hµ,B(T ) = 0. Therefore there is not a direct relation, only
based on the sequences, between hµ,A(T ) and hµ,B(T ).

Moreover, when hµ,A(T ) = 0 using Proposition 1.28 we characterize a
subset of subsequences of A for which the metric sequence entropy is also zero.
These sequences do not add new information about the dynamical behavior
of the transformation.

Now, we will study the structure of the set Sα = {A : hµ,A(T ) = α} ⊂ I.
Note that when a measure preserving transformation is null S0 = I. The
next result was proved by A. Saleski in [64] for invertible measure preserving
transformations.

Theorem 1.16. Let A = (ai)
∞
i=1 and B = (bi)

∞
i=1 be two increasing sequences

of positive integers such that sup{|ai − bi| : i ∈ N} = k ∈ N. If T is an
invertible measure preserving transformation, then hµ,A(T ) = 0 if and only if
hµ,B(T ) = 0.

We will prove Theorem 1.16 in the case of non-invertible measure preserv-
ing transformations. Previously, we need the following result.

Lemma 1.9. Let A = (ai)
∞
i=1 and B = (bi)

∞
i=1 be two sequences of positive

integers such that for any i ∈ N, either bi = ai or bi = ai + 1. Then for any
measure preserving transformation T it holds that hµ,A(T ) = 0 if and only if
hµ,B(T ) = 0.

Proof. Consider the sequence

A ∧B = (a1, b1, a2, b2, · · · , ai, bi, · · · ).

Hence, by Propositions 1.26 and 1.28 and Theorem 1.9 (e), we have

1

2
hµ,B(T ) ≤ hµ,A∧B(T ) ≤ 1

2
hµ,A(T ) +

1

2
hµ,A+1(T ) = hµ,A(T ).

Then, if hµ,A(T ) = 0, then hµ,B(T ) = 0. Similarly, we obtain that if hµ,B(T ) =
0, then hµ,A(T ) = 0 and the proof is over. �

Let A = (ai)
∞
i=1 and B = (bi)

∞
i=1 be two increasing sequences of positive

integers such that sup{|ai−bi| : i ∈ N} = k ∈ N. Let Aj = {ani
: ani

= bni
+j}

and let Bj = {bni
: bni

= ani
+ j} for −k ≤ j ≤ k. Then we can prove the

following result, whose proof follows by induction using Lemma 1.9

Proposition 1.29. Under the above conditions, hµ,A(T ) = 0 if and only if
hµ,B(T ) = 0.
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On a question of D. Newton

Let T : X → X be an invertible ergodic transformation and let A = (ai)
∞
i=1

be an increasing sequence of positive integers such that

lim sup
n→∞

an

n
= d(A) <∞.

D. Newton in [57] proved that hµ(T ) ≤ hµ,A(T ) ≤ d(A)hµ(T ), and wondered
if the equality

hµ,A(T ) = d(A)hµ(T ) (1.4.1)

was possible. Newton showed that this equality holds for bounded gap se-
quences, i.e. those sequences for which there exists a positive integer k with
the property an+1 − an ≤ k, for all n ∈ N.

We will construct an example satisfying hµ,A(T ) < d(A)hµ(T ). To this
end consider (ni)

∞
i=1 a strictly increasing sequence of positive integers such

that n1 = 1 and with the following property: if

kn = Card{nj ∈ {1, 2, · · · , n} : 1 ≤ j ≤ n},

then limn→∞ kn/n = 0. For example, take the sequence nj = 2j−1. Now
let A = (ai)

∞
i=1 be the sequence of positive integers defined by anj

= 2nj ,
and anj+l = 2nj + l if l < nj+1 − nj . It is easy to see that d(A) = 2. On
the other hand consider UA(n, k), SA(n, k) and K(A) like in Definition 1.14.
Then SA(n, k) ≤ n+ k · kn and then K(A) = 1.

Consider the measure preserving transformation of Example 1.2. It can
be seen in Theorem 1.12 from [73] that σ : {0, 1}Z → {0, 1}Z is ergodic and
hµ(σ) = log 2. Applying Theorem 1.12 it follows

hµ,A(σ) = K(A)hµ(σ) = hµ(σ) = log 2 < log 4 = d(A)hµ(σ),

and then the equality (1.4.1) does not hold in general.

1.5 Topological entropy

The metric entropy measures how complicated is a system from the measure
theoretical point of view. In particular, KS-entropy can not appreciate the
dynamics concentrated in sets of measure zero. This problem is solved by the
topological entropy which appreciates the dynamics concentrated on small
sets. Nevertheless there are some relations between the KS-entropy and topo-
logical entropy. It is well known that the topological entropy of a map f is
the supremum of the metric entropies of f over all probabilistic f -invariant
measures (see [28] and [73]).

Topological entropy was introduced in 1965 by Adler, Konheim and McAn-
drew in [4] in the setting of dynamical systems (X, f) where X is a compact
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metric space and f ∈ C(X) adapting ideas from Ergodic Theory. Later on,
Bowen in [19] introduced the notion of topological entropy for uniformly con-
tinuous maps defined in arbitrary metric spaces. It is necessary to remark
that Bowen’s definition shows a good dynamical interpretation of topological
entropy. When X is a compact metric space, both definitions are equivalent,
and this is the general assumption in the rest of the paper.

Let us introduce this Bowen’s notion. Assume that (X, d) is a metric space.
Then it is easy to prove that for each n ≥ 1 the function

dn(x, y) = max
0≤i≤≤n−1

d(f ix), f i(y))

is a distance which is equivalent to d. A finite set E ⊂ X is called (n, ε) −
separated if for all x, y ∈ E. The set E is called (n, ε)− spanning if for every
x ∈ X there exists y ∈ E such that dn(x, y) ≤ ε.

Now we denote by sn(f, ε) the maximal cardinality of an (n, ε)−separated
set and by tn(f, ε) the minimal cardinality of an (n, ε) − spanning set. Then
we state

s(f) = lim
ε→0

lim sup
n→∞

1

n
log sn(f, ε),

s(f) = lim
ε→0

lim inf
n→∞

1

n
log sn(f, ε),

t(f) = lim
ε→0

lim sup
n→∞

1

n
log tn(f, ε),

t(f) = lim
ε→0

lim inf
n→∞

1

n
log tn(f, ε).

In a not difficult way it can be proved that the former quantities all are
the topological entropy introduce in [4]. The advantage is that throughout
(n, ε) − separated set can be given a clear interpretation of what topological
entropy means.

Given two dynamical systems (X, f) and (Y, g), we say that the two sys-
tems are conjugate if there is a homeomorphism h : X → Y such that

h ◦ f = g ◦ h

Topological entropy is preserved by topological conjugacy, that is, two con-
jugate systems have the same topological entropy which means that the two
systems have the same dynamics. Also was remarked that topological entropy
can be taken as a measure of the chaoticity or complexity of a system. It is
related with the existence of Bernouilli shifts([73]) which play a special role in
Smale’s horseshoe ([68]) and Moser’s theorem([54]). Bernouilli shifts are com-
plicated systems which have been used to prove the dynamical complexity
of other systems. Roughly speaking, a usual technique to show a dynami-
cal system is complicated is to find an invariant closed set which conjugate
to a Bernouilli shift. Additionally, Bernouilli shifts have positive topological
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entropy. For this reason, positive topological entropy has been taken as a
criterion to decide whether a continuous map is chaotic or not.

Topological entropy is in general difficult to compute. But there are several
ways to do using some formulas held by it

h(fn) = nh(f)

When f and g are conjugate, then

h(f) = h(g)

If f, g are continuous maps on the same state space then

h(f ◦ g) = h(g ◦ f)

For piecewise interval maps, let cn the number of pieces of monotonicity of
fn, then for such maps

lim
n→∞

1

n
log cn = h(f)

([53]). One easy application of this formula is computation of the topological
entropy of the tent map (already considered in the Introduction) to see that it
is log 2. The same value is reached in the quadratic map f(x) = 4x(1−x).Let
f be an interval homeomorphism, then

h(f) = 0

In [5] an example is constructed of an interval maps with h(f) = ∞ which
proves that 0 ≤ h(f) ≤ ∞. But for C1-interval maps, the topological entropy
does not reach ∞ (see for example [73]).

Concerning the possibility of computing the topological or KS- entropy
of a given system with a maximum error of ε in a reasonable term, it is
interesting to find out the Milnor’s opinion ([51]) in the sense that the answer
to this question is in general cases negative which means in most cases, the
two entropies are not effectively computable.

Finally, we remark that topological entropy can be introduced in an ax-
iomatic way in the case of continuous interval maps. It has the advantage of
underlying the importance of the different properties that has this quantity,
(see [8]).

One open problem is try to introduce all the entropies in an axiomatic way
in the most general settings trying to point out their properties. Also could
be of interest try to give a topological version of the Tsallis entropy (see [72])
for discrete dynamical systems and establish the connections with the other
entropies.
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Mechanics
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Summary. The fundamental aspects of nonextensive statistical mechanics based
on the Tsallis entropy are surveyed. It is shown how the method of steepest descents,
the counting algorithm and the evaluation of the density of states can appropriately
be generalized for describing the power-law distributions. The generalized Boltz-
mann equation and the associated H-theorem are also considered for the Tsallis-type
functional and the maximum Tsallis entropy distribution.

2.1 Introduction

Boltzmann-Gibbs statistical mechanics characterized by the exponential-type
distributions has been playing a central role for more than a century in explain-
ing/understanding physical properties of systems in thermal equilibria. Such
systems are simple in the sense that they are ergodic and their energies are ex-
tensive, that is, are proportional to the numbers of elements contained. These
two concepts, i.e., ergodicity and extensivity, are in fact essential premises
in Boltzmann-Gibbs statistical mechanics. Another feature is that the long-
time limit (of a macroscopic physical quantity) and the thermodynamic limit
commute in those simple systems. This is trivial since the systems considered
there are in equilibrium states and so the time does not play any role.

During the last quarter of the 20th century, researchers have come to notice
that there exist ample examples of statistical systems in nature, which may
not naively be described by ordinary Boltzmann-Gibbs statistical mechanics.
Among others, of extreme interest and importance today are the so-called
complex systems. They are often subjected to the power-law distributions, in
marked contrast to the exponential distributions, indicating criticality. From
the viewpoint of nonlinear dynamics, these systems are thought of as being
prepared at the edge of chaos and therefore are nonergodic, in general. More
precisely, they are characterized by the vanishing Lyapunov exponents. In
addition, the phase space structure of a complex system at the edge of chaos
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is quite different from that of a fully chaotic system: only a tiny part of it is
occupied by the system. Accordingly, the number of microscopically accessible
states is considered to be very small.

One of the most important points regarding a complex system is that its
macroscopic properties cannot be understood in terms of the accumulation of
the properties of each element contained in the system. This is largely due
to strong correlation between the elements, and accordingly the separability
condition commonly assumed in thermodynamics is violated. Thus, under-
standing complex systems requires a holistic approach.

Violation of separability in thermodynamics is a signal of the relevance of
nonextensivity. Inseparability may result from both correlation and interac-
tion. Consider a long-range interacting system, for example. Its internal energy
does not scale with the number of particles, N . It has been known that such a
system cannot naively be described by Boltzmann-Gibbs statistical mechan-
ics. In this respect, it is of importance to notice that the long-range interacting
systems may reside at the edge of chaos since their largest Lyapunov exponents
tend to vanish in the thermodynamic limit [1, 2]. A crucial point regarding
nonextensive systems such as long-range interacting ones (they are nonexten-
sive since the internal energies do not scale with their numbers of particles)
is that the thermodynamic limit and the long-time limit do not commute, in
general [3]. Of particular interest is the order, in which the long-time limit is
taken after the thermodynamic limit, since in this case nonequilibrium station-
ary states, which survive for long times (much longer than typical microscopic
dynamical time scales), may be observed for a wide class of initial conditions
[4, 5, 6, 7, 8]. Nonextensive statistical mechanics [3, 9, 10, 11, 12] is consid-
ered to offer a unified and consistent statistical description of such intriguing
states of complex systems. Therefore, it is basically unconcerned with strict
equilibrium.

Nonextensive statistical mechanics is a generalization of Boltzmann-Gibbs
theory and is characterized by the power-law distributions often observed
in complex systems. It is customarily formulated by the maximum entropy
principle for a generalized entropy termed the Tsallis entropy

In this article, we present a review of the theoretical aspects of nonexten-
sive statistical mechanics. This theory has widely been studied from various
viewpoints, both theoretically and phenomenologically. Even limited to the
theoretical investigations, there are a number of works done on both macro-
scopic (thermodynamic) and microscopic (statistical mechanical) foundations.
Therefore, here we select only the specific discussions about the statisti-
cal foundations of the physics described by the power-law distributions in
conformity with nonextensive statistical mechanics (in particular, we shall
not discuss applications of the theory). The interested reader can visit the
URL(http://tsallis.cat.cbpf.br/TEMUCO.pdf), from where a comprehensive
list of references can be obtained about both the theoretical discussions and
applications. Here, we shall discuss the bases for the power-law distributions
in nonextensive statistical mechanics. We show how the ordinary maximum



2 Nonextensive Statistical Mechanics 55

entropy principle, the method of steepest descents, the counting algorithm and
the evaluation of the density of states can naturally be generalized for describ-
ing/understanding a class of complex systems characterized by the power-law
distributions. We also see that an appropriate generalization of the Boltzmann
equation can lead to the H-theorem for the Tsallis-type functional and accord-
ingly the maximum Tsallis entropy distribution is obtained as the stationary
solution of the generalized Boltzmann equation.

2.2 Maximum Tsallis entropy principle

This is the most widely discussed approach to nonextensive statistical me-
chanics. A central role is played by the Tsallis entropy [13] defined by

Sq[p] =
1

1 − q

[
W∑

i=1

(pi)
q − 1

]
(2.2.1a)

= −
W∑
i=1

(pi)
q lnq(pi). (2.2.1b)

Here, {pi}i=1,2,...,W is a normalized probability distribution of a system under
consideration with W microscopically accessible states and q is the positive
entropic index. The Boltzmann constant is set equal to unity for the sake of
notational simplicity. The symbol, lnq(x) means the q-logarithmic function
defined by

lnq(x) =
1

1 − q
(x1−q − 1), (2.2.2a)

which is the inverse function of the q-exponential function

eq(x) = [1 + (1 − q)x]
1/(1−q)
+ , (2.2.2b)

with the notation, [a]+ = max {0, a}. It is obvious that these functions tend
respectively to the ordinary logarithmic and exponential functions in the limit
q → 1. Therefore, the Tsallis entropy converges to the familiar Boltzmann-
Gibbs-Shannon entropy, S [p] = −∑W

i=1 pi ln pi, in the limit q → 1.
A stationary state, which is regarded to be a stationary nonequilibrium

state of a nonextensive system under consideration, may be obtained by max-
imizing the Tsallis entropy under appropriate constraints. In analogy with a
microcanonical situation, the constraint is imposed only on the normalization
condition

W∑

i=1

pi = 1. (2.2.3)

Accordingly, the maximum Tsallis entropy principle reads

δp

{
Sq[p] − α

(∑W

i=1
pi − 1

)}
= 0, (2.2.4)
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where α stands for the Lagrange multiplier and δp denotes the variation with
respect to the distribution. The solution to this problem is given by the equal
a priori probability

p̃i =
1

W
(i = 1, 2, . . . ,W ), (2.2.5)

where W depends on the energy, the number of particles and the volume of
the system. Then, the maximum value of the Tsallis entropy is

Smax
q = lnq W. (2.2.6)

Eq. (2.2.6) has an important meaning. In Boltzmann-Gibbs statistical me-
chanics, where ergodicity is supposed to be valid, W is a huge number with
the exponential dependence on the number of particles, N . The correspond-
ing extensive entropy proportional to N is Smax

q with q → 1, i.e. S = ln W ,
which is the Boltzmann relation. However, as mentioned in Sec. 2.1, in the
situation where ergodicity is broken, W is considered to be much smaller and
depends more mildly on N , due to strong correlation between the particles.
Only a tiny portion of the phase space (e.g., a multifractal subset) is occupied
by the system, and the distribution in Eq. (2.2.5) is defined on it. Thus, Eq.
(2.2.5) describes the principle of equal a priori probability on such a portion.
Eq. (2.2.6) suggests that the Tsallis entropy with q �= 1 can be a relevant
extensive entropy in a case when W slowly grows as a power law with respect
to N , for example. Necessity of entropy being extensive is actually a profound
thermodynamic requirement, but this point will not be discussed here.

Next, let us look at a case when the constraints are imposed on the averages
of the physical quantities. This case is in analogy with a (grand)canonical
situation. To simplify the discussion, here we consider only the system energy
as a physical quantity, i.e., the Hamiltonian, H, with its ith value, εi. The
definition of the expectation value in nonextensive statistical mechanics is the
so-called q-expectation value given as follows:

Uq = 〈H〉q =

W∑

i=1

P
(q)
i εi, (2.2.7a)

where P (q)
i is the escort distribution [14]

P
(q)
i =

(pi)
q

∑W
j=1(pj)q

. (2.2.7b)

Necessity of such a generalized expectation value has been clarified in [15]
based on the consistency between the maximum entropy principle and the
minimum cross entropy principle. Introducing the Lagrange multiplier, β, for
the constraint on the q-expectation value of the energy, the corresponding
maximum Tsallis entropy principle now reads [16]
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δp

{
Sq[p] − α

(∑W

i=1
pi − 1

)
− β

(∑W

i=1
P

(q)
i εi − Uq

)}
= 0. (2.2.8)

The normalized solution to this problem is given by the so-called q-exponential
distribution

p̃i =
1

Zq(β)
eq(−β∗(εi − Ũq)), (2.2.9a)

Zq(β) =

W∑

i=1

eq(−β∗(εi − Ũq)), (2.2.9b)

where β∗ = β/cq with cq =
∑W

i=1(p̃i)
q and Ũq is the internal energy in Eq.

(2.2.7a) calculated in terms of p̃i in a self-referential manner. The distribution
in Eq. (2.2.7a) is supposed to describe a nonequilibrium stationary state of the
system of our interest. In the limit q → 1, it becomes the familiar exponential
distribution in Boltzmann-Gibbs statistical mechanics. In the case when 0 <
q < 1, the distribution has a cut-off at εmax

i = Ũq +cq/[(1−q)β]. On the other
hand, if q > 1, it is a power-law distribution of the Zipf-Mandelbrot type. The
q-exponential distributions have been observed in many complex systems and
phenomena (see the URL given in Sec. 1).

It is known that nonextensive statistical mechanics is consistent with the
most of the fundamental principles of thermodynamics. For the first and sec-
ond laws, the proofs can be found in Ref. [17]. The third law also holds since
the Tsallis entropy vanishes for a completely ordered state. The zeroth law,
however, still remains somewhat unclear, though there are some numerical ev-
idences for its validity [18]. This is because the zeroth law defines the concept
of equilibrium, whereas nonextensive statistical mechanics is concerned with
the nonequilibrium stationary situation. The thermodynamic Legendre trans-
form structure can also be established as follows. Let S̃q be the Tsallis entropy
calculated in terms of the stationary distribution in Eq. (2.2.9a). Then, it is
straightforward to obtain

∂S̃q

∂Ũq

= β. (2.2.10)

Therefore, for example, the free energy may be defined in the usual way:
Fq = Ũq − S̃q/β. For further discussions about the thermodynamic properties,
see a recent work [19].

In ordinary Boltzmann-Gibbs statistical mechanics, there is a mathemat-
ical result called the Gibbs theorem, which states that a subsystem of a mi-
crocanonical ensemble with large degrees of freedom is uniquely characterized
by the ordinary canonical distribution of the exponential type. This theorem
has repeatedly been proved in various ways, such as the method of steepest
descents, the counting algorithm and the evaluation of the density of states
(nice discussions about the first two can be found in Ref. [20] and the last one
in Ref. [21]). There, starting from the microcanonical basis with the principle
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of equal a priori probability, the Boltzmann-Gibbs distribution is derived for
the canonical ensemble. In the subsequent three sections, we shall see how
these three main methods can naturally be generalized to the power-law dis-
tribution in nonextensive statistical mechanics [22, 23, 24]. Once again, we
emphasize that the equal a priori probability in Eq. (2.2.5) is defined on a
tiny subset of the phase space (not on the full constant-energy hypersurface),
and the number of states grows slowly (presumably as a power law) with
respect to the number of particles.

2.3 Method of steepest descents

Following the discussions in Refs. [20, 22], let us begin with considering a
classical system, s, and make its M replicas, s1, s2, · · ·, sM . The collection
S = {sα}α=1,2,···,M is called a supersystem. Let Aα be a physical quantity
of interest (such as the energy) of the system sα, which should be bounded
from below, in general. This random variable takes a value a(mα), where mα

labels the allowed configurations of sα. We are interested in a macroscopic
quantity, which may be given by the arithmetic mean of {Aα}α=1,2,···,M over
the supersystem: (1/M)

∑M
α=1Aα. We require that the probability of finding

S in the configurations in which the value of this macroscopic quantity lies
around a certain value ā, that is,

∣∣∣∣∣
1

M

M∑

α=1

a(mα) − ā

∣∣∣∣∣ <
1

M

M∑

α=1

|a(mα) − ā| < ε (2.3.1)

is uniform, in conformity with the principle of equal a priori probability.
In Boltzmann-Gibbs statistical mechanics, ε is supposed to be of

O(1/
√
M), which comes from the ordinary law of large numbers in the central

limit theorem putting a basis for the universality of the Gaussian distributions.
However, here, we are concerned with the power-law distributions. Therefore,
what is relevant is the Lévy-Gnedenko generalized central limit theorem (in
the half space) [25]. Accordingly, ε is assumed to be

ε ∼ O
(
M−(1+δ)

)
δ > 0. (2.3.2)

The equiprobability, p(m1,m2, . . . ,mM ), associated with Eq.(2.3.1) is given
by

p(m1,m2, · · ·,mM ) ∝ θ (ε− |L|) , (2.3.3a)

L ≡ 1

M

M∑

α=1

a(mα) − ā =
1

M

M∑

α=1

[a(mα) − ā], (2.3.3b)

where θ(x) is the Heaviside unit-step function. To obtain canonical ensemble
theory, we select an objective system, say s1, and eliminate the others. Then,
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the probability of finding such an objective system in the configuration m1 =
m is

p̃(m) =
∑

m2,···,mM

p(m,m2, · · ·,mM ). (2.3.4)

Upon proving the Gibbs theorem, it is an ordinary way to employ the (inverse)
Laplace transformation of the step function

θ(x) =
1

2πi

β+i∞∫

β−i∞

dφ

φ
eφx (2.3.5)

in Eq. (2.3.3a), where β is an arbitrary positive constant. Then, the method
of steepest descents is applied to Eq. (2.3.4) in the large-M limit. The
Boltzmann-Gibbs exponential distribution is seen to come from the expo-
nential factor in the Laplace transformation [20].

Here, we are, however, interested in the power-law distribution, and so
we need look for another representation of the step function. A point is that
the step function takes the values of discrete topology, which may remain
unchanged by a continuous deformation of the Laplace transformation. Ac-
cordingly, we examine the q-exponential function with q > 1. An analysis [22]
shows that the equality

θ (x) =
1

2π i

β+i∞∫

β−i∞

dφ

φ
eq(φx) (2.3.6)

still holds if β satisfies
1 − (q − 1)βxmax > 0, (2.3.7)

where xmax is the fixed maximum value of x in its range of interest (but
later it turns out to be possible for it to be arbitrary large in the subsequent
discussion of the steepest-descent approximation).

Let us evaluate the integral

θ (ε− L) =
1

2π i

β+i∞∫

β−i∞

dφ

φ
eq((ε− L)φ). (2.3.8)

Recall that the q-exponential function has the property

eq(a)eq(b) = eq(a+ b+ (1 − q)ab). (2.3.9)

However, taking Eqs. (2.3.1) and (2.3.2) into account, we see that in the large-
M limit we can approximately realize the factorization to obtain

θ(ε− L) ∼= 1

2πi

β+i∞∫

β−i∞

dφ

φ
eq(εφ)

M∏

α=1

eq

(
−φ 1

M
[a(mα) − ā]

)
. (2.3.10a)



60 Sumiyoshi Abe

Using θ (ε− |L|) = θ (ε− L) − θ (−ε− L) and changing the integration vari-
able as φ→Mφ, we have

θ(ε− |L|) ∼= 1

πi

β∗+i∞∫

β∗−i∞

dφ

φ
sinhq(Mφε)

M∏

α=1

eq(−φ[a(mα) − ā]), (2.3.10b)

where sinhq(x) ≡ [eq(x) − eq(−x)] /2 and

β∗ =
β

M
. (2.3.11)

Let us examine Eq. (2.3.7), as promised. It is now rewritten as follows:

1 − (q − 1)β∗M |± ε− L|max > 0. (2.3.12)

The equiprobability distribution (of the rectangular shape) we are considering
has a very narrow support with the width 2ε. |±ε− L|max is of O(M−(1+δ))
with δ > 0, as mentioned in Eqs. (2.3.1) and (2.3.2). Therefore, in the large-M
limit, β∗ can be taken to be an arbitrary positive constant. Now, using the
method of steepest descents in the large-M limit, we can make the following
evaluation:

p̃(m) =
∑

m2,··· ,mM

p(m,m2, · · · ,mM )

∼= 1

W

1

πi

β∗+i∞∫

β∗−i∞

dφ

φ
sinhq(Mφε)eq (−φ[a(m) − ā])

×
∑

m2,··· ,mM

M∏

α=2

eq (−φ[a(mα) − ā])

=
1

W

1

πi

β∗+i∞∫

β∗−i∞

dφ

φ
sinhq(Mφε)

eq(−φ[a(m) − ā])

Zq(φ)
eM ln Zq(φ). (2.3.13)

In the above,
Zq(φ) =

∑

m

eq(−φ[a(m) − ā]), (2.3.14)

and W is the number of possible configurations satisfying Eq. (2.3.1) (i.e.,
essentially the normalization factor)

W =
1

πi

β∗+i∞∫

β∗−i∞

dφ

φ
sinhq(Mφε)eM ln Zq(φ). (2.3.15)

Finally, using the real part β∗ of φ, the steepest-descent condition is given by
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∂Zq

∂β∗
= 0, (2.3.16)

which consequently yields

p̃(m) =
1

Zq
eq(−β∗[a(m) − ā]), (2.3.17)

ā =
∑

m

P̃ (q)(m)a(m), (2.3.18)

simultaneously, where P̃ (q)(m) is the escort distribution

P̃ (q)(m) =
[p̃(m)]q∑
n[p̃(n)]q

, (2.3.19)

the origin of which is in a very mathematical fact that deq(x)/dx = [eq(x)]
q.

Thus, we have seen how the power-law distribution (with the entropic in-
dex q > 1) in nonextensivity statistical mechanics can be derived from the
principle of equal a priori probability by appropriately generalizing the ordi-
nary discussion based on the method of steepest descents, as in Eqs. (2.3.1),
(2.3.2) and (2.3.6). A point to be noticed is that entropy does not appear in
the discussion.

2.4 Counting algorithm

A counting rule is an algorithm, which connects each other the entropy, a
macroscopic quantity and the number of microscopic configurations of a sys-
tem. Boltzmann’s algorithm uses the multinomial counting of the microscopic
configurations. There is, however, no a priori reason to assume such a special
counting rule to be universal. In fact, there may yet exist a class of systems,
which seems to prefer alternate kinds of counting rules.

Consider a supersystem defined in Sec. 2.3. The probability p̃(m) of finding
the system s ≡ s1 in its mth configuration is given by p̃(m) = W (m) /W ,
whereW is the total number of configurations satisfying Eq. (2.3.1) andW (m)
is the number of configurations of the objective system with ā appearing in
Eq. (2.3.1). To calculate this quantity, we rewrite Eq. (2.3.1) in the following
form: ∣∣∣∣∣

1

M
[a(m) − ā] +

1

M

M∑

α=2

a(mα) − M − 1

M
ā

∣∣∣∣∣ < ε. (2.4.1)

The number of configurations YM satisfying

∣∣∣∣∣
1

M

M∑

α=2

a(mα) − M − 1

M
ā

∣∣∣∣∣ < ε (2.4.2)
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is, according to Boltzmann’s algorithm, counted in the large-M limit as follows
[20]:

ln

[
YM

(
M − 1

M
ā

)]1/M

∼= ln [YM (ā)]
1/M → S̃(a). (2.4.3)

Here, S̃(ā) is a certain function of ā to be identified with the entropy. From
Eqs. (2.4.1)-(2.4.3), it follows that

lnW (m) = lnYM

(
M − 1

M
ā− 1

M
[a(m) − ā]

)

∼= lnYM (ā) − [a(m) − ā]
∂S̃

∂ā
. (2.4.4)

Defining β as

β =
∂S̃(ā)

∂ā
(2.4.5)

and setting

Z (β) = lim
M→∞

W

YM (ā)
, (2.4.6)

obtained is the ordinary canonical distribution

p (m) =
1

Z (β)
exp {−β [a (m) − ā]} , (2.4.7)

where Z(β) = Z ′(β) exp(βā) with the ordinary partition function Z(β) =∑
m exp [−βa (m)].
The counting rule in Eq. (2.4.3) is essential in the above derivation. Now,

let us examine another kind of counting rule for another type of configurations,
which is supposed to be realized by nonextensive systems. Specifically, we
examine to replace Eq. (2.4.3) by the following rule [23]:

lnq

[
YM

(
M − 1

M
ā

)]1/M

∼= lnq [YM (ā)]
1/M → S̃q(ā). (2.4.8)

S̃q (ā) in Eq. (2.4.8) is a certain quantity dependent on ā and later will be
shown to be the Tsallis entropy. Then, instead of Eq. (2.4.4), this algorithm
leads to

lnq W (m) = lnq YM

(
M − 1

M
a− 1

M
[a(m) − a]

)

∼= lnq YM (a) − 1

M
[a(m) − a]

∂

∂a
lnq YM (a), (2.4.9)

provided that M may be large but finite. Defining
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∂S̃q(ā)

∂ā
= β (2.4.10)

and using Eq. (2.4.8), we have

β =
1

M
[YM (ā)]

(1−q)/M−1 ∂YM (ā)

∂ā
. (2.4.11)

Therefore, we obtain

∂

∂ā
lnq YM (ā) = βM [YM (ā)]

(1−q)(1−(1/M))
. (2.4.12)

Substituting Eq. (2.4.12) into Eq. (2.4.9), we have

lnq W (m) − lnq YM (ā) = −β [YM (a)]
(1−q)(1−(1/M))

[a(m) − ā]. (2.4.13)

Making use of the property of the q-logarithmic function, that is,

lnq

(
x

y

)
= yq−1[lnq(x) − lnq(y)], (2.4.14)

we obtain
W (m)

YM (ā)
∼= eq (−β∗ [a (m) − ā]) , (2.4.15)

where β∗ = β/cq with

cq ≡ [YM (ā)]
(1−q)/M

= 1 + (1 − q)S̃(ā). (2.4.16)

From Eq. (2.4.15) and the total number of configurations, W =
∑

mW (m),
we also obtain

Zq(β) ≡ W

YM (ā)
∼=
∑

m

eq(−β∗[a(m) − ā]). (2.4.17)

Therefore, we consequently find the probability, p̃ (m) = W (m) /W , to be
the q-exponential distribution in nonextensive statistical mechanics [23]:

p̃(m) =
1

Zq(β
eq(−β∗[a(m) − ā]). (2.4.18)

Actually, we have full agreement with nonextensive statistical mechanics,
which is shown below. If we impose the condition

∂Zq (β)

∂β

∣∣∣∣
ā

= 0, (2.4.19)

then we have [23]

ā =
∑

m

P̃ (q)(m)a(m), (2.4.20)
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where P̃ (q)(m) is the escort distribution, as in Eq. (2.3.19). Now, if the entropy
is given by

S̃q = lnq Zq (β) , (2.4.21)

then Eq. (2.4.19) is seen to be the maximum entropy condition. Eqs. (2.4.21)
and (2.4.8) lead to the identification

Zq(β) ∼= [YM (ā)]1/M . (2.4.22)

Furthermore, from Eq. (2.4.17), W is seen to be

W ∼= [YM (ā)]1/M+1. (2.4.23)

Recall that the identical relation
∑

m

[p̃(m)]q = [Zq(β)]1−q (2.4.24)

holds for the distribution in Eq. (2.4.18) with Eq. (2.4.17). Combining this
equation with Eq. (2.4.22), we also have

[YM (ā)](1−q)/M =
∑

m

p̃(m)]q. (2.4.25)

Therefore, cq in Eq. (2.4.16) is found to be given by

cq =
∑

m

[p̃(m)]q. (2.4.26)

Finally, using Eqs. (2.4.21), (2.4.24) and (2.4.26), we ascertain that both Eqs.
(2.4.16) and (2.4.21) consistently lead to [23]

S̃q =
1

1 − q

{
∑

m

[p̃ (m)]
q − 1

}
, (2.4.27)

which is precisely the Tsallis entropy of the nonequilibrium stationary state,
p̃(m).

2.5 Evaluation of the density of states

In this section, we present a macroscopic description of systems obeying the
power-law distributions by reconsideration of contact with the heat bath,
showing how the structure of nonextensive statistical mechanics can arise.

Let us start our discussion by examining a partition of energy between two
nonextensive systems, I and II, in contact, whose entropies may not satisfy
additivity. These systems have energies EI and EII , and the total energy is
assumed to be fixed as E = EI + EII. If the state densities of I and II are
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denoted by ΩI and ΩII, respectively and that of the total system I+II by Ω,
then we have

Ω(E)∆E =

∫ ∫

E<EI+EII<E+∆E

ΩI(EI)ΩII(EII)dEIdEII

= ∆E

E∫

0

ΩI(EI)ΩII(E − EI) dEI, (2.5.1)

where ∆E is the thickness of the shell of constant energy in phase space of
the total system. We should notice that this ignorance of the interaction part
is a drastic approximation for nonextensive systems and may not be justified,
in general. However, our purpose here is to examine how far we can proceed
along with the ordinary settings for statistical mechanics. The probability of
finding the system I in the range (EI, EI + dEI) is given by

p(EI)dEI =
ΩI(EI)ΩII(E − EI)∆E

Ω (E)∆E
dEI. (2.5.2)

We are interested in the most probable partition of energy in conformity
with the principle of equal a priori probability. It is determined by maximizing
the quantity

ΩI(EI)ΩII(E − EI)∆E dEI. (2.5.3)

In the traditional discussions of identifying the temperature of the system I
and deriving its probability distribution, maximization is performed by taking
the logarithm of the quantity in Eq. (2.5.3) [21]. The assumption underlying
such a treatment is the logarithmic form (additivity) of entropy. Here, we
relax this assumption in order to accommodate the power-law distributions.
In particular, we consider the q-logarithmic evaluation since the q-logarithmic
function is also a monotonically increasing one. In addition to Eq. (2.4.14),
the q-logarithmic function possesses the following property:

lnq(xy) = lnq(x) + lnq(y) + (1 − q) lnq(x) lnq(y). (2.5.4)

Accordingly, the maximization condition can be written as follows [24]:

lnq(ΩI(EI)ΩII(E − EI)) = max . (2.5.5)

Though we do not have to specify the values of q of the composite system at
this stage, we may assume that I and II have their own values of q, in general.
Since the q-exponential and q-logarithmic functions are inverse to each other,
we have

Ωi = eqi
(lnqi

(Ωi)) i = I, II. (2.5.6)

Here and hereafter, ∆E is set equal to unity for the sake of simplicity.
Maximization (i.e., vanishing of the first derivative of Eq. (2.5.5) with respect
to EI) leads to the expression
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0 =
∂

∂EI
lnq(ΩIΩII)

= (ΩIΩII)
1−q

(
1

ΩI

∂ΩI

∂EI
+

1

ΩII

∂ΩII

∂EI

)
. (2.5.7)

From this, we have

1

1 + (1 − qI) lnqI
(ΩI(EI))

∂ lnqI
(ΩI(EI))

∂EI

=
1

1 + (1 − qII) lnqII
(ΩII(EII))

∂ lnqII
(ΩII(EII))

∂EII
, (2.5.8)

where the assumption, EI + EII = E, has been used. Now, if we identify

S̃iqi
= S̃iqi

(Ωi) ≡ lnqi
(Ωi) (2.5.9)

with a generalized entropy of the nonextensive system “i” characterized by
the index qi, (i = I, II) and define a parameter βi by

βi =
∂Siqi

(Ωi)

∂Ei
, (2.5.10)

then we obtain
βI

cIqI

=
βII

cIIqII

≡ β∗, (2.5.11)

where we have introduced the notation

ciqi
≡ 1 + (1 − qi)Siqi

= Ω1−qi

i . (2.5.12)

To check the above state to be indeed the maximum, we need verify that
the second derivative is negative. Carrying out such a calculation using Eqs.
(2.5.7), (2.5.9) and (2.5.12), we have

d2

dE2
I

lnq(ΩI(EI)ΩII(E − EI))

=
(ΩIΩII)

1−q

1 − q

{
d2

dE2
I

ln [1 + (1 − q)SIqI
] +

d2

dE2
I

ln [1 + (1 − q)SIIqII
]

}

= (ΩIΩII)
1−q

{
1

1 − qI

d2

dE2
I

ln [1 + (1 − qI)SIqI
] +

+
1

1 − qII

d2

dE2
I

ln [1 + (1 − qII)SIIqII
]

}
. (2.5.13)

In the above, we have given two equivalent expressions to exhibit the actual
equivalence of seemingly different expressions. As in the case of the ordinary
discussion of Boltzmann-Gibbs theory, we also assume that the second-order
derivative of the generalized entropy in Eq. (2.5.9) is negative. Then, we see
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that each term appearing in Eq. (2.5.13) is negative for all positive values of
qi’s, due to the monotonicity of the ordinary logarithmic function.

Now, let us study the necessary modification of the Gibbs theorem for the
canonical measure. For this purpose, we regard the nonextensive system II as
the heat bath

EI ≪ EII. (2.5.14)

The probability of finding the system I in its kth state of energy EI = εk is
proportional to the number of microscopic states of the system II as follows:

f(εk) ∝ ΩII(E − εk)

ΩII(E)
, (2.5.15a)

which can obviously be rewritten in the form

f(εk) ∝ eqII

(
lnqII

[
ΩII(E − εk)

ΩII(E)

])
. (2.5.15b)

From Eq. (2.4.14), it follows that

f(εk) ∝ eqII

(
1

Ω1−qII

II (E)
[lnqII

(ΩII(E − εk)) − lnqII
(ΩII (E))]

)
. (2.5.15c)

Eq. (2.5.14) with EI = εk allows us to perform the following expansion to the
leading order of εk:

f(εk) ∝ eqII

(
1

Ω1−qII

II (E)

[
lnqII

(ΩII(E))

− εk
∂ lnqII

(ΩII(E))

∂E
+ · · · − lnqII

(ΩII(E))

])
∼= eqII

(−β∗εk), (2.5.16)

where Eqs. (2.5.10) and (2.5.11) have been used. Therefore, we obtain [24]

ΩII(E − εk) ∝ ΩII (E) eqII
(−β∗εk). (2.5.17)

This is the canonical measure for the nonextensive system. Since the heat bath
is assumed to be large, it is appropriate to consider the relative probability
of finding the system I as the ratio of the probability in the state with energy
εk relative to the fixed value of energy εl:

π(εk; εl) =
f(εk)

f(εl)
=
ΩII(E − εk)

ΩII(E − εl)
, (2.5.18)

which is rewritten as

π(εk; εl) = eqII

(
lnqII

(
ΩII(E − εk)

ΩII(E − εl)

))
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= eqII

(
1

Ω1−qII

II (E − εl)
[lnqII

(ΩII(E − εk)) − lnqII
(ΩII(E − εl))]

)
.

(2.5.19)

Expanding the factors inside the q-exponential with respect to εk and εl and
keeping the leading order terms, we find [24]

π(εk; εl) = eqII
(−β∗(εk − εl)). (2.5.20)

We notice that, to derive the relative probability of this form, we had to resort
to the first principle calculation shown in Eq. (2.5.19) and not to simply sub-
stitute the expression given in Eq. (2.5.16) into the first part in Eq. (2.5.18).
This may be regarded as a feature of the nonadditive structure of the Tsallis
entropy.

2.6 Generalized Boltzmann equation

In this section, we discuss a kinetic-theoretical foundation of nonextensive
statistical mechanics developed in [26]. In particular, the celebrated hypoth-
esis of molecular chaos, i.e., Stosszahlansatz, and accordingly the Boltzmann
equation will appropriately be generalized. We shall see that the Tsallis-type
functional satisfies the generalized H-theorem and the stationary solution to
the generalized Boltzmann equation is given by the q-exponential distribution.

The number of particles whose positions and velocities are found in the
intervals r ∼ r+dr and v ∼ v+dv at time t is denoted by f(r,v, t)d3rd3v. The
total number of particles, N , is given by the integral, N =

∫
d3rd3vf(r,v, t).

The distribution, f(r,v, t), satisfies the equation of the form

∂f

∂t
+ v · ∂ f

∂ r
+

F

m
· ∂f
∂v

= C(f), (2.6.1)

where, F and m are a force assumed to be independent of v and the mass of
the particle, respectively, and the right-hand side represents the collision term.
As in the ordinary discussion, we consider only two-body collisions (consistent
with symmetries and conservation laws): (v,v1) → (v′,v′

1) with any v1. Let
us write C (f) as follows:

C(f) =

∫
dωd3v1σVrR(f, f1; f

′, f ′1), (2.6.2)

where Vr = |v − v1| is the magnitude of the relative velocity before collision,
σ the scattering cross section, and ω the solid angle familiar in geometry of
collision kinematics. R(f, f1; f

′, f ′1) describes the correlation difference in the
system before and after collision in terms of the distributions, f(r,v, t), f1 =
f(r,v1, t), f ′ = f(r,v′, t), and f ′1 = f(r,v′

1, t). Nontrivial physics is contained
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in this quantity. In the ordinary Stosszahlansatz, two colliding particles have
no correlation

R(f, f ; f ′, f ′1) = f ′f ′1 − ff1. (2.6.3)

In a nonextensive system, however, the colliding particles are always
strongly correlated, and therefore factorization in the each term in Eq. (2.6.3)
is not realized. Thus, the following specific Stosszahlansatz may be examined
[26]:

Rq(f, f1; f
′, f ′1) = eq[(f

′)q−1 lnq(f
′) + (f ′1)

q−1 lnq(f
′
1)]−

− eq[(f)q−1 lnq(f) + (f1)
q−1 lnq(f1)], (2.6.4)

which describes complex correlation between colliding particles. In the limit
q → 1, this quantity tends back to that in Eq. (2.6.3) with vanishing correla-
tion.

Now, let us consider the Tsallis-type H-function

Hq(r, t) =

∫
d3v[f(r,v, t)]q lnq[f(r,v, t)], (2.6.5)

which becomes the BoltzmannH-function,H(r, t) =
∫
d3vf(r,v, t) ln f(r,v, t),

in the limit q → 1. Taking the time derivative of Hq and using Eqs. (2.6.1)
and (2.6.2) with Rq in Eq. (2.6.4) for R, we have

∂Hq

∂t
=

∫
d3v[1 + q(f)q−1 lnq(f)]

(
C − v · ∂f

∂r
− F

m
· ∂f
∂v

)
. (2.6.6)

Assuming that the distribution vanishes at |v| → ∞, this expression can be
recast in the following form:

∂Hq

∂t
+ ∇ · jq = Gq, (2.6.7)

where the current, jq, and the source, Gq, are given by

jq(r, t) =

∫
d3vv(f)q lnq(f), (2.6.8a)

Gq(r, t) =

∫
dωd3vd3v1σVr[1 + q(f)q−1 lnq(f)]

Rq(f, f1; f
′, f ′1), (2.6.8b)

respectively. To evaluate Gq, we employ a symmetry consideration. First of
all, Gq should be invariant under the interchange, v ↔ v1, as the cross section
is. In addition, d3vd3v1 = d3v′d3v′

1 holds. Therefore, substituting Eq. (2.6.4)
into Eq. (2.6.8b) and utilizing these symmetries, we find Gq to be

Gq(r, t) = −q
4

∫
dωd3vd3v1σVr[lnq∗(f

′) + lnq∗(f
′
1) − lnq∗(f) − lnq∗(f1)]
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{eq[lnq∗(f
′) + lnq∗(f

′
1)] − eq[lnq∗(f) + lnq∗(f1)]} , (2.6.9)

where we have set (x)q−1 lnq(x) = lnq∗(x) with q∗ = 2 − q. The fac-
tors, lnq∗(f

′) + lnq∗(f
′
1) − lnq∗(f) − lnq∗(f1) and eq [lnq∗(f

′) + lnq∗(f
′
1)] −

eq [lnq∗(f) + lnq∗(f1)], have the same sign since the q-exponential function
is monotonic. So, Gq in Eq. (2.6.9) is never positive. Thus we have

∂Hq

∂t
+ ∇ · jq = Gq ≤ 0, (2.6.10)

which generalizes the ordinary H-theorem.
Finally, let us look at the stationary state. In this case, Gq = 0, which

implies that
lnq∗(f

′) + lnq∗(f
′
1) = lnq∗(f) + lnq∗(f1), (2.6.11)

which can be regarded as a generalization of the detailed balance condition.
Eq. (2.6.11) describes the additive invariance of the q∗-logarithmic quanti-
ties. Kinematically, the additive invariants are the total mass, energy and
momentum. This fact allows us to write that lnq∗(f) = a0 + a1 · v + a2v

2, or,
equivalently, lnq∗(f) = b0−b1(v−v0)

2, where a0, a2, b0, and b1 are constants,
and a1 and v0 are constant vectors. Consequently, we obtain the generalized
Maxwellian distribution

f = Aeq∗[−β∗(v − v0)
2], (2.6.12)

where A = [1 + (1 − q∗)b0]1/(1−q∗)

+ and β∗ = b1/[1 + (1 − q∗)b1].
Thus, we see that the stationary solution to the generalized Boltzmann

equation is given by the distribution in nonextensive statistical mechanics in
the homogeneous limit.

2.7 Concluding remarks

In this particle, we have surveyed the foundations of nonextensive statisti-
cal mechanics. In particular, we have reviewed both statistical and kinetic
ones, which reveal remarkable parallelisms between Boltzmann-Gibbs statis-
tical mechanics and nonextensive statistical mechanics. However, one should
always notice that the latter is essentially concerned with complex systems
with broken ergodicity (e.g., at the edge of chaos of nonlinear dynamical sys-
tems) and, thus, with nontrivial phase space structures (e.g., multifractals),
but in their long-persisting nonequilibrium stationary states.

It is our opinion that Tsallis’ form of a generalized entropy and associ-
ated nonextensive theory may perhaps be one among many for which we were
able to provide generalizations of the foundations and yet preserving all the
tenets of statistical mechanics. It seems that Nature has diverse complexities,
which certainly need modifications of Boltzmann-Gibbs statistical mechanics
for simple systems. Therefore, an important problem to be addressed is to
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classify the complexities and identify universality classes. We confidently be-
lieve that further investigations along this line will significantly extend the
horizon of statistical mechanics.
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Summary. Here we give an account of recent understanding on the dynamics at
critical attractors of simple one-dimensional nonlinear maps. This dynamics is rele-
vant to a discussion about the applicability of the Tsallis generalization of canonical
statistical mechanics. The critical attractors considered are those at the familiar
pitchfork and tangent bifurcations and the period-doubling onset of chaos in uni-
modal maps of general nonlinearity ζ > 1. The nonexponential sensitivity to initial
conditions ξt and the related spectra of q-generalized Lyapunov coefficients λq have
been determined with the use of known properties of the fixed-point maps under
Feigenbaum’s renormalization group (RG) transformation. We have found an equal-
ity between the λq and the corresponding rates of entropy production Kq holds at
the critical attractors provided the rate Kq is obtained from the q-entropy Sq. We
identify the Mori singularities in the Lyapunov coarse-grained function λ(q) at the
onset of chaos with the appearance of special values for the entropic index q. The
physical area of the q-statistics is further probed by considering the dynamics of
critical fluctuations and of glass formation in thermal systems. In both cases a close
connection is made with critical attractors in unimodal maps.

3.1 Outline

The study of the singular dynamical properties at critical attractors is impor-
tant because it provides insights into the limits of validity of the canonical
or Boltzmann-Gibbs (BG) statistical mechanics and helps inspect the form
of its possible generalization when phase space mixing and ergodicity break
down. At one-dimensional critical attractors of nonlinear maps the ordinary
Lyapunov coefficient λ1 vanishes and the sensitivity to initial conditions ξt
for large iteration time t ceases to obey exponential behavior, exhibiting in-
stead power-law or faster than exponential behavior. As it is generally under-
stood, the standard exponential divergence of trajectories in chaotic attractors
provides a mechanism to justify the assumption of irreversibility in the BG
statistical mechanics [1]. In contrast, the onset of chaos in (necessarily dissi-
pative) unimodal maps, the prototypical critical attractor, imprints memory

A. Robledo: Critical Attractors and the Physical Realm of q-statistics, StudFuzz 206, 72–113
(2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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preserving, nonmixing, phase space properties to its trajectories, and we con-
sider them here with a view to assess a recent generalization of the usual BG
statistics.

This generalization, that we refer to as q-statistics, is the statistical-
mechanical framework based on the Tsallis entropy Sq [2], [3]. We review
the rigorous evidence that has accumulated [4]-[9] for its suitability in de-
scribing the dynamical properties of critical attractors in unimodal maps of
general nonlinearity ζ > 1, such as the pitchfork and tangent bifurcations and
the onset of chaos associated to these. We also describe connections between
the properties of these attractors and those of systems with many degrees of
freedom at extremal or transitional states. Two specific suggestions have been
recently developed. In one case the dynamics at the tangent bifurcation has
been shown to be related to that of intermittent clusters at thermal critical
states [10]. In the second case the dynamics at the noise-perturbed period-
doubling onset of chaos has been demonstrated to be closely analogous to the
glassy dynamics observed in supercooled molecular liquids [11].

At critical attractors qualitative changes in the behavior of a dynamical
system take place with variation in a control parameter [12] - [14]. Perhaps
the most interesting types of critical attractors are strange nonchaotic attrac-
tors (SNAs) [15]. These are geometrically involved (multifractal) sets with
trajectories on them that typically exhibit a nonexponential ξt. Important
examples are the onset of chaos via period doubling, intermittence and quasi-
periodicity, the three universal routes to chaos exhibited by the prototypical
logistic and circle maps [12] - [14]. Other critical attractors occur at transi-
tions between periodic orbits such as the so-called pitchfork bifurcations in
the period-doubling cascades [12] - [14]. On the other hand, crises, qualitative
changes in chaotic attractors that suddenly expand or disappear [16], are not
critical attractors as these display positive (leading) Lyapunov coefficients and
do not appear to entail absence of phase-space mixing properties.

The focal point of the q-statistical description for the dynamics of critical
attractors is a sensitivity to initial conditions ξt associated to the q-exponential
functional form, i.e. the ‘q-deformed’ exponential function expq(x) ≡ [1− (q−
1)x]−1/(q−1). From such ξt one or several spectra of q-generalized Lyapunov
coefficients λq can be determined. The λq are dependent on the initial position
x0 and each spectrum can be examined by varying this position. The λq satisfy
a q-generalized identity λq = Kq of the Pesin type [14] where Kq is an entropy
production rate based on Sq, defined in terms of the q-logarithmic function
lnq y ≡ (y1−q − 1)/(1 − q), the inverse of expq(x).

The allowed values of the entropic index q are obtained from the universal-
ity class parameters to which the attractor belongs. For the simpler pitchfork
and tangent bifurcations there is a single well-defined value for the index q for
each type of attractor [4], [5]. For SNAs the situation is more complicated and
there appear to be a multiplicity of indexes q but with precise values given by
the attractor scaling functions. They appear in pairs and are related to the
occurrence of couples of conjugate dynamical ’q-phase’ transitions [9], [17],
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[18] and these are identified as the source of the special values for the entropic
index q. The q-phase transitions connect qualitatively different regions of the
attractor. For the case of the Feigenbaum attractor at the period-doubling
onset of chaos an infinite family of such transitions take place but of rapidly
decreasing strength.

In all cases any small change in the control parameter µ of the map leads
to a crossover from q-statistics to BG statistics. An infinitesimal shift in the
value of this parameter makes the attractor periodic or chaotic, its sensitivity
becomes a decreasing or increasing exponential, and the value of the entropic
indexes q all become unity. As it is known, for chaotic attractors the ordinary
identity λ1 = K1 > 0 holds, where the rate K1 is based on the canonical BG
entropy expression S1. However, for small shifts of µ and sufficiently short
times t the dynamics is still given by the q-statistical description. Part I of
this review presents details of these developments.

The manifestation of q-statistics in systems with many degrees of freedom
can be explored via connections that have been established between the dy-
namics of critical attractors and the dynamics taking place in, for example,
thermal systems under conditions when mixing and ergodic properties are not
easily fulfilled. A remarkable relationship between intermittency and critical
phenomena has been recently suggested [19] [20]. This development brings to-
gether fields of research in nonlinear dynamics and condensed matter physics,
specifically, the dynamics in the proximity of a critical attractor appears asso-
ciated to the dynamics of fluctuations of an equilibrium state with well-known
scaling properties [21]. We examine this connection in some detail with spe-
cial attention to several unorthodox properties, such as, the extensivity of the
Tsallis entropy Sq of fractal clusters of order parameter, and the anomalous -
faster than exponential - sensitivity to initial conditions, together with aging
scaling features, in their time evolution.

As a second example we describe our finding [11] that the dynamics at the
noise-perturbed onset of chaos in unimodal maps is analogous to that observed
in supercooled liquids close to vitrification. We demonstrate that four major
features of glassy dynamics in structural glass formers are displayed by orbits
with vanishing Lyapunov coefficient. These are: two-step relaxation, a rela-
tionship between relaxation time and configurational entropy, aging scaling
properties, and evolution from diffusive to subdiffusive behavior and finally
arrest. The known properties in control-parameter space of the noise-induced
bifurcation gap in the period-doubling cascade [12] play a central role in de-
termining the characteristics of dynamical relaxation at the chaos threshold.
These two applications of the dynamical properties of critical attractors are
presented in Part II.
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3.2 Part I. Anomalous dynamics at onset of chaos and
other critical attractors in unimodal maps

3.2.1 Two routes to chaos in unimodal maps

A unimodal map (a one-dimensional map with one extremum) contains infi-
nite families of critical attractors at which the ergodic and mixing properties
breakdown [22]. These are the tangent (or saddle-node) bifurcations that give
rise to windows of periodic trajectories within chaotic bands and the accu-
mulation point(s) of the pitchfork bifurcations, the so-called period-doubling
onset of chaos [12] - [14] at which these periodic windows come to an end.
There are other attractors for which the Lyapunov coefficient λ1 diverges to
minus infinity, where there is faster than exponential convergence of orbits.
These are the superstable attractors located between successive pitchfork bi-
furcations. They are present at the initial period doubling cascade and at all
the other cascades within periodic windows, whose accumulation points are
replicas of the Feigenbaum attractor. See Figs. 3.1 and 3.2.
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Fig. 3.1. Logistic map attractor and its Lyapunov coefficient as function of control
parameter µ.
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Fig. 3.2. Enlargement of the boxes shown in Fig.3.1 within the window of period-
icity three.

The properties of the critical attractors are universal in the renormalization
group (RG) sense, that is, all maps f(x) that lead to the same fixed-point map
f∗(x) under a repeated functional composition and rescaling transformation
share the same scaling properties. For unimodal maps this transformation
takes the form Rf(x) ≡ αf(f(x/α)), where α assumes a fixed value (positive
or negative real number) for each universality class and f∗(x) is given by

f∗(x) ≡ lim
n→∞

R(n)f(x) = lim
n→∞

αnf (2n)(x/αn), (3.2.1)

and satisfies
f∗(x) = αf∗(f∗(x/α)). (3.2.2)

The universality of the static or geometrical properties of critical attractors
is understood since long ago [12] - [14]. This is represented, for example,
by the generalized dimensions Dq or the spectrum f(α̃) that characterize
the multifractal attractor at the period-doubling onset of chaos [13], [14].
The dynamical properties of critical attractors also display universality, as
we see below, the entropic index q in the sensitivity ξt and the Lyapunov
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spectra λq is given in terms of the universal constant α. For the cases of the
pitchfork and tangent bifurcations the results are relatively straightforward
but for the period-doubling accumulation point the situation is more complex.
In the latter case an infinite set of universal constants, of which α is most
prominent, is required. These constants are associated to the discontinuities
in the trajectory scaling function σ that measures the convergence of positions
in the orbits of period 2n as n→ ∞ to the Feigenbaum attractor [12].

The sensitivity to initial conditions ξt is defined as

ξt(x0) ≡ lim
∆x0→0

∆xt

∆x0
(3.2.3)

where ∆x0 is the initial separation of two orbits and ∆xt that at time t. As
we shall see for critical attractors ξt has the form [23]

ξt(x0) = expq[λq(x0) t] ≡ [1 − (q − 1)λq(x0) t]
−1/(q−1), (3.2.4)

that yields the standard exponential ξt with λ1 when q → 1. In Eq. (3.2.4) q is
the entropic index and λq is the q-generalized Lyapunov coefficient; expq(x) ≡
[1− (q− 1)x]−1/(q−1) is the q-exponential function. Also at critical attractors
[23], [7], [9] the identityK1 = λ1 [14] (where the rate of entropy productionK1

is given by K1t = S1(t)−S1(0)and S1 = −∑i pi ln pi with pi the trajectories’
distribution) generalizes to

Kq = λq, (3.2.5)

where the rate of q-entropy production Kq is defined via

Kqt = Sq(t) − Sq(0), (3.2.6)

and where

Sq ≡
∑

i

pi lnq

(
1

pi

)
=

1 −∑W
i pq

i

q − 1
(3.2.7)

is the Tsallis entropy. (Recall that lnq y ≡ (y1−q − 1)/(1 − q) is the inverse of
expq(y)).

We take as a starting point and framework for the study of fixed-point map
properties the prototypical logistic map, or its generalization to non-linearity
of order ζ > 1,

fµ(x) = 1 − µ |x|ζ , −1 ≤ x ≤ 1, 0 ≤ µ ≤ 2, (3.2.8)

where x is the phase space variable, µ the control parameter, and ζ = 2
corresponds to the familiar logistic map. Our results relate to the anomalous
ξt and its associated spectrum λq for the above-mentioned critical attractors
that are involved in the two routes to chaos exhibited by unimodal maps, the
intermittency and the period doubling routes. For the Feigenbaum attractor
we describe the relationship of ξt and λq with Mori’s q-phase transitions [17],
one of which was originally observed numerically [17], [18].
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Fig. 3.3. Schematic form of f (n) at the tangent bifurcation(left) and pitchfork
bifurcation (right).

3.2.2 Tangent and pitchfork bifurcations

The exact geometric or static solution of the RG Eq. (3.2.2) for the tangent
bifurcations, known since long ago [12] - [14], has been shown to describe as
well the dynamics of iterates at this attractor [4], [5]. Also, a straightforward
extension of this approach was shown to apply to the pitchfork bifurcations
[4], [5]. In Fig. 3.3 we show a sketch of the neighborhoods of maps at these bi-
furcations. We recall that the period-doubling and intermittency transitions
are based on the pitchfork and the tangent bifurcations, respectively, and
that at these critical attractors the ordinary Lyapunov coefficient λ1 = 0. The
sensitivity ξt can be determined analytically and its relation with the rate of
entropy production examined [4]. The fixed-point expressions have the specific
form that corresponds to the temporal evolution suggested by the q-statistics.
Refs. [4], [5] contain the derivation of the q-Lyapunov coefficients λq and the
description of the different possible types of sensitivity ξt. The pitchfork and
the left-hand side of the tangent bifurcations display weak insensitivity to ini-
tial conditions, while the right-hand side of the tangent bifurcations presents
a ‘super-strong’ (faster than exponential) sensitivity to initial conditions [5].

For the transition to periodicity of order n in the ζ-logistic map the com-
position f (n)

µ is first considered. In the neighborhood of one of the n points
tangent to the line with unit slope one obtains

f (n)(x) = x+ u |x|z + o(|x|z), (3.2.9)

where u is the expansion coefficient. At the tangent bifurcations one has z = 2
and u > 0, whereas for the pitchfork bifurcations one has instead z = 3,
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because d2f
(2k)
µ /dx2 = 0 at these transitions, and u < 0 is now the coefficient

associated to d3f
(2k)
µ /dx3 < 0.

The RG fixed-point map x′ = f∗(x) associated to maps of the form in Eq.
(3.2.9) was found [24] to be

x′ = x expz(ux
z−1) = x[1 − (z − 1)uxz−1]−1/(z−1), (3.2.10)

as it satisfies f∗(f∗(x)) = α−1f∗(αx) with α = 21/(z−1) and has a power-series
expansion in x that coincides with Eq. (3.2.9) in the two lowest-order terms.
(Above xz−1 ≡ |x|z−1

sgn(x)). The long time dynamics is readily derived from
the static solution Eq. (3.2.10), one obtains

ξt(x0) = [1 − (z − 1)axz−1
0 t]−z/(z−1), u = at, (3.2.11)

and so, q = 2 − z−1 and λq(x0) = zaxz−1
0 [4] [5]. When q > 1 the left-

hand side (x < 0) of the tangent bifurcation map, Eq. (3.2.9), exhibits a
weak insensitivity to initial conditions, i.e. power-law convergence of orbits.
However at the right-hand side (x > 0) of the bifurcation the argument of the
q-exponential becomes positive and this results in a ‘super-strong’ sensitivity
to initial conditions, i.e. a sensitivity that grows faster than exponential [5].
For the tangent bifurcation one has z = 2 in q = 2 − z−1 and so q = 3/2.
For the pitchfork bifurcation one has z = 3 in q = 2 − z−1 and one obtains
q = 5/3. Notably, these specific results for the index q are valid for all ζ > 1
and therefore define the existence of only two universality classes for unimodal
maps, one for the tangent and the other one for the pitchfork bifurcations [5].
See Figs. 3.4 and 3.5.

There is an interesting scaling property displayed by ξt in Eq. (3.2.11)
similar to the scaling property known as aging in systems close to glass forma-
tion. This property is observed in two-time functions (e.g. time correlations)
for which there is no time translation invariance but scaling is observed in
terms of a time ratio variable t/tw where tw is a ’waiting time’ assigned to
the time interval for preparation or hold of the system before time evolution
is observed through time t. This property can be seen immediately in ξt if one
assigns a waiting time tw to the initial position x0 as tw = x1−z

0 . Eq. (3.2.11)
reads now

ξt,tw
= [1 − (z − 1)at/tw]−z/(z−1). (3.2.12)

The sensitivity for this critical attractor is dependent on the initial position
x0 or, equivalently, on its waiting time tw, the closer x0 is to the point of
tangency the longer tw but the sensitivity of all trajectories fall on the same
q-exponential curve when plotted against t/tw. Aging has also been observed
for the properties of the map in Eq.(9) but in a different context [27].

Notice that our treatment of the tangent bifurcation differs from other
studies of intermittency transitions [28] in that there is no feed back mecha-
nism of iterates into the origin of f (n)(x) or of its associated fixed-point map
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0 | ln3/2(ξt) for the iterates of f (3) and x0 ∼ −10−4. The full line is a linear re-
gression, which slope, −31.15, should be compared with the exact expression for the
generalized Lyapunov exponent, that gives λq = 31.216 · · · . Inset: |x−1

0 | ln2(xt/x0),
for t = 3m, (m = 1, 2, ...) and x0 ∼ −10−6. A linear regression gives in this case a
slope of −5.16, to be compared with the exact result u/3 = 5.203 · · · . Below is right
side of the first tangent bifurcation for ζ = 2. Circles represent |x−1

0 | ln3/2(ξt) for
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slope, −2.55, should be compared with the analytical expression for the general-
ized Lyapunov exponent, that gives λq = −2.547 · · · . Inset: x−2
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t = 2m, (m = 1, 2, · · · ) and x0 ∼ +10−3. A linear regression gives in this case
a slope of −0.44, to be compared with the analytical result u/2 = −0.424 · · · .

f∗(x). Therefore, impeded or incomplete mixing in phase space (a small in-
terval neighborhood around x = 0) arises from the special ’tangency’ shape
of the map at the pitchfork and tangent transitions that produces monotonic
trajectories. This has the effect of confining or expelling trajectories caus-
ing anomalous phase-space sampling, in contrast to the thorough coverage in
generic states with λ1 > 0. By construction the dynamics at the intermittency
transitions, describe a purely q-exponential regime.

3.2.3 Period-doubling accumulation point

The dynamics at the Feigenbaum attractor has been analyzed recently [6], [7].
For the ζ-logistic map this attractor is located at µc, the accumulation point
of the control parameter values for the pitchfork bifurcations µn, n = 1, 2, ...,
that is also that for the superstable orbits µn, n = 1, 2, .... The same attractor
reappears in multiples together with the precursor cascade of period-doubling
bifurcations in the infinite number of windows of periodic trajectories that
interpose the chaotic attractors beyond µc. The number of cascades within
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each window is equal to the period of the orbit that emerges at the tangent
bifurcation at its opening. See Fig. 1. By taking as initial condition x0 = 0 at
µc, or equivalently x1 = 1, it is found that the resulting orbit, a superstable
orbit of period 2∞, consists of trajectories made of intertwined power laws
that asymptotically reproduce the entire period-doubling cascade that occurs
for µ < µc. This orbit captures the properties of the superstable orbits that
precedes it. Here again the Lyapunov coefficient λ1 vanishes (although the
attractor is also the limit of a sequence of supercycles with λ1 → −∞) and

in its place there appears a spectrum of q-Lyapunov coefficients λ(k)
q . This

spectrum was originally studied in Refs. [29], [17] and our interest has been to
examine its properties in relation with the expressions of the Tsallis statistics.
We found that the sensitivity to initial conditions has precisely the form of
a set of interlaced q-exponentials, of which we determine the q-indexes and
the associated λ(k)

q . As mentioned, the appearance of a specific value for the
q index (and actually also that for its conjugate value Q = 2 − q) turns out
to be due to the occurrence of Mori’s ‘q-phase transitions’ [17] between ‘local
attractor structures’ at µc. Furthermore, it has also been shown [7], [9] that
the dynamical and entropic properties at µc are naturally linked through the
q-exponential and q-logarithmic expressions, respectively, for the sensitivity to
initial conditions ξt and for the entropy Sq in the rate of entropy production

K
(k)
q . We have corroborated analytically the equality λ(k)

q = K
(k)
q . Our results

support the validity of the q-generalized Pesin identity for critical attractors
in low-dimensional maps.

More specifically, the absolute values for the positions xτ of the trajec-
tory with xt=0 = 0 at time-shifted τ = t + 1 have a structure consisting of
subsequences with a common power-law decay of the form τ−1/1−q with

q = 1 − ln 2

(ζ − 1) lnα(ζ)
, (3.2.13)

where α(ζ) is the Feigenbaum universal constant for nonlinearity ζ > 1 that
measures the period-doubling amplification of iterate positions [6]. That is,
the Feigenbaum attractor can be decomposed into position subsequences gen-
erated by the time subsequences τ = (2k + 1)2n, each obtained by pro-
ceeding through n = 0, 1, 2, ... for a fixed value of k = 0, 1, 2, .... See Fig.
3.6. The k = 0 subsequence can be written as xt = exp2−q(−λ(0)

q t) with

λ
(0)
q = (ζ − 1) lnα(ζ)/ ln 2. These properties follow from the use of x0 = 0 in

the scaling relation [6]

xτ ≡
∣∣∣g

(τ)

(x0)
∣∣∣ = τ−1/1−q

∣∣∣g(τ1/1−qx0)
∣∣∣ , (3.2.14)

where g(x) is the Feigenbaum fixed-point map [12]-[14].
The sensitivity associated to trajectories with other starting points x0 �= 0

within the multifractal attractor (but located within either its most sparse or
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Fig. 3.6. Absolute values of positions in logarithmic scales of the first 1000 itera-
tions τ for a trajectory of the logistic map at the onset of chaos µc(0) with initial
condition x0 = 0. The numbers correspond to iteration times. The power-law decay
of the time subsequences described in the text can be clearly appreciated.

most crowded regions) can be determined similarly with the use of the time
subsequences τ = (2k + 1)2n. One obtains

λ(k)
q =

(ζ − 1) lnα(ζ)

(2k + 1) ln 2
> 0, k = 0, 1, 2, ..., (3.2.15)

for the positive branch of the Lyapunov spectrum, when the trajectories start
at the most crowded (xτ=0 = 1) and finish at the most sparse (xτ=2n = 0)
region of the attractor. By inverting the situation we obtain

λ
(k)
Q = −2(ζ − 1) lnα(ζ)

(2k + 1) ln 2
< 0, k = 0, 1, 2, ..., (3.2.16)

for the negative branch of λ(k)
q , i.e. starting at the most sparse (xτ=0 = 0)

and finishing at the most crowded (xτ=2n+1 = 1) region of the attractor.
Notice that Q = 2 − q as expQ(y) = 1/ expq(−y). For the case ζ = 2 see
Refs. [6] and [7], for general ζ > 1 see Refs. [8] and [9] where also different
and more direct derivations are presented. So, when considering these two
dominant families of orbits all the q-Lyapunov coefficients appear associated
to only two specific values of the Tsallis index, q and 2−q with q given by Eq.
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Fig. 3.7. The q-logarithm of sensitivity to initial conditions ξt vs t, with q =
1 − ln 2/ ln α = 0.2445..., and initial conditions x0 = 0 and x0 = δ ≃ 10−8 (circles).
The full line is the linear regression y(t). As required, the numerical results reproduce
a straight line with a slope very close to λq = ln α/ ln 2 = 1.3236... .

(3.2.13). In Fig. 3.7 we show the q-logarithm of ξt(x0 = 1) vs t for the k = 0
time subsequence τ = 2n when ζ = 2 and q = 1− ln 2/ lnα(2) = 0.2445... and

λ
(0)
q = lnα(2)/ ln 2 = 1.3236...

Ensembles of trajectories with starting points close to xτ=0 = 1 expand in
such a way that a uniform distribution of initial conditions remains uniform
for all later times t ≤ T where T marks the crossover to an asymptotic regime.
As a consequence of this the identity of the rate of entropy production K(k)

q

with λ(k)
q was established [7]. See Figs. 3.8 and 3.9. A similar reasoning can

be generalized to other starting positions [9].

Notably, the appearance of a specific value for the q index (and actually
also that for its conjugate value Q = 2 − q) works out [9] to be due to the
occurrence of Mori’s ‘q-phase transitions’ [17] between ’local attractor struc-
tures’ at µc. To see this in more detail we observe that the sensitivity ξt(x0)
can be obtained [9] from
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ξt(m) ≃
∣∣∣∣
σn(m− 1)

σn(m)

∣∣∣∣
n

, t = 2n − 1, n (3.2.17)

where σn(m) = dn+1,m/dn,m and where dn,m are the diameters that measure
adjacent position distances that form the period-doubling cascade sequence
[12]. Above, the choices ∆x0 = dn,m and ∆xt = dn,m+t, t = 2n −1, have been
made for the initial and the final separation of the trajectories, respectively.
In the large n limit σn(m) develops discontinuities at each rational of the form
m/2n+1 [12], and according to the expression above for ξt(m) the sensitivity
is determined by these discontinuities. For each discontinuity of σn(m) the
sensitivity can be written in the forms [9]

ξt = expq[λqt], λq > 0 (3.2.18)

and
ξt = exp2−q[λ2−qt], λ2−q < 0, (3.2.19)

where q and the spectra λq and λ2−q depend on the parameters that describe
the discontinuity [9]. This result reflects the multi-region nature of the multi-
fractal attractor and the memory retention of these regions in the dynamics.
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K

(k)
q = λ

(k)
q at µ∞. On the vertical axis we plot the q-logarithm of ξtk

(equal to
λ

(k)
q t) and in the horizontal axis Sq (equal to K

(k)
q t). In both cases q = 1−ln 2/ ln α =

0.2445.... The dashed line is a linear fit. In the inset the full lines are from analytical
results.

The pair of q-exponentials correspond to a departing position in one region
and arrival at a different region and vice versa, the trajectories expand in one
sense and contract in the other. The largest discontinuity of σn(m) at m = 0
is associated to trajectories that start and finish at the most crowded (x ≃ 1)
and the most sparse (x ≃ 0) regions of the attractor. In this case one obtains
again Eq. (3.2.15), the positive branch of the Lyapunov spectrum, when the
trajectories start at x ≃ 1 and finish at x ≃ 0. By inverting the situation
one obtains Eq. (3.2.16), the negative branch of the Lyapunov spectrum. So,
when considering these two dominant families of orbits all the q-Lyapunov
coefficients appear associated to only two specific values of the Tsallis index,
q and Q = 2 − q with q given by Eq. (3.2.13).

As a function of the running variable −∞ < q < ∞ the q-Lyapunov
coefficients become a function λ(q) with two steps located at q = q = 1 −
ln 2/(ζ−1) lnα(ζ) and q = Q = 2−q. See Fig. 3.10. In this manner contact can
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Fig. 3.10. a) The Lyapunov coefficient function λ(q) at the chaos threshold at µc

and b) the spectrum ψ(λ). See text for description.

be established with the formalism developed by Mori and coworkers [17] and
the q-phase transition obtained in Ref. [18]. The step function for λ(q) can be
integrated to obtain the spectrum of local coefficients φ(q) (λ(q) ≡ dφ/dλ(q))
and its Legendre transform ψ(λ) (≡ φ− (1 − q)λ), the dynamic counterparts
of the Renyi dimensions D(q) and the spectrum of local dimensions f(α̃) that
characterize the geometry of the attractor. The result for ψ(λ) is

ψ(λ) =

{
(1 −Q)λ, λ

(0)
Q < λ < 0,

(1 − q)λ, 0 < λ < λ
(0)
q .

(3.2.20)

As with ordinary thermal 1st order phase transitions, a q-phase transition
is indicated by a section of linear slope 1 − q in the spectrum (free energy)
ψ(λ), a discontinuity at q in the Lyapunov function (order parameter) λ(q),
and a divergence at q in the variance (susceptibility) v(q). For the onset of
chaos at µc(ζ = 2) a q-phase transition was determined numerically [17], [18].
According to ψ(λ) above we obtain a conjugate pair of q-phase transitions
that correspond to trajectories linking two regions of the attractor, the most
crowded and most sparse. See Fig. 3.10. Details appear in Ref. [9].

3.2.4 Discussion of Part I

The search and evaluation of the applicability of the q-statistics involves an
examination of the domain of validity of the BG canonical formalism. The
suggested physical circumstances for which BG statistics fails to be applica-
ble are thought to be associated to situations that lack the full degree of
chaotic irregular dynamics that probes phase space thoroughly, a requisite for
true equilibrium. In nonlinear one-dimensional maps such anomalous circum-
stances are signaled by the vanishing of the Lyapunov coefficient and exhibit
non-ergodicity or unusual power-law mixing. At the period-doubling onset
of chaos the (long time) trajectories are confined to a multifractal subset of
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phase space with fractal dimension df < 1, and the trajectories are nonmix-
ing. The dynamics at the intermittency transitions and at the Feigenbaum
attractor describe a purely q-statistical regime, since the maps studied here
do not consider access of trajectories to an adjacent or neighboring chaotic
region, as in the setting of Refs. [28] or as in trajectories in conservative maps
with weakly developed chaotic regions [12] - [14]. Hence there is no reappear-
ance of trajectories from chaotic regions that would cause the relaxation from
the q-statistical regime with vanishing ordinary Lyapunov exponent to a BG
regime with a positive one at some crossover iteration time τ .

We have determined the dynamical behavior at the pitchfork and tan-
gent bifurcations of unimodal maps of arbitrary nonlinearity ζ > 1. This was
accomplished via the consideration of the solution to the Feigenbaum RG re-
cursion relation for these types of critical attractors. Our studies have made
use of the specific form of the ζ-logistic map but the results have a universal
validity as conveyed by the RG approach. The RG solutions are exact and
have the analytical form of q-exponentials, we have shown that they are the
time (iteration number) counterpart of the static fixed-point map expression
found by Hu and Rudnick for the tangent bifurcations and that is applica-
ble also to the pitchfork bifurcations [4]. The q-exponential form of the time
evolution implies an analytical validation of the expression for ξt suggested
by the q-statistical mechanics. It also provides straightforward predictions for
q and λq in terms of the fixed-point map properties [4]. We found that the
index q is independent of ζ and takes one of two possible values according
to whether the transition is of the pitchfork or the tangent type. The gener-
alized Lyapunov exponent λq is simply identified with the leading expansion
coefficient u, together with the starting position x0.

We have shown that for incipient chaotic states the identity between the
Lyapunov coefficient and the rate of entropy change holds rigorously, although
in a q-generalized form. Because the entropic index q (as is the case of λq and
Kq) is obtainable in terms of Feigenbaum’s α we are able to address the
much-asked question regarding the manner in which the index q and related
quantities are determined in a concrete application. The generic chaotic at-
tractor is that associated to λ1 > 0, but it is evident that the critical attractor
with λ1 = 0 carries with it different properties. The analysis was specifically
carried out for the Feigenbaum attractor of the logistic map but our findings
clearly have a universal validity for the entire class of unimodal maps and
its generalization to other degrees of nonlinearity. In a more general context
our results indicate a limit of validity to the BG theory based on S1 and the
appropriateness of the Tsallis Sq for this kind of critical dynamics.

Our most striking finding is that the dynamics at the period-doubling
accumulation point is constituted by an infinite family of Mori’s q-phase tran-
sitions, each associated to orbits that have common starting and finishing
positions located at specific regions of the attractor. Each of these transitions
is related to a discontinuity in the trajectory scaling function σ, or ‘diameters
ratio’ function, and this in turn implies a q-exponential ξt and a spectrum of
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q-Lyapunov coefficients for each set of orbits. The transitions come in pairs
with specific conjugate indexes q and Q = 2 − q, as these correspond to
switching starting and finishing orbital positions. Since the amplitude of the
discontinuities in σ diminishes rapidly, in practical terms there is only need of
evaluation for the first few of them. The dominant discontinuity is associated
to the most crowded and sparse regions of the attractor and this alone pro-
vides a very reasonable description, as found in earlier studies [23], [30], [6],
[7]. Thus, the special values for the Tsallis entropic index q in ξt are equal to
the special values of the variable q in the formalism of Mori and colleagues at
which the q-phase transitions take place.

The ergodic hypothesis lies at the foundation of statistical mechanics im-
plying that trajectories in phase space cover thoroughly the entire pertinent
regions. But is this hypothesis always correct? Already many years ago the
answer to this question has been probed by the study of simple dynamical
systems with only a few degrees of freedom [12] - [14]. Besides their uncompli-
cated definition these systems display extremely convoluted motion in phase
space that is neither regular nor simply ergodic, and the mechanism by which
ergodicity emerges in these and more complex deterministic systems has been
effectively explored by studying the sensitivity to initial conditions and the as-
sociated Lyapunov coefficients [12] - [14]. The distinction between periodic and
chaotic motion is signaled, respectively, by the long-time exponential approach
or departure of trajectories with close initial positions. Here we have reviewed
some properties of the borderline critical attractors in one-dimensional nonlin-
ear maps at which the exponential sensitivity law stops working and recalled
that the universal dynamical behavior under these circumstances actually fol-
low the predictions of the q-statistics.

We have examined the dynamical properties at the Feigenbaum attractor
of unimodal maps and obtained further understanding about their nature. We
exhibited links between original developments, such as Feigenbaum’s trajec-
tory scaling function σ and Mori’s dynamical q-phase transitions, with more
recent advances, such as q-exponential sensitivity to initial conditions [6] and
q-generalized Pesin identity [7].

3.3 Part II. Critical attractor dynamics in thermal
systems at phase transitions and glass formation

3.3.1 Two manifestations of incipient chaos in thermal systems

It is of interest to know if the anomalous dynamics found for critical attractors
in low-dimensional maps bears some correlation with the anomalous dynam-
ical behavior at extremal or transitional states in systems with many degrees
of freedom. Two specific examples have been recently developed. In one case
the dynamics at the period-doubling onset of chaos has been demonstrated to
be closely analogous to the glassy dynamics observed in supercooled molecular
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liquids [11]. In the second case the dynamics at the tangent bifurcation has
been shown to be related to that at of fluctuations at thermal critical states
[10].

We examine first the intermittent properties of clusters of order parameter
at critical thermal states [10]. Our interest is on the local fluctuations of a
system undergoing a second order phase transition, for example, in the Ising
model as the magnetization fluctuates and generates magnetic domains on all
size scales at its critical point. In particular, the object of study is a single
cluster of order parameter φ at criticality. This is described by a coarse-grained
free energy or effective action, like in the Landau-Ginzburg-Wilson (LGW)
continuous spin model portrayal of the equilibrium configurations of Ising
spins at the critical temperature and zero external field. At criticality the
LGW free energy takes the form

Ψc[φ] = a

∫
drd

[
1

2
(∇φ)

2
+ b |φ|δ+1

]
, (3.3.1)

Where a and b are constants, δ is the critical isotherm exponent and d is the
spatial dimension (δ = 5 for the d = 3 Ising model with short range interac-
tions). As we describe below, a cluster of radius R is an unstable configuration
whose amplitude in φ grows in time and eventually collapses when an insta-
bility is reached. This process has been shown [19], [20] to be reproduced by a
nonlinear map with tangency and feedback characteristics, such that the time
evolution of the cluster is given in the nonlinear system as a laminar event of
intermittent dynamics.

The method employed to determine the cluster’s order parameter profile
φ(r) adopts the saddle-point approximation of the coarse-grained partition
function Z, so that φ(r) is its dominant configuration and is determined by
solving the corresponding Euler-Lagrange equation. The procedure is equiv-
alent to the density functional approach for stationary states in equilibrium
nonuniform fluids. Interesting properties have been derived from the thermal
average of the solution found for φ(r), evaluated by integrating over its am-
plitude φ0, the remaining degree of freedom after its size R has been fixed.
These are the fractal dimension of the cluster [31] [32] and the intermittent
behavior in its time evolution [19], [20]. Both types of properties are given in
terms of the critical isotherm exponent δ.

As we describe below, the dominance of φ(r) in Z depends on a condition
that can be expressed as an inequality between two lengths in space. This is
r0 ≫ R, where r0 is the location of a divergence in the expression for φ(r)
that decreases as an inverse power of the cluster amplitude φ0. When r0 ≫ R
the profile is almost horizontal but for r0 � R the profile increases from
its center faster than an exponential. It is this feature that gives the cluster
the properties that we present and discuss here. These properties relate to
the dependence of the number of cluster configurations on size R, and the
sensitivity to initial conditions ξt of order-parameter evolution on time t.
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The above-mentioned properties appear to be at variance with the usual
BG statistics but compatible [10] with the q-statistics [2], [3]. A condition for
these properties to arise is criticality but also is the situation that phase space
has only been partially represented by selecting only dominant configurations.
Hence, the motivation to examine this problem rests on explaining the physical
and methodological basis under which proposed generalizations of the BG
statistics may apply.

A second example of a link between critical attractor and thermal system
properties is the realization [11] that the dynamics at the noise-perturbed on-
set of chaos in unimodal maps is analogous to that observed in supercooled liq-
uids close to vitrification. Four major features of glassy dynamics in structural
glass formers, two-step relaxation, aging, a relationship between relaxation
time and configurational entropy, and evolution from diffusive to subdiffusive
behavior and finally arrest, are shown to be displayed by the properties of
orbits with vanishing Lyapunov coefficient. The previously known properties
in control-parameter space of the noise-induced bifurcation gap [12], [33] play
a central role in determining the characteristics of dynamical relaxation at the
chaos threshold.

In spite of the vast knowledge and understanding gathered together on
the dynamics of glass formation in supercooled liquids this condensed matter
phenomenon continues to attract interest [34]. This is so because there remain
basic unanswered questions that are both intriguing and difficult [34]. A very
pronounced slowing down of relaxation processes is the principal expression of
the approach to the glass transition [34], [35], and this is generally interpreted
as a progressively more imperfect realization of phase space mixing. Because
of this extreme condition an important question is to find out whether under
conditions of ergodicity and mixing breakdown the BG statistical mechanics
remains capable of describing stationary states in the immediate vicinity of
glass formation.

The basic ingredient of ergodicity failure is obtained for orbits in the limit
towards vanishing noise amplitude. Our study supports the idea of a degree of
universality underlying the phenomenon of vitrification, and points out that
it is present in different classes of systems, including some with no explicit
consideration of their molecular structure. The map has only one degree of
freedom but the consideration of external noise could be taken to be the effect
of many other systems coupled to it, like in the so-called coupled map lattices
[36]. Our interest has been to study a system that is gradually forced into a
nonergodic state by reducing its capacity to sample regions of its phase space
that are space filling, up to a point at which it is only possible to move within
a multifractal subset of this space. The logistic map with additive external
noise reads,

xt+1 = fµ(xt) = 1 − µx2
t + σχt, −1 ≤ xt ≤ 1, 0 ≤ µ ≤ 2, (3.3.2)

where χt is a Gaussian-distributed random variable with average 〈χtχt′〉 =
δt.t′ , and σ measures the noise intensity [12], [33].
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3.3.2 Critical clusters

The method considers a one dimensional system with unspecified range of
interactions. The analysis can be carried out for higher dimensions with no
further significant assumptions and with comparable results [19]-[32]. The
LGW free energy reads now

Ψc[φ] = a

∫ R

0

dx

[
1

2

(
dφ

dx

)2

+ b |φ|δ+1

]
, (3.3.3)

and we assume the saddle-point approximation - valid for a ≫ 1 - to get
around the nontrivial task of carrying out the path integration in Z. The
saddle-point configurations are obtained from the Euler-Lagrange equation

d2φ

dx2
= −dV

dφ
, (3.3.4)

where V = −b |φ|δ+1. Integration of Eq. (3.3.4) yields

U =
1

2

(
dφ

dx

)2

− b |φ|δ+1
. (3.3.5)

Subsequent integration of Eq. (3.3.5) with U = 0 leads to profiles for critical
clusters of the form [19]-[32]

φ(x) = A |x− x0|−2/(δ−1)
, (3.3.6)

where

A =
[√

b/2 (δ − 1)
]−2/(δ−1)

and

x0 =
[√

b/2 (δ − 1)
]−1

φ
−(δ−1)/2
0 , (3.3.7)

where x0 is a system-dependent reference position and φ0 = φ(0). The value
of φ at the edge of the cluster is φR = φ(R) and the cluster free energy is

Ψc[φ] = 2ab

∫ R

0

dx φ(x)δ+1. (3.3.8)

This family of solutions give the largest contributions to Z. Similar solutions
are obtained for small U ≈ 0 [31], [32] where now the position of the singularity
x0 depends also on U . These solutions enter Z with a weight exp(−αR |U |)
and therefore their relevance diminishes as |U | increases.

Extensivity of critical cluster entropy
The profile φ(x) in Eq. (3.3.6), as well as those solutions for U ≃ 0, can

be rewritten in the q-exponential form
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φ(x) = φ0 expq(kx), (3.3.9)

with q = (1 + δ)/2 and k =
√

2bφ
(δ−1)/2
0 . Because δ > 1 one has q > 1 and

φ(x) grows faster than an exponential as x→ x0 and diverges at x0. See Fig.
3.11. It is important to notice that only configurations with R ≪ x0 have
a nonvanishing contribution to the path integration in Z [31], [32] and that
these configurations vanish for the infinite cluster size system. There are some
characteristics of nonuniform convergence in relation to the limits R → ∞
and x0 → ∞, a feature that is significant for our connection with q-statistics.
By taking δ = 1 the system is set out of criticality, then q = 1 and the profile
φ(x) becomes the exponential φ(x) = φ0 exp(k0 x), k0 =

√
a0t.

Fig. 3.11. Cluster order-parameter profile φ(x) according to Eq. (3.3.9) for q = 1,
2 and 3 that correspond, respectively, to δ = 1, 3 and 5.

The quantity

Φ(R) =

∫ R

0

dxφ(x), (3.3.10)

or total ‘magnetization’ of the cluster, is given by

Φ(R) = Φ0

{[
expq(kR)

]2−q − 1
}
, R < x0, (3.3.11)

where Φ0 = sgn(3 − δ)[2φ0/(δ − 3)k] with q = (1 + δ)/2. See Fig. 3.12. We
have not elaborated the special case δ = 3. For δ = 1, one has Φ(R) =
φ0k

−1
0 [exp(k0R) − 1]. The rate at which Φ(R) grows with R, dΦ(R)/dR, is

necessarily equal to φR, the value of φ(x) at the edge of the cluster, therefore
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Fig. 3.12. Total ‘magnetization’ of the cluster Φ(R) as function of cluster size R
according to Eq. (3.3.11) for q = 2 and 3, that correspond, respectively, to δ = 3
and 5.

dΦ(R)

dR
= φ0 expq(kR), R < x0, (3.3.12)

while for δ = 1 it is dΦ(R)/dR = φ0 exp(k0R).
The expressions above may be used to estimate the dependence on cluster

size R of the number of microscopic configurations Ω[φ] that make up the
partial partition function Zφ [10] for the dominant coarse-grained φ(x). This
dependence may be obtained in a way analogous to that of how the dependence
with time of the number of configurations Ω for an ensemble of trajectories in
a one-dimensional dynamical system is determined. Here ‘trajectory positions’
are given by the values of φ in microscopic configurations and ‘time’ is given
by the cluster size R. Initially adjacent positions stay adjacent and Ω is almost
constant but at later times they spread and Ω increases rapidly. For chaotic
orbits the increment is exponential [12] - [14] but for marginally chaotic orbits
at the tangent bifurcation Ω increases as a q-exponential with q > 1 [4], [5].
The ensemble of trajectories is initially contained in the interval [0, φ0] and
at time R they occupy the interval [0, φR], therefore we assume [10]

Ω(R) ∼ φ−1
0 dΦ(R)/dR = φ−1

0 φR. (3.3.13)

Then, it is significant to note that the Tsallis entropy [2],

Sq = lnq Ω ≡ Ω1−q − 1

1 − q
, (3.3.14)
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when evaluated for Ω ∼ expq(kR) complies with the extensivity property
Sq ∼ R [37], while the BG entropy

SBG(t) = lnΩ, (3.3.15)

obtained from Sq when q = 1, when evaluated for Ω ∼ exp(k0R) complies
also with the extensivity property S1 ∼ R.

Cluster instability and intermittency
The profile φ(x) given by Eqs. (3.3.6) or (3.3.9) describes a fluctuation of

the critical equilibrium state of the infinite system with average
〈
φ
〉

= 0. In
a coarse-grained time scale the cluster is expected to evolve by increasing its
amplitude φ0 and size R because the subsystem studied represents an environ-
ment with unevenness in the states of the microscopic degrees of freedom (e.g.
more spins up than down). Increments in φ0 for fixed R takes the position
x0 for the singularity closer to R and the almost constant shape φ(x) ≃ φ0

for x0 ≫ R is eventually replaced by a faster than exponential shape φ(x),
as a result, the dominance of this configuration in Z decreases rapidly. When
the divergence is reached at x0 = R the profile φ(x) no longer describes the
spatial region where the subsystem is located. But a later fluctuation would
again be represented by a cluster φ(x) of the same type. From this renewal
process we obtain a picture of intermittency. A similar situation would occur
if R is increased for fixed φ0.

A connection was revealed [19], [20] between the fluctuation properties of
a critical cluster described by Eqs. (3.3.6) and (3.3.9) and the dynamics of
marginally chaotic intermittent maps. This relationship was demonstrated in
various ways in Refs. [19], [20] by considering the properties of the thermal
average

〈Φ(R)〉 = Z−1

∫
D[φ] Φ(R) exp(−Ψc[φ]), (3.3.16)

for fixed R. When x0 ≫ R the profile is basically flat φ(x) ≃ φ0, the LGW
free energy is Ψc ≃ 2abRφδ+1

0 , and the path integral in Eq. (3.3.16) becomes
an ordinary integral over 0 ≤ φ ≤ φ0. One obtains

〈Φ(R)〉 ≃ φ0R

2
exp
(
−uRφδ+1

0

)
, (3.3.17)

where u = 2ab(δ + 1)/(δ + 2)(δ + 3).
The procedure that resembles the intermittency picture mentioned above

is to consider the value of 〈Φ〉 at successive times t = 0, 1, ..., and assume that
this quantity changes by a fixed amount η per unit time, that is

〈Φt+1〉 = 〈Φt〉 + η. (3.3.18)

Making use of Eq. (3.3.17) one obtains [19], [20] for small values of φt the map

φt+1 = ǫ+ φt + ωφδ+1
t , (3.3.19)
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where the shift parameter is ǫ ∼ R−1 and the amplitude of the nonlinear term
is ω = uη.

Eq. (3.3.19) can be recognized as that describing the intermittency route
to chaos in the vicinity of a tangent bifurcation [12] - [14]. The complete form
of the map [19], [20] displays a ‘superexponentially’ decreasing region that
takes back the iterate close to the origin in approximately one step. Thus
the parameters of the thermal system determine the dynamics of the map.
The mean number of iterations in the laminar region was seen to be related
to the mean magnetization within a critical cluster of radius R. There is a
corresponding power law dependence of the duration of the laminar region
on the shift parameter ǫ of the map [19]. For ǫ > 0 the (small) Lyapunov
exponent is simply related to the critical exponent δ [20].

3.3.3 Vitrification

We quote briefly the main dynamical properties displayed by supercooled
liquids on approach to glass formation. One is the growth of a plateau in
two-time correlations e.g. the intermediate scattering function Fk [34], [35],
and consequently a two-step process of relaxation. This consists of a primary
power-law decay in time difference t = t2 − t1 (so-called β relaxation) that
leads into the plateau, the duration tx of which diverges also as a power law
of the difference T −Tg as the temperature T decreases to a critical value Tg.
After tx there is a secondary power law decay (so-called α relaxation) that
leads to a conventional equilibrium state [34], [35]. This behavior is shown
by molecular dynamics simulations [38] and it is successfully reproduced by
mode coupling (MC) theory [39].

A second important dynamic property of glasses is the loss of time trans-
lation invariance, a characteristic known as aging [25] [26], that is due to
the fact that properties of glasses depend on the procedure by which they
are obtained. The time reduction of correlations display a scaling dependence
on the ratio t/tw where tw is a waiting time. A third notable property is
that the experimentally observed relaxation behavior of supercooled liquids
is effectively described, via reasonable heat capacity assumptions [34], by the
so-called Adam-Gibbs equation [40],

tx = A exp

(
B

TSc

)
, (3.3.20)

where the relaxation time tx can be identified with the viscosity or the inverse
of the diffusivity, and the configurational entropy Sc is related to the number
of minima of the fluid’s potential energy surface (and A and B are constants)
[34]. Eq. (3.3.20) implies that the reason for viscous slow-down in supercooled
liquids is a progressive reduction in the number of configurations that the
system is capable of sampling as T − Tg → 0. A first principles derivation of
this equation has not been developed at present.



3 Critical Attractors and the Physical Realm of q-statistics 97

Finally, the sharp slow down of dynamics in supercooled liquids on ap-
proach to vitrification is illustrated by the progression from normal diffu-
siveness to subdiffusive behavior and at last to a stop in the growth of the
molecular mean square displacement, all this within a small range of temper-
atures or densities [41], [42]. This deceleration of the dynamics is caused by
the confinement of any given molecule by a ‘cage’ formed by its neighbors;
and it is the breakup and rearrangement of the cages which drives structural
relaxation, letting molecules diffuse throughout the system. Evidence indi-
cates that lifetime of the cages increases as conditions move towards the glass
transition, probably because cage rearrangements involve a larger number of
molecules as the glass transition is approached [41], [42].

The erratic motion of a Brownian particle is usually described by the
Langevin theory [43]. As it is well known, this method finds a way to avoid the
detailed consideration of many degrees of freedom by representing with a noise
source the effect of collisions with molecules in the fluid in which the particle
moves. The approach to thermal equilibrium is produced by random forces,
and these are sufficient to determine dynamical correlations, diffusion, and
a basic form for the fluctuation-dissipation theorem [43]. In the same spirit,
attractors of nonlinear low-dimensional maps under the effect of external noise
can be used to model states in systems with many degrees of freedom. Notice
that the general map formula

xt+1 = xt + hµ(xt) + σχt, (3.3.21)

is a discrete form for a Langevin equation with nonlinear ‘friction force’ term
hµ and χt is the same Gaussian white noise random variable as in Eq. (3.3.2)
and σ the noise intensity. With the choice hµ(x) = 1−x−µx2 we recover Eq.
(3.3.2).

Noise-perturbed onset of chaos
When σ > 0 the noise fluctuations smear the fine structure of the periodic

attractors as the iterate visits positions within a set of bands or segments
like those in the chaotic attractors (see Fig. 3.13), however there is still a
distinct transition to chaos at µc(σ) where the Lyapunov exponent λ1 changes
sign. The period doubling of bands ends at a finite maximum period 2N(σ) as
µ → µc(σ) and then decreases at the other side of the transition. This effect
displays scaling features and is referred to as the bifurcation gap [12], [33].
When σ is small the trajectories visit sequentially the set of 2N(σ) disjoint
bands leading to a cycle, but the behavior inside each band is chaotic. The
trajectories represent ergodic states as the accessible positions have a fractal
dimension equal to the dimension of phase space. When σ = 0 the trajectories
correspond to a nonergodic state, since as t → ∞ the positions form only a
Cantor set of fractal dimension df = 0.5338.... Thus the removal of the noise
σ → 0 leads to an ergodic to nonergodic transition in the map.

As shown in Ref. [11] when µc(σ > 0) there is a ‘crossover’ or ‘relaxation’
time tx = σr−1, r ≃ 0.6332, between two different time evolution regimes. This
crossover occurs when the noise fluctuations begin erasing the fine structure



98 A. Robledo

Fig. 3.13. (a) Logistic map attractor. (b) Magnification of the box in (a). (c)
Noise-induced bifurcation gap in the magnified box.
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of the attractor as shown by the superstable orbit with x0 = 0 in Fig. 3.6. For
t < tx the fluctuations are smaller than the distances between the neighboring
subsequence positions of the x0 = 0 orbit at µc(0), and the iterate position
with σ > 0 falls within a small band around the σ = 0 position for that
t. The bands for successive times do not overlap. Time evolution follows a
subsequence pattern close to that in the noiseless case. When t ∼ tx the
width of the noise-generated band reached at time tx = 2N(σ) matches the
distance between adjacent positions, and this implies a cutoff in the progress
along the position subsequences. See Fig. 3.14. At longer times t > tx the
orbits no longer trace the precise period-doubling structure of the attractor.
The iterates now follow increasingly chaotic trajectories as bands merge with
time. This is the dynamical image - observed along the time evolution for the
orbits of a single state µc(σ) - of the static bifurcation gap initially described
in terms of the variation of the control parameter µ [33].

Fig. 3.14. Absolute values of positions in logarithmic scales of iterations t for
various trajectories with and without additive noise. Setting µ = µc and σ = 0,
empty circles correspond to the absolute values of the attractor positions obtained
by iterating x0 = 0 (the numbers label time t = 1, · · · , 16) , while small dots
correspond to x0 = 0.56023, close to a repeller, the unstable solution of x = 1−µcx

2.
Full (and dashed) lines represent two trajectories for µ = µc, plotted at times t = 2n,
n = 0, 1, . . ., for different values of noise amplitude σ = 10−3 (and σ = 10−6).
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Two-step relaxation

In Ref. [11] it was suggested that in the map at µc(σ) the analog of the β
relaxation would be obtained by considering initial conditions x0 outside the
critical attractor since the resultant orbits display a power-law transient as the
positions approach asymptotically those of the attractor. After this transient
an intermediate plateau may be observed and would correspond to the regime
t < tx, described before, when the iterates are confined to nonintersecting
bands before they reach the bifurcation gap, its duration tx grows as an inverse
power law of σ. The analog of the α relaxation was proposed to be the band
merging crossover process that takes place for t > tx.

This relaxation processes were studied [11] by evaluation of the two-time
correlation function

ce(t2 − t1) =
〈xt2xt1〉 − 〈xt2〉 〈xt1〉

σt1σt2

, (3.3.22)

for different values of the noise amplitude σ. In Eq. (3.3.22) 〈...〉 represents an
average over an ensemble of trajectories starting with initial conditions ran-

domly distributed across a small interval around x0 and σti
=
√〈

x2
ti

〉
− 〈xti

〉2.
In Fig. 3.15a we show the behavior of ce(t) for x0 = 0.56023, the initial relax-
ation, that is, the transient fall into the attractor, is captured by the choice
of initial condition that corresponds to a repeller or unstable periodic orbit.
As shown in the figure this initial decay of ce(t) disappears as σ → 0. In
Fig.3.15b we show the behavior of ce(t) for x0 = 0, the choice of initial posi-
tion at the attractor eliminates the ’β relaxation’ and shows the development
of the plateau followed by the encounter with the bifurcation gap. This sec-
ondary relaxation process can be clearly appreciated. In Fig. 15b is also shown
the location of the crossover time tx at which the bifurcation gap is reached.
(We note that tx = σr−1 is approximately obtained by retaining only the first
order term in a perturbation [11]).

Adam-Gibbs relation

As the counterpart to the Adam-Gibbs formula, the noise-perturbed map
model for glassy dynamics exhibits a relationship between the plateau du-
ration tx, and the entropy Sc for the attractor with the largest number of
bands allowed by the bifurcation gap - the noise-induced cutoff in the period-
doubling cascade [12]. This entropy is obtained from the probability of band
occupancy at position x, i.e. the distribution of the iterate positions within
the 2N bands, and has the form Sc = 2Nσs, where s is the entropy associated
to a single band. Use of 2N = tx + 1 and tx = σr−1, r − 1 ≃ −0.3668 [11],
leads to

tx =

(
s

Sc

)(1−r)/r

. (3.3.23)

Since (1 − r)/r ≃ 0.5792 then tx → ∞ and Sc → 0 as σ → 0. See [11]
for details on the derivation. Clearly, at variance with the exponential Adam-
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Fig. 3.15. Two step relaxation. We plot the two-time correlation function as defined
in Eq. (3.3.22) for an ensemble of 5000 trajectories initially distributed at random
around x0 = 0.56023 (a) and x0 = 0 (b) (in both cases µ = µc). The width of
the initial interval is of order 10−7. Curves are labeled with their corresponding
values of noise amplitude σ. In (a) we used a gray line to make visible the curve
obtained for σ = 10−2. Full (dashed) lines in (b) refer to a ‘waiting time’ t1 = 50
(t1 = 10). Vertical arrows, from left to right, indicate the crossover time tx(σ) for
σ = 10−5, 10−6, 10−7, respectively.



102 A. Robledo

Gibbs equation in structural glass formers [34], this expression turned out to
have a power law form.

Aging
As indicated in Ref. [11] the interlaced power-law position subsequences

that constitute the superstable orbit of period 2∞ within the noiseless attrac-
tor at µc(0) imply a built-in aging scaling property for the single-time function
xt. These subsequences are relevant for the description of trajectories that are
at first ‘held’ at a given attractor position for a waiting period of time tw
and then ‘released’ to the normal iterative procedure. The holding positions
were chosen to be any of those along the top band shown in Fig. 3.6 with
tw = 2k + 1, k = 0, 1, .... One obtains [11]

xt+tw
≃ expq(−λqt/tw), (3.3.24)

where λq = lnα/ ln 2, with α = 2.50290.... This property is gradually removed
when noise is turned on. The presence of a bifurcation gap limits its range of
validity to total times tw + t < tx(σ) and so progressively disappears as σ is
increased [11].

Aging and its related scaling property at the onset of chaos for σ = 0
was studied [11] via the evaluation of two-time correlation functions obtained
through a time average. The form

c(t+ tw, tw) = (1/N)

N∑

n=1

φ(n)(t+ tw)φ(n)(t) (3.3.25)

was chosen, where φ(τ) = f
(τ)
µc (0) and fµ(x) = 1−µx2. In Fig. 3.16a we show

c(t+ tw, tw) for different values of tw = 2k + 1, k = 0, 1, ..., and in Fig. 3.16b
the same data where the rescaled variable t/tw = 2n − 1 has been used. The
characteristic scaling of aging behavior is especially clear.

Subdiffusion and arrest.
To investigate subdiffusion and arrest close to glass formation in the map

at µc(σ), we constructed a periodic map with repeated cells. This setting has
being used to study deterministic diffusion in nonlinear maps, in which the
trajectories migrate into neighboring cells due to chaotic motion. For fully
chaotic maps diffusion is normal [12] but for marginally chaotic maps it is
anomalous [27]. In our case we design the map in such a way that diffusion is
due only to the random noise term, otherwise motion is confined to a single
cell. So, we have the periodic map xt+1 = F (xt), F (l + x) = l + F (x), l =
...− 1, 0, 1, ..., where

F (x) =

{
−
∣∣1 − µcx

2
∣∣+ σξ, −1 ≤ x < 0,∣∣1 − µcx

2
∣∣+ σξ, 0 ≤ x < 1.

(3.3.26)

Fig. 3.17a shows the periodic map Eq. (3.3.26) together with a portion of
one of its trajectories. As it can be observed, the escape from the central cell
into any of its neighbors occurs when |F (x)| > 1 and this can only happen
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Fig. 3.16. Aging of correlations c(t + tw, tw) according to Eq. (3.3.25) for the
Feigenbaum attractor (µ = µc, σ = 0). Total observation time is n = 1000. In (a)
is shown the explicit dependence on the waiting time of two-time correlations (from
left to right tw = 1, 3, 5, 7, 9). In (b) all curves collapse upon rescaling t/tw.
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when σ > 0. As σ → 0 the escape positions are confined to values of x increas-
ingly closer to x = 0, and for σ = 0 the iterate position is trapped within the
cell. Likewise for any other cell. Fig. 3.17b shows the mean square displace-
ment

〈
x2

t

〉
as obtained from an ensemble of trajectories initially distributed

throughout the interval [−1, 1] for several values of the noise amplitude. The
progression from normal diffusion to subdiffusion and to final arrest can be
plainly observed as σ → 0. For small σ (≤ 10−2)

〈
x2

t

〉
shows a down turn and

later an upturn similar to those observed in colloidal glass experiments [41]
and attributed to cage rearrangements. In the map this feature reflects cell
crossings.

Nonuniform convergence
As we have recounted, the dynamics at the chaos threshold in the presence

of noise displays the characteristic elements of glassy dynamics observed in
molecular glass formers. The limit of vanishing noise amplitude σ → 0 (the
counterpart of the limit T − Tg → 0 in the supercooled liquid) leads to loss
of ergodicity. This nonergodic state with λ1 = 0 corresponds to the limiting
state, σ → 0, tx → ∞, of a family of small σ states with glassy properties. It is
of interest to note that at µc(σ) the trajectories and its resultant sensitivity to
initial conditions are expressed for t < tx via the q-exponentials of the Tsallis
formalism [11]. For σ = 0 this analytical forms are exact [5], [9] and a Pesin
identity, linking accordingly generalized Lyapunov coefficients and rates of
entropy production, holds [6], [9]. There is nonuniform convergence related to
the limits σ → 0 and t→ ∞. If σ → 0 is taken before t→ ∞ orbits originating
within the attractor remain there and exhibit fully-developed aging properties,
whereas if t → ∞ is taken before σ → 0 a chaotic orbit with exponential
sensitivity to initial conditions would be observed.

3.3.4 Discussion of Part II

We have examined the study of clusters at criticality in thermal systems by
means of the saddle-point approximation in the LGW free energy model [19],
[20], [31], [32]. The retention of only one coarse-grained configuration leads
to cluster properties that are physically reasonable but also appear to fall
outside the limits of validity of the BG theory. The fractal geometry and
the intermittent behavior of critical clusters obtained from this method [19],
[20] [31], [32] are both consistent with equivalent properties found for clusters
at the critical points of the d = 2 Ising and Potts models [44], [45]. On
the other hand, it was found that the entropy expression that provides the
property of extensivity for the estimate of the number of cluster configurations
is not the usual BG expression but that for the q-statistics. Likewise, the
nonlinear map and its corresponding sensitivity to initial conditions linked to
the intermittency of clusters do not follow the fully-chaotic trajectories of BG
statistics but display the features of q-statistics.

With regards to the extensivity of entropy, what our assumptions and
results mean basically is that extensivity of entropy (BG or q-generalized) of
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Fig. 3.17. Glassy diffusion in the noise-perturbed onset of chaos. (a)Repeated-cell
map (thick dashed line) and trajectory (full line). (b)Time evolution of the mean
square displacement

〈
x2

t

〉
for an ensemble of 1000 trajectories with initial conditions

randomly distributed inside [−1, 1]. Curves are labeled by the value of the the noise
amplitude.
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a cluster and the linear growth with time of entropy (BG or q-generalized) of
trajectories for the attractor of a nonlinear map are equivalent. The crossover
from the expression for Sq to that for S1 is obtained when the system is
taken out of criticality, because δ → 1 makes q → 1. When at criticality the
crossover between q-statistics and BG statistics in the dynamical behavior
is related to the subsystem’s size as follows. We observe that the map shift
parameter depends on the domain size as ǫ ∼ R−1. So, the time evolution of
φ displays laminar episodes of duration < t >∼ ǫ−δ/(δ+1) and the Lyapunov
coefficient in this regime is λ1 ∼ ǫ [20]. Within the first laminar episode the
dynamical evolution of φ(x) obeys q-statistics, but for very large times the
occurrence of many different laminar episodes leads to an increasingly chaotic
orbit consistent with the small λ1 > 0 and BG statistics would be recovered.
As R increases (R≪ x0 always) the time duration of the q-statistical regime
increases and in the limit R→ ∞ there is only one infinitely long q-statistical
laminar episode with λ1 = 0 with no crossover to BG statistics. On the other
hand when R > x0 the clusters φ(x) are no longer dominant, for the infinite
subsystem R → ∞ their contribution to Z vanishes and no departure from
BG statistics is expected to occur [4], [10].

In view of the results presented here the departure from BG statistics and
the applicability of q-statistics is due in part to the presence of the long-
ranged correlations in space and in time that take place at criticality. These
correlations give the integrand in the LGW Ψc a power-law dependence of the
form |φ|δ+1 with δ > 1 (commonly δ ≥ 3 as δ = 3 gives the Gaussian critical
point) and this in turn determines the q-exponential expression for φ(x) and
the properties derived from it. On the other hand, the neglect of all coarse-
grained configurations other than the most dominant implies that phase space
has not been properly sampled, and that the ergodic and mixing properties
characteristic of equilibrium BG statistics are not guaranteed. It should be
clear that the properties studied are those of a single order-parameter clus-
ter. The configurations of the total system at criticality obey ordinary BG
statistics.

With regards to the dynamics of noise-perturbed logistic maps at the chaos
threshold we have seen that it exhibits the most prominent features of glassy
dynamics in supercooled liquids. Specifically our results are: 1) The two-step
relaxation occurring in two-time correlations when σ → 0 was determined in
terms of the map bifurcation gap properties. 2) The map equivalent of the
Adam-Gibbs law was obtained as a power-law relation between tx(σ) and the
entropy Sc(σ) associated to the noise broadening of chaotic bands. 3) The
trajectories and their two-time correlations at µc(σ → 0) were shown to obey
an aging scaling property. 4) The progression from normal diffusiveness to
subdiffusive behavior and finally to a stop in the growth of

〈
x2

t

〉
was demon-

strated with the use of a repeated-cell map. These properties were determined
from the trajectories of iterates at µc(σ), and use was made of the fixed-point
map solution g(x) of the RG doubling transformation consisting of functional
composition and rescaling, Rf(x) ≡ αf(f(x/α)). Positions for time subse-



3 Critical Attractors and the Physical Realm of q-statistics 107

quences within these trajectories are expressed analytically in terms of the
q-exponential function.

The existence of this analogy cannot be considered accidental since the
limit of vanishing noise amplitude σ → 0 involves loss of ergodicity. The
occurrence of these properties in this simple dynamical system with degrees
of freedom represented via a random noise term, and no reference to molecular
interactions, suggests a universal mechanism lying beneath the dynamics of
glass formation. As already proved [5], the dynamics of deterministic unimodal
maps at the onset of chaos is a genuine example of the pertinence of the q-
statistics in describing states with λ1 = 0. As we have seen this nonergodic
state corresponds to the limiting state, σ → 0, tx → ∞, for a family of
small σ noisy states with glassy properties, that are described for t < tx
via the q-exponentials of the generalized formalism [5]. The fact that these
features transform into the usual BG exponential behavior for t > tx provides
an opportunity for investigating the crossover from the ordinary BG to the q-
statistics in the physical circumstance of loss of mixing and ergodic properties.

It has been suggested on several occasions [3] that the setting in which
q-statistics appears to emerge is linked to the incidence of nonuniform conver-
gence, such as that involving the thermodynamic N → ∞ and infinite time
t → ∞ limits. Here it is clear that a similar situation takes place, that is,
if σ → 0 is taken before t → ∞ a nonergodic orbit confined to the Feigen-
baum attractor and with fully developed glassy features is obtained, whereas
if t→ ∞ is taken before σ → 0 a typical q = 1 chaotic orbit is observed.

The point of view that our studies suggest is that the observed slow dy-
namics in a given system can be seen to be composed of the ideal glassy
features arising from ergodicity breakdown with other superimposed system-
dependent features. The differences to be found between supercooled-liquid
dynamics (from experimental or from fluid model calculations) and the ideal
map dynamics would then be credited to the presence of molecular struc-
ture and other specific effects. Finally, it is worth mentioning that while the
properties displayed by the map capture in a qualitative, heuristic, way the
phenomenological issues of vitrification, they are obtained in a quantitative
and rigorous manner as the map is concerned.

3.4 Clarifying remarks

To demarcate the scope of the results presented here a few explicatory com-
ments might be useful. We stated that the dynamical properties at critical
attractors in unimodal maps bear a significant relation to a theoretical scheme
based on the Tsallis entropy Sq. With regards to nonlinear dynamics the aim of
this scheme, here called q-statistics, is to describe the departure from exponen-
tial sensitivity and the fate of the identity between the Lyapunov coefficient
and the rate of entropy production characteristic of chaotic attractors. Chaotic
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attractors have ergodic and mixing properties and display exponential sensi-
tivity ξt with Lyapunov coefficients λ1 independent from initial conditions x0.
These coefficients satisfy a Pesin identity λ1 = K1 (qualified below) where the
rate of entropy production K1 is based on the BG entropy expression S1. In
its basic - early - proposition [23] q-statistics consisted of simple suggestions:
(i) A q-exponential expression for ξt from which a q-Lyapunov coefficient λq

could be extracted as the coefficient of iteration time t (just as λ1 can be read
from the exponential ξt). And (ii) a generalized identity λq = Kq where the
rate Kq would be obtained from the entropy expression Sq. The value for the
entropic index q would be presumably determined in terms of the main para-
meters of the specific problem in hand. After the examination of the dynamics
at the critical attractors in unimodal maps we can make an assessment of this
scheme.

The first important – and expected – characteristic of the coefficients λq

that we determined is their dependence on the initial condition x0. The λq(x0)
describe an spectrum of expansion (or contraction) rates of orbits. Interest-
ingly, the spectrum λq(x0) can be reduced to a single value with the introduc-
tion of a waiting time tw related to x0 (see Eqs. (3.2.12) and (3.3.24)) and this
reveals the incidence of a scaling property known as aging that we exploited
in our study of glassy dynamics. The nonergodic source for the dependence
on x0 can be linked to a breakdown in time translation invariance.

A second relevant corroborated feature is that all the coefficients in each
spectrum λq(x0) appear associated to the same well-defined value of q and
this in turn is easily identified with a universal parameter for the critical
attractor. The cases of the pitchfork and tangent bifurcations are essentially
straightforward but the period-doubling onset of chaos is much more involved
and requires a careful description that considers the multifractal properties
of the attractor. For the pitchfork and tangent bifurcations one obtains q =
2− z−1 where z is the leading nonlinearity in Eq. (3.2.9), and as we saw there
are only two possible values, q = 5/3 or q = 3/2, according to whether the
transition is of one type or the other. In our discussion of critical clusters there
is a simple link between q and the critical isotherm exponent δ which defines
the thermal transition universality class.

We found that the sensitivity for the Feigenbaum attractor does not
have the form of a single q-exponential but of infinitely many interlaced q-
exponentials. If time evolution is followed starting from an arbitrary position
x0 within the attractor and recorded at every time t what is observed [18] are
strongly fluctuating quantities that persist in time and with a tangled pat-
tern structure that displays memory retention. On the other hand, if specific
initial positions with known location within the multifractal are chosen, and
subsequent positions are observed only at pre-selected times, when the tra-
jectories visit another chosen region, a well-defined q-exponential form for ξt
emerges. The specific value of q and the associated Lyapunov spectrum λq can
be determined, and for each case the value of q is given by that of a disconti-
nuity in the trajectory scaling function σ of Feigenbaum. The corresponding
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spectrum λq reflects all starting positions in the multifractal region where the
trajectories originate.

Trajectories that connect two regions with different local structure display
a dynamical phase transition with features analogous to those in thermal first-
order phase transitions. An statistical-mechanical formalism was developed a
decade and a half ago [17] capable of describing these phenomena and was
applied to the Feigenbaum attractor [18]. This formalism describes transitions
between different ‘q-phases’ that are signalled by jump discontinuities in a
Lyapunov function λ(q) (the order parameter) at a special value q =q, or
equivalently, sections of constant slope 1 − q in a ‘free energy’ function ψ(λ);
q is the ‘ordering field’. We have shown that the value q of q at the dynamical
phase transition is the same as the value of the Tsallis q index in ξt and
that the jump in amplitude of Mori’s coarse-grained Lyapunov function λ(q)
coincides with the Lyapunov spectrum λq obtained from ξt. Therefore, we
have identified the cause or source of the special values for the entropic index
q in the Feigenbaum attractor.

Because the dynamics within the Feigenbaum attractor retains memory we
can distinguish the two senses, outgoing or incoming, of trajectories connecting
two regions of the attractor. As a consequence of this the q-phase transitions
occur in conjugate pairs, with q-indexes q and 2−q, with spectra, λq and λ2−q,
and the function ψ(λ) displays two sections of constant slopes with opposite
signs, 1 − q and q − 1. The dynamics at the tangent bifurcation can also be
couched within the same two-region framework.

But the multiregion nature of the Feigenbaum attractor leads to a mul-
tiplicity of Mori’s q-phase transitions and a hierarchy of q-indexes. As we
have seen these can be put into a one to one correspondence with the jump
discontinuities of the trajectory scaling function σ originally calculated by
Feigenbaum for nonlinearity ζ = 2. Each discontinuity in σ quantifies the dif-
ference in proximity of elements between two regions of the attractor that is
relevant to the dynamics of trajectories that connect them, information that
is difficult to extract, or partially missing, from the multifractal spectrum of
dimensions f(α̃). It is central to our discussion to observe that each discon-
tinuity in σ leads to explicit expressions for a conjugate pair of q-indexes, of
q-exponential sensitivities, of q-Lyapunov spectra and of q-phase transitions.
Since the amplitude of the discontinuities in σ decreases rapidly, one of the
q-index pairs dominates, the values of which we found to be associated to the
most crowded and most sparse regions of the multifractal.

The fact that the expression for ξt can be put in the form of one or more
q-exponentials is evidently useful as it is a clear cut method for extracting the
spectra for the λq, the counterparts of λ1 for chaotic attractors. The λq in turn
can be used to determine the Lyapunov function λ(q) in a manner independent
from the coarse-grained formalism proposed by Mori [17] [18], and as we have
seen this permitted us to identify a hierarchy of q-phase transitions when the
original numerical calculations had uncovered only one [18].
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There is another significant consequence of the q-exponential basis for the
expressions for ξt. This relates to the rate of entropy production of ensembles
of trajectories under the action of the attractor. We have shown that for initial
positions within a small interval around an attractor point x0 the equality
λq = Kq holds up to a time T dependent on the interval size, where Kq is the
difference in Tsallis entropy between time t and t = 0. For chaotic attractors
a single equality λ1 = K1 holds, whereas for the Feigenbaum attractor one
has infinitely many identities λ(k)

q = K
(k)
q , but remarkably, for each of them

the entropy Sq is evaluated with the same value of the q-index and the same
pre-selected times tk for the trajectories that link with starting and finishing
positions the multifractal regions under consideration.

It is important to clarify the circumstances under which the equalities
λ

(k)
q = K

(k)
q are obtained as these could be interpreted as shortcomings of

the formalism. First of all, the rate Kq does not generalize the trajectory-
based Kolmogorov-Sinai (KS) entropy K1 that is involved in the well-known
Pesin identity λ1 = K1 [12] - [14]. The q-generalized KS entropy Kq would
be defined in the same manner as K1 but with the use of Sq. The rate Kq

is determined from values of Sq at two different times [14]. The relationship
between K1 and K1 has been investigated for several chaotic maps [46] and it
has been established that the equality K1 = K1 occurs during an intermediate
stage in the evolution of the entropy S1(t), after an initial transient dependent
on the initial distribution and before an asymptotic approach to a constant
saturation value. Here we have looked into the analogous intermediate regime
in which one would expect Kq = Kq, as we argue below.

We have only considered initial conditions within small distances outside
the positions of the Feigenbaum attractor and have not focused on the initial
transient behavior referred to in the above paragraph. A noteworthy excep-
tion has been that for the noise-perturbed onset of chaos employed to study
glassy dynamics, where this transient behavior was identified with the pri-
mary relaxation process known as β relaxation. As for the final asymptotic
regime mentioned above it should be kept in mind that the distance between
trajectories, which defines λq, always saturates because of the finiteness of the
available phase space ([−1, 1] or the multifractal subset that is the Feigenbaum
attractor). Separation of incipiently chaotic trajectories, just as separation of
chaotic ones, undergo two different processes, stretching which leads to the
q-exponential regime in ξt and folding which keeps the orbits bounded. There-
fore for t sufficiently large Eq. (3.2.4) would be no longer valid, just like the
exponential ξt of chaotic attractors. This is the reason there is a saturation
time T in our determination of λ(k)

q and consequently justifies our use of the

rates K(k)
q in λ

(k)
q = K

(k)
q . It is widely known that special care needs to be

taken to avoid saturation due to folding in determining λ1 and similar limita-
tions occur for λ(k)

q .

As expected all the properties determined here in relation to q-statistics
stem from universal quantities, such as the trajectory scaling function σ orig-
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inally derived with the use of the RG functional composition transformation.
Had this not been the case, the source of the q-indexes in bona fide applications
of this generalized BG scheme could not be understood. On the other hand, to
steer clear of the terminology of the q-statistics would unnecessarily obscure
the details of the dynamics here considered. The dynamics at the Feigenbaum
attractor, with ordinary λ1 = 0, has long been seen as a hardly manageable
collection of strongly fluctuating local expansion rates λ(xt, x0) = ln |dxt/dx0|
which do not converge to any constant and only diverge logarithmically for
t → ∞ [29], [18]. By evaluating these rates for specific classes of initial posi-
tions with necessarily coordinated observation times, and with use of quanti-
ties connected with the q-statistics, corroborated to hold, we have resolved in
great detail the temporal structure of these coefficients.
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Summary. The Renyi entropy is derived as a cumulant average of the Boltzmann
entropy in the same way as the Helmholtz free energy can be obtained by cumulant
averaging of a Hamiltonian. Such a form of the information entropy and the princi-
ple of entropy maximum (MEP) for it are justified by the Shore–Johnson theorem.
The application of MEP to the Renyi entropy gives rise to the Renyi distribution.
Thermodynamic entropy in the Renyi thermostatistics increases with system com-
plexity (gain of an order parameter η = 1−q) and reaches its maximal value at qmin.
The Renyi distribution for such q becomes a pure power–law distribution. Because
a power–law distribution is characteristic for self-organizing systems the Renyi en-
tropy can be considered as a potential that drives the system to a self-organized
state. The derivative of difference of entropies in the Renyi and Gibbs thermosta-
tistics in respect to η exhibits a jump at η = 0. This permits us to consider the
transfer to the Renyi thermostatistics as a peculiar kind of a phase transition into
a more organized state.

The last section is devoted to development of thermodynamics of coherent states
of quantum systems and black holes. The entropy of the quantum field is found to
be proportional to the surface area of the static source. The Bekenstein–Hawking
entropy of a black hole can also be interpreted as the thermodynamic entropy of
coherent states of a physical vacuum in a vicinity of a horizon surface.

4.1 Introduction

By the early 20th century basic principles of statistical description of ther-
modynamic systems were well established by efforts of Boltzmann, Gibbs,
Einstein and many others. In particular, a statistical definition of an entropy
was found to be very important in the theory of non-equilibrium processes
and fluctuations. As for an equilibrium statistical thermodynamics, the en-
tropy was nothing more than one of characteristic thermodynamic functions.
This situation changed drastically when methods of an information theory
penetrated into statistical mechanics.
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In 1957 Jaynes [1] proposed a rule to assign numerical values to probabil-
ities in circumstances where certain partial information is available. Jaynes
showed in particular how his rule, when applied to statistical mechanics, leads
to the usual Gibbs’ canonical distribution. Today this rule, known as the Max-
imum Entropy Principle (MEP), is used in many fields, ranging from physics
and chemistry to stock market analysis. Applicability in physics is, however,
much wider. Aside of statistical thermodynamics, MEP has now become a
powerful tool in non–equilibrium statistical physics [2, 3]. For the latest de-
velopments in classical MEP the interested reader may consult ref. [4] and
citations therein.

Nevertheless the MEP has always remained controversial. The controversy
is related to the very goal of Janes’ approach, namely, to remove statistical
mechanics from the field of physics and reconstruct it as a branch of logic or
epistemology. This aspect of the MEP met the resistance from the physics
community. The works of Jaynes [5], Penrose [6], Lavis and Milligan [7], Buck
and Macaulay [8], Balian [9], Denbigh and Denbigh [10], Dougherty [11] and
other cited there (see also [12]) provide insight in the pros and cons of the MEP
in relation to statistical physics. It may be supposed that this discussion played
a part in a general revision of relationship between physics and information
theory noticed by Wheeler [13]: ”I, like other searchers, attempt formulation
after formulation of the central issues...taking for a working hypothesis the
most effective one that has survived this winnowing: It from bit. Otherwise
put, every it – every particle, every force, even the space–time continuum itself
– derives its function, its meaning, its very existence entirely-even if in some
contexts indirectly-from the apparatus-elicited answers to yes-or-no questions,
binary choices, bits. It from bit symbolizes the idea that the physical world has
at bottom - at a very deep bottom, in most instances - an immaterial source
and explanation; that which we call reality arises in the last analysis from the
posing of yes-no questions and the registering of equipment-evoked responses;
in short, that all things physical are information-theoretic in origin and this
is a participatory universe.”

For our purposes it suffices to note that the term MEP is not a physi-
cal principle in the proper sense. Nevertheless the MEP may be used as a
very useful heuristic method for construction of probability distributions. Ac-
cording to the MEP for the Boltzmann-Gibbs statistics, the distribution of
probabilities p = {pi} is determined by the requirement of maximum of the
Gibbs–Shannon entropy

S(G) = −
∑

i

pi ln pi

under additional constraints of fixed value

U = 〈H〉p ≡
∑

i

Hipi, (4.1.1)
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and normalization of p. Then, the distribution {pi} is determined from the
extremum of the functional

LG(p) = S(G) − β0

W∑

i

Hipi − α0

W∑

i

pi; (4.1.2)

where β0 and α0 are Lagrange multipliers . Its maximum is ensured by the
Gibbs canonical distribution. Indeed, equating its functional derivative with
respect to pi to zero we find

ln pi + β0Hi + α0 + 1 = 0

whence
pi = e−α0−1−β0Hi

With account of normalization condition
∑

i pi = 1 we get eα0+1 = ZG and

pi = pGZ
i ≡ Z−1

G e−β0Hi , ZG ≡
∑

i

e−β0Hi (4.1.3)

On the other side, multiplying Eq. (1.4) by pi and summing up over i, with
account of normalization condition

∑
i pi = 1 we get α0 +1 = S(G)−β0U and

pi = pGS
i ≡ e−S(G)−β0∆Hi , ∆Hi = Hi − U (4.1.4)

The expressions (4.1.3) and (4.1.4) may be called a Z-form and S-form of
the Gibbs’ distribution respectively in which β0 is determined by condition of
correspondence between Gibbs thermostatistics and classical thermodynam-
ics as β0 = 1/kBT0 where T0 is the thermodynamic temperature. They are
equivalent due to equivalence of two definitions of the Helmholtz free energy,
F = U − T0S and F = −kBT0 lnZG.

However, when investigating complex physical systems (for example, frac-
tal and self-organizing structures, turbulence) and a variety of social and bio-
logical systems, it appears that the Gibbs distribution does not correspond to
observable phenomena. In particular, it is not compatible with a power-law
distribution that is typical [14] for such systems. Introducing into Eq. (4.1.2)
of additional constraints to a sought distribution in the form of conditions
of true average values 〈X(m)〉p of some physical parameters of the system
X(m) gives rise to generalized Gibbs distributions with additional terms in
the exponent (4.1.3) but does not change its exponential form.

Montroll and Shlesinger [15] investigated this problem and found that
MEP for the Gibbs–Shannon entropy could give rise to the power–law distri-
bution under only very special constraint that “has not been considered as a
natural one for use in auxiliary conditions.”

These problems will be the subject of next Secs. 2–10. The last Sec. 11 is
devoted to development of thermodynamics of a quantum mechanical system
in a coherent state. This approach provides also fresh insight (in Subsec. 11.3)
into the problem of the black hole entropy.
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4.2 Helmholtz free energy and Renyi entropy

On the other hand, there is no doubts about the MEP as itself, because of it
is a kind of “a maximum honesty principle” according to which we demand
a maximal uncertainty from the distribution apart from true description of
prescribed average values. In the opposite case we risk to introduce a false
information into the description of the system. Thus, it only remains for us
to throw doubt on the information entropy form.

The well–known Boltzmann formula defines a statistical entropy, as a log-
arithm of a number of states W attainable for the system

S
(B)
W = lnW (4.2.1)

Here and below the entropy is written as dimensionless value without the
Boltzmann constant kB . Besides, we will use a natural logarithm instead of
binary logarithm accepted in information theory.

This definition is valid not only for physical systems but for much more
wide class of social, biological, communication and other systems described
with the use of statistical approach. The only but decisive restriction on the
validity of this equation is the condition that all W states of the system
have equal probabilities (such systems are described in statistical physics by
a microcanonical ensemble). It means that probabilities pi = pW ≡ 1/W (for
all i = 1, 2, ...,W ) that permits to rewrite the Boltzmann formula (4.2.1) as

S
(B)
W = − ln pW .

When the probabilities pi are not equal we can introduce an ensemble of
microcanonical subsystems in such a manner that all Wi states of the i-th
subsystem have equal probabilities pi and its Boltzmann entropy is S(B)

i =

− ln pi. The simple averaging of the Boltzmann entropy S
(B)
i leads to the

Gibbs–Shannon entropy

S(G) = 〈S(B)
i 〉p ≡ −

∑

i

pi ln pi. (4.2.2)

Just such derivation of S(G) is used in some textbooks (see, e. g. [16, 17]).
This entropy is generally accepted in statistical thermodynamics and commu-
nication theory but needs in modification for complex systems. To seek out
a direction of modification of the Gibbs–Shannon entropy we consider first
extremal properties of an equilibrium state in thermodynamics.

A direct calculation of the average energy of a system gives the internal
energy (4.1.1), its extremum is characteristic of an equilibrium state of rest
for a mechanical system, other than a thermodynamic system that can change
heat with a heat bath. An equilibrium state of the latter system is character-
ized by extremum of the Helmholtz free energy F . To derive it statistically
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from the Hamiltonian without use of thermodynamics we, following Balescu
[5], introduce generating function for the random value Hi

ΦH(λ) =
∑

i

eλHi ,

where λ is the arbitrary constant, and construct a cumulant generating func-
tion

ΨH(λ) = lnΦH(λ)

that becomes the Helmholtz free energy F when devided by λ that is chosen
as λ = − 1/kBT0. Such a choice of the pre-factor 1/λ ensures a limiting
passing of the Helmholtz free energy F into the internal energy U that is the
simple equilibrium average of the Hamiltonian. Really, when λ→ ∞ (T0 → 0)
with the use of the l’Hopital rule we get

F (T0)|T0→0 = lim
T0→0

[
−kBT0 ln

∑

i

e−Hi/kBT0

]
=
∑

i

p
(G)
i Hi = U.

It means that an equilibrium state of the thermodynamic system is defined
by minimum of the internal energy as well as of the free energy at very low
temperature of a heat bath T0.

Now we return to the problem of a generalized entropy for open complex
systems. Exchange by both energy and entropy is characteristic for them.
As an illustration, there is a description by Kadomtsev [19] of self-organized
structure in a plasma sphere: “The entropy is being born continuously within
the sphere and flowing out into surroundings. If the entropy flow had been
blocked, the plasma would ’die’. It is necessary to remove continuously ’slag’
of newly produced entropy”.

That is the reason why the Gibbs–Shannon entropy, derived by the simple
averaging of the Boltzmann entropy can not be à function of which extremum
characterizes a steady state of a complex system which exchange entropy with
surroundings, just as the minimum of the internal energy does not characterize
an equilibrium state of the thermodynamic system being in heat contact with
a heat bath.

It is pertinent to introduce the noun of an entropy bath (or informa-
tion bath). Coupling with the entropy bath is a necessary condition for self-
organization of a complex system. As a result of such coupling the system
under consideration can not reach a state of thermodynamic equilibrium that
is characterized by minimum of the Helmholtz free energy. It is necessary to
look for any other function to characterize its steady state resulted from the
coupling with the entropy bath.

An effort may be made to find a “free entropy” of a sort by the same way
that was used above for derivation of the Helmholtz free energy for a system
coupled with a heat bath. The generating function is introduced as
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ΦS(λ) =
∑

i

eλS
(B)
i

Then the cumulant generating function is

ΨS(λ) = lnΦS(λ) = ln
∑

i

p−λ
i .

To obtain the desired generalization of the entropy we are to find a λ-
dependent numerical pre-factor which ensures a limiting pass of the new
entropy into the Gibbs–Shannon entropy. Such the coefficient is 1/(λ + 1).
Indeed, the new λ-family of entropies

S(λ) =
1

1 + λ
ln
∑

i

p−λ
i .

includes the Gibbs–Shannon entropy as a particular case when λ→ −1.
Thus, it has appeared that the desired “free entropy” coincides with the

known Renyi entropy [20, 21]. It is conventional to write it with the parameter
q = −λ in the form

S(R)
q (p) =

1

1 − q
ln
∑

i

pq
i (4.2.3)

Renyi introduced his entropy on a base of strictly formal motivation. Renyi
wanted to find the most general class of entropies which preserved the
additivity of statistically independent systems and were compatible with
Kolmogorov–Nagumo [22, 23] generalized averages of the form

〈x〉φ = φ−1

(
∑

i

piφ(xi)

)
(4.2.4)

where φ(x) is an arbitrary continuous and strictly monotonic function, φ−1(x)

is the inverse function and xi = S
(B)
i . Renyi then proved that when the

postulate of entropy additivity for independent events is applied to Eq.(4.2.4)
it dramatically restricts the class of possible φ(x)’s. In fact, only two types are
possible; φ(x) = c x+ d which implies the Gibbs-Shannon entropy (4.2.2) and
φ(x) = c e(1−q)x with q > 0 (c and d are arbitrary constants) which implies the
Renyi entropy (4.2.3). Note that for linear φ(x)’s the Kolmogorov–Nagumo
generalized average turns out to be the ordinary linear mean and hence Gibbs-
Shannon entropy is the averaged entropy in the usual sense as it was shown
above.

On the other hand, the exponential Kolmogorov–Nagumo function φ(x)
leads us to the same expression that was derived above as a “free entropy”.
Physically, such a choice of φ(x) on its own appears accidental here until it is
not pointed to the fact that the same exponential function of the Hamiltonian
provides derivation of the free energy which is extremal at an equilibrium
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Fig. 4.1. The entropies S
(R)
q (p) (left) and S

(Ts)
q (p) (right) for the particular case

W = 2, p1 = x, p2 = 1 − x and 0.5 < x < 1, 0 < q < 2.

state of a thermodynamic system exchanging heat with a heat bath. This fact
permits to suppose that the Renyi entropy derived in the same manner should
be extremal at a steady state of a complex system which exchange entropy
with its surroundings very actively.

When the postulate of entropy additivity for independent events is re-
jected, the class of possible φ(x) is enlarged sufficiently. Nevertheless, for any
acceptable φ(x), an entropy Sφ does pass into the Boltzmann entropy in the
case of equally probable distribution, and in my opinion such a behavior is
to be considered as a criterion of self-consistency of any generalized form of
entropy.

Different properties of the Renyi entropy are discussed in particular in
Refs. [20, 24, 25]. It is positive (S(R)

q ≥ 0), convex at q ≤ 1, passes into

the Gibbs–Shannon entropy limq→1 S
(R)
q = S(G) and into Boltzmann entropy

(4.2.1) for any q in the case of equally probable distribution p. An important
general property of the Renyi entropy is that it is a monotonically decreasing
function of q:

S(R)
q (p) ≥ S

(R)
q′ (p) for q < q′.

Renyi’s entropy hass proved to be important in variety of practical applica-
tions. Coding theory [26], statistical inference [27], quantum mechanics [28],
chaotic dynamical systems [29, 30, 31, 32] and multifractals provide examples.

In the case of |1 −∑i p
q
i | ≪ 1 (which, in view of normalization of the

distribution {pi}, corresponds to the condition |1 − q| ≪ 1), one can restrict

oneself to the linear term of logarithm expansion in the expression for S(R)
q (p)

over this difference, and S(R)
q (p) changes to the Tsallis entropy [33]

S(Ts)
q (p) =

1

1 − q

(
W∑

i

pq
i − 1

)
.
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This entropy is derivable independently of the Renyi entropy, as well (see Sec.
4). Nevertheless, the Tsallis entropy is identical in form to the linearized Renyi
entropy.

The logarithm linearization results in the entropy becoming nonextensive,
that is, S(Ts)

q (pI ·pII) �= S
(Ts)
q (pI)+S

(Ts)
q (pII) for two statistically independent

systems ΣI and ΣII . This property is widely proclaimed as an advantage by
Tsallis and by the international scientific school that has developed around
him for the investigation of diverse complex systems (see web site [34]). In so
doing, the above-identified restriction |1−q| ≪ 1 is disregarded. As a result of
nonextensivity the Tsallis entropy becomes incompatible with the Boltzmann
entropy (4.2.1) because of the latter was derived by Planck in such the form
just from the extensivity condition S(pI · pII) = S(pI) + S(pII).

Both entropies are illustrated in Fig. 1 for the particular case W = 2
and p1 = x, p2 = 1 − x at the range 0.5 < x < 1 and 0 < q < 2. It is
seen that S(R)

q (p) < S
(Ts)
q (p) as would be expected for the logarithm function

and its linearization. Another special feature of the Renyi entropy is that
for p1 = p2 = 1/2 (x = 0.5) it becomes independent on q and equal to
SB)(W = 2) = ln 2 ≃ 0.69 in contrast to the Tsallis entropy that does not
pass into the Boltzmann entropy for such p and remains to be q-dependent.

4.3 On stability of Renyi and Tsallis entropies

Currently a lot of papers by Tsallis and his coworkers have appeared (see e.g.
[35, 36, 37, 38, 39]) where statements are repeated that the Renyi entropy
is unstable (discontinuous) under arbitrary small deformations of any given
probability distribution in contrast to stability (continuity) of the Tsallis en-
tropy. These works are based on the papers by Abe [40] and Leshe [41].

Two counterexamples (for q < 1 and q > 1) of instability of the Renyi en-
tropy were discussed in Ref. [40] following Leshe [41] and it was shown that the
Tsallis entropy is stable for these counterexamples. From the time of its pub-
lication this work is often referred as a mortal verdict for the Renyi entropy.
On the other hand, the Renyi entropy is widely used now. Because of this,
the main points of Ref. [40] are to be revised carefully. This question became
the subject of our discussion with Abe [42, 43]. Abe [40] calculated responses∣∣∣∆S(R)

q

∣∣∣ and
∣∣∣∆S(Ts)

q

∣∣∣ to small variation of initial model distributions over W

states of a system and then passed to the limit W → ∞ treating an amplitude
δ of the variation as a finite constant. As a result, he found a loss of continuity
of a response of the Renyi entropy to small perturbations. We feel that such
a conclusion is inadmissible on two counts. First, the normalized values

∣∣∣∣∣∆
(
S

(R)
q

S
(R)
max

)∣∣∣∣∣ and

∣∣∣∣∣∆
(
S

(Ts)
q

S
(Ts)
max

)∣∣∣∣∣
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rather than |∆S(R)
q | and |∆S(Ts)

q | per se, were considered with different W -

dependent normalization factors, S(R)
max = ln W and S(Ts)

max = (W 1−q − 1)/(1−
q), respectively. Such different normalizations influenced their limiting prop-
erties and, consequently, conclusions about their stabilities. Indeed, their ratio
at large W is

S
(Ts)
max

S
(R)
max

=
1

1 − q

W 1−q − 1

ln W

∣∣∣∣
W→∞

−→W 1−q.

It is just this additional multiplier which ensures continuity of the gain of the
normalized Tsallis entropy S

(Ts)
q /S

(Ts)
max at q < 1 in contrast to S(R)

q /S
(R)
max.

It would be more reasonable to normalize both entropies by the common
denominator, say, sup{S(R)

max, S
(Ts)
max } or number of states W . But the most

essential point is that we have to deal only with unbounded entropies because
of their bounded versions S(R)

q /S
(R)
max and S(Ts)

q /S
(Ts)
max are irrelevant both to

thermostatistics and information theory. Second, continuity is to be checked
with the use of the opposite iterated limiting process: first, δ → 0 and then
W → ∞. Such an order corresponds to a traditional approach in statistical
physics where all properties are calculated first for finite systems and the
thermodynamic limit is performed after all calculations (see, e. g. [44]).

In what follows, results of Ref. [40] are reconsidered with due regard to
both these observations. For the sake of brevity, the first of Abe’s counterex-
amples alone will be discussed here. It is especially important, as it refers to
the range 0 < q < 1 of most if not all of the applications [45] of the Renyi
entropy. The second counterexample may be discussed in the same manner.

The examined small (δ ≪ 1) deformation of distribution {p} over W states
(W ≫ 1) for 0 < q < 1 is

pi = δi1, p′i =

(
1 − δ

2

W

W − 1

)
pi +

δ

2

1

W − 1
. (4.3.1)

Using the well-known definitions of the Tsallis and Renyi entropies, we get

∣∣∣∆S(R)
q

∣∣∣ = 1

1 − q
ln

[(
1 − δ

2

)q

+

(
δ

2

)q

(W − 1)1−q

]
(4.3.2)

∣∣∣∆S(Ts)
q

∣∣∣ = 1

1 − q

[(
1 − δ

2

)q

+

(
δ

2

)q

(W − 1)1−q − 1

]
(4.3.3)

It is seen from here that the gain of the Tsallis entropy is no more than the
linearization of the logarithm form of the gain of the Renyi entropy. As a
consequence of concavity of the logarithm function we have

∣∣∣∆S(R)
q

∣∣∣ <
∣∣∣∆S(Ts)

q

∣∣∣ for all δ and W.

Thus, stability of the Renyi entropy for the counterexample (4.3.1) is at least
not lower stability of the Tsallis entropy.
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Because he considered their normalized values with different W -dependent
normalization factors, S(R)

max, S
(Ts)
max , Abe was not concerned with this evident

inequality. This difference in normalization influenced their limiting properties
and consequently, their stabilities. In particular, Abe found that

∣∣∣∣∣
∆S

(R)
q

S
(R)
max

∣∣∣∣∣→ 1 and

∣∣∣∣∣
∆S

(Ts)
q

S
(Ts)
max

∣∣∣∣∣→
(
δ

2

)q

for all q. Then, we can take the case q ≃ 1 when S(R)
q ≃ S

(Ts)
q . According to

[40], one of this entropies, S(R)
q is unstable, while other one, S(Ts)

q is stable
due to different name only.

As for stability of the Renyi and Tsallis entropies, there is no double limit

(δ → 0, W → ∞) of
∣∣∣∆S(R)

q

∣∣∣ and
∣∣∣∆S(Ts)

q

∣∣∣ as functions of δ and W but there

is a repeated limit (δ → 0 and then W → ∞) and it is equal to zero. Indeed,
for any finite W and δ/2 ≪ (W − 1)−|1−q|/q these functions, Eqs. (4.3.2) and
(4.3.3), become infinitesimal

∣∣∣∆S(R)
q (p)

∣∣∣ ≃ 1

1 − q

(
δ

2

)q

(W − 1)1−q, 0 < q < 1,

∣∣∣∆S(Ts)
q (p)

∣∣∣ ≃ 1

1 − q

(
δ

2

)q

(W − 1)1−q, 0 < q < 1,

In terms of ε − δ the continuity condition is formulated in the next form:
For every given ε > 0 we are to find such δ that both ∆S become less ε if∑

i |pi − p′i| ≤ δ. Here it means that δ < 2[(1 − q)W 1−qε]1/q. Dependence of
this condition on W is a result of the fact that both entropies are not bounded
functionals.

Another attack on the Renyi entropy was recently launched by Lesche [46].
The most important points of his paper related to the subject are outlined
below. He considers first an initial macrostate that is characterized by eigenval-
ues aI , bI , ..., hI of macroscopic commeasurable observables A,B, ...,H. The
special characteristics of this kind of state are the following: (1) The number
of occupied microstates WI = WaI ,bI ,...,hI

is of the order MN and therefore
any individual probability (WI)

−1 is extremely small (of the order of M−N ).
(2) The number of empty microstates is larger than the number of occupied
microstates by a huge factor, which is also of the order of M̃N . Essentially
these two characteristics make this sort of state a problem case.

This initial state is of the form

ρ =

WI∑

j

|aI , bI , ..., hI , j〉
1

WI
〈aI , bI , ..., hI , j|

where |aI , bI , ..., hI , j〉 is a basis of common eigenstates (Dirac’s ket-vectors)
and j is an index of degeneracy of the initial macrostate.
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The Renyi entropy of this state becomes the Boltzmann entropy of the
macrostate

S(R)
q = S(B) = lnWI (4.3.4)

Then Leshe proposes to imagine that a friend of ours enters the laboratory and
criticizes our experiment. He claims our preparation of state may in some cases
result in the macrostate [ā, b̄, ..., h̄] with the number of occupied microstates
W = Wā,b̄,...,h̄. Now, if the probability of such cases, say, δ = 10−100, we will
not be able to convince our friend that our probability assignment is better
than his by showing experimental results. His density operator would be

ρ̃ =

WI∑

j

|aI , bI , ..., hI , j〉
1 − δ

WI
〈aI , bI , ..., hI , j|+

W∑

j

|ā, b̄, ..., h̄, j〉 δ
W

〈ā, b̄, ..., h̄, j|

The Renyi entropy of the friend’s probability assignment is

S̃(R)
q (δ) =

1

1 − q
ln
{

(1 − δ)q W 1−q
I + δq W

1−q
}

=
1

1 − q
ln

{
δq W

1−q

(
1 +

(1 − δ)q

δq

W 1−q
I

W
1−q

)}

= ln
(
δq/1−q W

)
+

1

1 − q
ln

(
1 +

(1 − δ)q

δq

W 1−q
I

W
1−q

)

The first term is of order N . To estimate the second term we now distinguish
the following two cases: (1) If q > 1, we shall assume that our friend thought
of a state [ā, b̄, ..., h̄] with smaller entropy than the main state [aI , bI , ..., hI ],
that is,

W ≪ δq/q−1WI for q > 1 (4.3.5)

If S(B)(aI , bI , ..., hI) − S(B)(ā, b̄, ..., h̄) is macroscopic (of the order N), the
third term is clearly also negligible as compared to the first one. (2) If q < 1,
we assume that the friend thought of a state [ā, b̄, ..., h̄] whose entropy is
macroscopically larger than S(B)(aI , bI , ..., hI), that is

W ≫ δ−q/1−qWI for q < 1 (4.3.6)

Again the second term will be negligible.

S̃(R)
q (δ) = ln

(
δq/1−qW

)
(4.3.7)

or

S̃(R)
q (δ) = lnW +

q

1 − q
ln δ = ln

(
δ−1W

)
+

1

1 − q
ln δ (4.3.8)

Then, according to Lesche, the second terms of these equations are negligible
as compared to the first ones (for instance, with N ≈ 1024 and δ = 10−100 his
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argument is restriction to q values with |1 − q| ≫ 10−22). So, in either case,
the Renyi entropy of the friend’s probability assignment would essentially be
the entropy of the irrelevant state (ā, b̄, ..., h̄)

S̃(R)
q ≃ lnW ≃ ln

(
δ−1W

)
, (4.3.9)

which is far away from our initial value, Eq. (4.3.4).
I begin my comments with the remark that Lesche did not touch the same

problem for the Tsallis entropy in spite of that he thanks C. Tsallis and S.
Abe for bringing his attention to the subject that he abandoned many years
ago.

I have made an effort [47] to make up this deficiency. Following are corre-
sponding speculations for the Tsallis entropy. The Tsallis entropy of the initial
state ρ is

S(Ts)
q =

1

1 − q

(
W 1−q

I − 1
)

(4.3.10)

For the friend’s probability assignment ρ̃ it becomes

S̃(Ts)
q (δ) =

1

1 − q
{(1 − δ)q W 1−q

I + δq W
1−q − 1}

=
1

1 − q

(
δq/1−q W

)1−q
{

1 +
W 1−q

I − 1

(δq/1−q W )1−q

}

With the use of the same speculations that have led Lesche to Eqs. (4.3.7)-
(4.3.9) the Tsallis entropy for both cases q > 1 and q < 1 takes the form

S̃(Ts)
q (δ) =

1

1 − q

(
(δq/1−q W )1−q − 1

)

So, we see that the Tsallis entropy is far away from its initial value, Eq.
(4.3.10), as well as the Renyi entropy.

Under restrictions (4.3.5) and (4.3.6) they both correspond to an equally
probable distribution pj = (δq/1−qW )−1 (for all j) related to the friend’s
state [ā, b̄, ..., h̄] without regard for the initial state [aI , bI , ..., hI ]. Just this
result should be expected. Indeed, states with greatest (least) probabilities
contribute significantly to both q-entropies at q > 1 (q < 1). The restrictions
(4.3.5) and (4.3.6) may be rewritten for the probabilities as

δ

W
≫ 10100/(q−1) 1 − δ

WI
for q > 1;

≪ 10100/(q−1) 1 − δ

WI
for q < 1.

Then, the resulting equations for S̃(R)
q (δ) and S̃(Ts)

q (δ) are to be accepted as
quite natural, but not as evidences of their instabilities.
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It is interesting to discuss an alternative form of the Renyi and Tsallis
entropies expansions. The more natural form of the Renyi entropy expansion
should start with the Boltzmann entropy, Eq. (4.3.4), as a leading term of the
expansion. Then

S(R)
q (δ) =

1

1 − q
ln

{
(1 − δ)qW 1−q

I

(
1 +

δq

(1 − δ)q

W
1−q

W 1−q
I

)}

= lnWI +
q

1 − q
ln(1 − δ) +

1

1 − q
ln

(
1 +

δq

(1 − δ)q

W
1−q

W 1−q
I

)

The second term of this expansion is negligible when |1 − q| ≫ δ. The third
term becomes negligible when the macrostate proposed by the friend fulfills
the inequalities

W
1−q

W 1−q
I

≪ δ−q

or, taking into consideration that δ = 10−100,

δ

W
≪ 10100/(q−1) 1 − δ

WI
for q > 1;

≫ 10100/(q−1) 1 − δ

WI
for q < 1

We see that δ-pre-factors 10100/(q−1) in both last inequalities alleviate re-
strictions imposed on W , in contrast to the role of such δ-pre-factors in the
inequalities (3.20), (3.21) of the Lesche’s expansion. It means that the third
term of our expansion can be neglected in much more numerous cases than
the one of the Lesche expansion. In particular, cases of W ≃WI are included
here.

It may be supposed that the macrostate [ā, b̄, ..., h̄] chosen stochastically
would fulfill inequalities (3.24) or (3.25), but not (3.20) or (3.21) with over-
whelming probability, in contrast to the choice by the Lesche’s friend who
takes the part of Maxwell’s demon of a sort. So, the Renyi entropy of the
more probable assignment would be essentially the same Boltzmann entropy
of our initial state

S(R)
q (δ) ≃ lnWI .

S̃(Ts)
q (δ) =

1

1 − q
{(1 − δ)q W 1−q

I + δq W
1−q − 1}

=
1

1 − q
(1 − δ)q W 1−q

I

{
1 +

δq W
1−q − 1

(1 − δ)q W 1−q
I

}

≃ 1

1 − q

{
(1 − δ)q W 1−q

I − 1
}
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≃ 1

1 − q

{
W 1−q

I − 1
}
,

Similar alternative expansion of the Tsallis entropy under the same restrictions
gives rise to which is the Tsallis entropy of the initial state. In general, it
should be proposed to Lesche’s experimenters to perform a coarse-graining
with a corresponding weight function over all possible initial states if they
are not sure in their initial choice in such a degree that they are ready to
accept the friend’s version. Discussion of such an approach would be too far
from the subject of the Lesche original paper [46], so I have confined myself
to indication of the alternative initial states.

The above speculations count in favor of stability of both Renyi and Tsallis
entropies relative to stochastic perturbations of an initial macrostate with the
uniform distribution of probabilities of microstates.

4.4 Axiomatics of an information entropy

The above physical foundation may appear as yet imperfectly conclusive to
revise the traditional Gibbs-Shannon inforamtion entropy.

To find the most rigorous foundation of the new information entropy it
is desirable to axiomatize it. Shannon [48] was the first who investigated ax-
iomatic foundation of the Gibbs-Shannon entropy. These axioms were ad-
vanced by Khinchin [49] and are as follows, see also Ref. [24]):

1. S(p) is a function of the probabilities pi only and has to take its max-
imum value for the uniform distribution of probabilities pi = 1/W :
S(1/W, ..., 1/W ) ≥ S(p′), where p′ is any other distribution.

2. The second axiom refers to a composition Σ of a master subsystem ΣI

and subordinate subsystem ΣII for which probability of a composed state
is

pij = Q(j|i)pI
i (4.4.1)

where Q(j|i) is the conditional probability to find the subsystem ΣII in
the state j if the master subsystem ΣI is in the state i. Then the axiom
requires that

S(p) = S(pI) + S(pI |pII) (4.4.2)

where
S(pI |pII) =

∑

i

pI
iS(Q|i) (4.4.3)

is the conditional entropy and S(Q|i) is the partial conditional entropy of
the subsystem ΣII when the subsystem ΣI is in the i-th state.

3. S(p) remains unchanged if the sample set is enlarged by a new, impossible
event with zero probability: S(p1, ..., pW ) = S(p1, ..., pW , 0)
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While proving his uniqueness theorem Khinchin enlarged the second axiom.
He supposed that all U states of the composite system Σ were equally prob-
able, that is, pij = 1/U for all i and j; whence he got

S(p) = lnU (4.4.4)

Besides, he supposed that U II
i equally probable states of the subordinate sub-

system ΣII corresponded to each i-th state of the master subsystem ΣI . Just
this assumption is the most questionable. Indeed, the probability distribution
for the subsystem ΣII coupled with the master subsystem should be rather
canonical distribution than equally probable one. Nevertheless, Khinchin took
Q(j|i) = 1/U II

i for i = 1, ...,W and j ∈ U II
i ; whence from Eqs. (4.4.1) and

(4.4.3) he obtained

U II
i = UpI

i , S(Q(j|i) = lnU II
i , S(pI |pII) = lnU +

∑

i

pI
i ln pI

i .

(4.4.5)
Substituting Eqs. (4.4.4), (4.4.5) into Eq. (4.4.2) Khinchin found the Gibbs–
Shannon entropy for the master subsystem ΣI as

S(G)(pI) = −
W∑

i

pI
i ln pI

i .

The second axiom can be changed to the more weak form:
(2’) The information entropy for independent subsystems ΣI and ΣII is

additive:
S(p) = S(pI) + S(pII).

The set of axioms (1), (2’), (3) can be satisfied with both the Gibbs–Shannon
entropy and the more general Renyi information entropy S(R)(p) .

Abe [50] proposed a set of three axioms for the Tsallis entropy. The first
and third of his axioms are copies of Khinchin’s axioms (1) and (3). His
second axiom is of crucial importance in justification of the Tsallis entropy. It
is written as

Sq(p
I , pII) = Sq(p

I) + Sq(p
I |pII) + (1 − q)Sq(p

I)Sq(p
I |pII) (4.4.6)

where
S(pI |pII) =

∑

i

P I
i S(Q|i)

and

Pi =
pq

i∑
j p

q
j

is the escort distribution associated with pi [24].
On the basis of these three axioms the uniqueness theorem for the Tsallis

entropy was proved [50]. There are two key points in his second axiom. First,
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the escort distribution is introduced into the Tsallis thermostatistics as a cor-
ner stone of its axiomatic foundation but not as one of auxiliary tools. Second,
in the case of statistically independent subsystems ΣI and ΣII the entropy
Sq(p

I , pII) does not become a sum of two subsystem’s entropies. Indeed, in
this case the conditional entropy Sq(p

I |pII) passes into the entropy of the
subsystem ΣII and the second axiom, Eq. (4.4.6) becomes

Sq(p
I , pII) = Sq(p

I) + Sq(p
II) + (1 − q)Sq(p

I)Sq(p
II)

It means that this axiom introduces non-additivity or non-extensivity of the
information entropy of a compound system even though its subsystems are
statistically independent. Tsallis and his adherents enunciate this property as
a crucial principle of their thermostatistics.

Another set of axioms for the Renyi entropy was proposed by Jizba and
Arimitsu [51]:

1. For a given integer W and given p = {p1, p2, . . . , pW } (pk ≥ 0,
∑W

k pk =
1), S(R)(p) is a continuous with respect to all its arguments.

2. For a given integer W , S(R)(p1, p2, . . . , pW ) takes its largest value for
pk = 1/W (k = 1, 2, . . . ,W ) with the normalization S(R)

(
1
2 ,

1
2

)
= 1.

3. For a given q > 0; S(R)(A ∩B) = S(R)(A) + S(R)(B|A) with

S(R)(B|A) = φ−1

(
∑

k

Pk(q)φ(S(R)(B|A = Ak))

)

and Pk(q) = pq
k/
∑

k p
q
k.

4. φ(x) is invertible and positive in [0,∞).
5. S(R)(p1, p2, . . . , pW , 0) = S(R)(p1, p2, . . . , pW ), i.e., adding an event of

probability zero (impossible event) we do not gain any new information.

Note particularly the appearance of distribution P (q) in the axiom (3). This
is the same escort distribution that was introduced in the Abe’s set of axioms.
Note also the Kolmogorov-Nagumo generalized average in the axiom (3) for
the conditional entropy. Jizba and Arimitsu chose the Kolmogorov-Nagumo
function φ in the exponential form just as it was done in the original derivation
of the Renyi entropy. As a result, they obtained their axiomatic foundation of
same Renyi entropy, as it would be expected for such the choice of φ.

It should be observed that all above three sets of axioms differ mainly in
the forms of conditional entropies. They appear as Procrustean Beds1 of sorts
each of which is fitted to select one information entropy and to exclude any
other forms of it. Moreover, we have no a priori recipe to give one of them
preference over another two. Such a controversy prompts us to recall the gen-
eral notion of an axiom. According to Encyclopedia Britannica, “Axiom in

1 After Procrustes, a mythical Greek giant who stretched or shortened captives to
make them fit his beds.
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logic, an indemonstrable first principle, rule, or maxim, that has found gen-
eral acceptance or is thought worthy of common acceptance whether by virtue
of a claim to intrinsic merit or on the basis of an appeal to self-evidence. An
example would be: ’Nothing can both be and not be at the same time and in
the same respect.” ’ In this aspect, all above axioms related to conventional
entropies can not be accepted as axioms. Indeed, each of them is not “an
indemonstrable first principle, rule, or maxim, that has found general accep-
tance or is thought worthy of common acceptance whether by virtue of a claim
to intrinsic merit or on the basis of an appeal to self-evidence” but man-made
restriction fitted in well with one preferred kind of information entropy.

There is another set of five axioms that corresponds to the formal definition
of the noun “axiom” by Shore and Johnson in 1980 [52, 53]2; see also Uffink
[12]. In their approach, it is assumed that one is looking for a procedure
by which a prior probability distribution {ui} is changed into a posterior
distribution {pi} when new information is taken into account. It is further
subsumed that the procedure takes the form of maximizing some relative
uncertainty expression of the form F (u, p) under the constraint. However,
the procedure is characterized by how the posterior depends on the prior
distribution and the new information. MEP appears only as the special case
where the prior distribution is uniform.

Technically, the problem is formulated as follows. A system has a set of W
possible states with an unknown true distribution {pi}. The prior distribu-
tion, {ui} represents a (subjective) estimate of {pi} before new information is
given. In response to this information, the prior density {ui} is changed into
a posterior density {pi}. It is assumed that the inference rule yields this pos-
terior {pi} as a function depending only on the prior {ui} and the constraint
I, symbolically written as:

p = I ◦ u
where ◦ is an ‘updating operator’.

Shore and Johnson give five “consistency axioms” for this updating oper-
ator [52, 53].

1. Uniqueness: The result should be unique.
2. Invariance: The choice of coordinate system should not matter3.
3. System independence: It should not matter whether one accounts for in-

dependent information about independent systems separately in terms of
different densities or in terms of a joint density.

4. Subset independence: It should not matter whether one treats disjoint
subsets of system states in terms of separate conditional densities or in
terms of the full density.

2 Note added in proof: Although their work has been unfortunately ignored so far,
Abe and Bagci (Phys. Rev. E71, 016139 (2005)) has now published an account
of these axiomatics.

3 This axiom is important for continuous probability densities
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5. In the absence of new information, we should not change the prior.

The above axioms do indeed seem reasonable for the outlined problem. The
following theorem is proven (see [12]) on the base of these axioms.

Theorem 4.1. An updating procedure satisfies the five consistency axioms
above if and only if it is equivalent to the rule

Maximize Uη(u, p) under the constraint I

where

Uη(u, p) =

(
W∑

i

(
Pi

ui

)−η

Pi

)1/η

, η < 1.

For the particular case of a homogeneous prior distribution ui = 1/W (for all
i) this rule can be modified as

Maximize any monotonous function Ψ of

Uη(p) =

(
W∑

i

p1−η
i

)1/η

under the constraints I.
The most evident choice of the monotonous function is Ψ(Uη) = lnUη(p),

that is the Renyi entropy S(R)
q for q = 1 − η. Such a choice of Ψ ensures a

passage to the limit S(R)
q → S(G) when q → 1. In the absence of any additional

information I the operator o becomes the unit operator and the Renyi entropy
for any q transforms into the Boltzmann entropy. Thus, the Shore-Johnson
theorem provide quite conclusive foundation of the Renyi entropy as itself and
the maximum entropy principle for it and in doing so it justifies the proposal
stated in Sec. 2 that the Renyi entropy is maximal at a steady state of a
complex system.

On the other hand, another choice of the monotonous function Ψ is possible
that ensures the passage to the limiting case S(G) when q → 1. It is Ψ(Uη) =
([Uη(p)]η − 1)/η, that is the Tsallis entropy. In this aspect, the above axioms
and theorem can be considered as an alternative foundation of the Tsallis
entropy, as well. It should be noted here that if we impose the condition of an
entropy additivity this form of the function Ψ is forbidden.

4.5 MEP for Renyi entropy

If the Renyi entropy S(R) is used instead of the Gibbs–Shannon entropy the
equilibrium distribution must provide maximum of the functional
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LR(p) =
1

1 − q
ln

W∑

i

pq
i − β

W∑

i

Hipi − α

W∑

i

pi,

where β and α are Lagrange multipliers. Note that, LR(p) passes to LG(p),
Eq. (4.1.2), in the q → 1 limit.

We equate a functional derivative of LR(p) to zero, then

δLR(p)

δpi
=

q

1 − q

pq−1
i∑
j p

q
j

− βHi − α = 0. (4.5.1)

Multiplying this equation by pi and summing up over i, with account of nor-
malization condition

∑
i pi = 1 we get

α =
q

1 − q
− βU. (4.5.2)

Then, it follows from equation (4.5.1) that

pi =




W∑

j

pq
j

(
1 − β

q − 1

q
∆Hi

)


1/(q−1)

, ∆Hi = Hi − U.

Using once more the condition
∑

i pi = 1 we get

W∑

j

pq
j =

(
W∑

i

(
1 − β

q − 1

q
∆Hi

)1/(q−1)
)−(q−1)

and, finally,

pi = p
(RZ)
i = Z−1

R

(
1 − β

q − 1

q
∆Hi

)1/(q−1)

(4.5.3)

ZR =
∑

i

(
1 − β

q − 1

q
∆Hi

)1/(q−1)

This is the Renyi distribution in the Z-form [54]. At q → 1 the distribution

{p(R)
i } becomes the Z-form of Gibbs canonical distribution, Eq. (4.1.3), in

which the constant β = 1/kBT0 is the reciprocal of the temperature.
To obtain the S-form of the Renyi distribution we can find that for the

Renyi distribution (4.5.3) S(R) = lnZR; hence

p
(RS)
i = e−S(R)

(
1 − β

q − 1

q
∆Hi

)1/(q−1)

.

At q → 1 this distribution becomes the S-form of Gibbs canonical distribution,
Eq. (4.1.4). An escort version of MEP for the Renyi entropy was discussed in
our paper [55].
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The thermodynamic Renyi entropy S̃(R) is defined as the Renyi informa-
tion entropy for the Renyi distribution, just as in the Gibbs thermostatistics
the thermodynamic entropy is the Gibbs-Shannon entropy for the Gibbs dis-
tribution. It can be represented as

S̃(R) = kBS
(R)
q (p(R)) =

kB

1 − q
ln
∑

i

p̄i
q

(
∑

i p̄i)q
(4.5.4)

where the Boltzmann constant kB is taken into account to ensure a right
dimension of the thermodynamic entropy and

p̄i =

(
1 − β

q − 1

q
∆Hi

)1/(q−1)

is the non-normalized Renyi distribution.
To define a thermodynamic temperature we use the Klausius relation be-

tween gains of the heat Q and thermodynamic entropy S̃(R), that is

δS̃(R) =
δQ

T
(4.5.5)

Next we consider process in which the Hamiltonian H dependent on external
parameters a1, a2, ...aK is varied. The state of the system described with the
Renyi distribution is varied as well. Then, for the gain of the internal energy
we get

δU = 〈
∑

k

∂H

∂ak
δak〉 +

∑
iHiδp̄i∑

i p̄i
− U∑

i p̄i

∑

i

δp̄i

= −δA+
1∑
i p̄i

∑

i

∆Hiδp̄i

were δA = −〈∑k(∂H/∂ak)δak〉 is the work produced by the system. Thus,
for the heat gain we get

δQ = δU + δA =
1∑
i p̄i

∑

i

∆Hiδp̄i (4.5.6)

In the same manner we find the entropy gain

δS̃(R) =
kBq

(1 − q)
∑

i p̄i
q

∑

i

p̄i
q−1δp̄i −

kBq

(1 − q)
∑

i p̄i

∑

i

δp̄i

= kBβ
1∑
i p̄i

∑

i

∆Hiδp̄i (4.5.7)

We see from equations (4.5.6) and (4.5.7) that the Klausius relation (4.5.5) is
true at any q, if we put T = 1/kBβ.
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It is not difficult to check that the same value of the physical temperature
is followed from the standard statistical definition of the temperature, that is

T =

(
∂S̃(R)

∂U

)−1

{ak}

=
1

kBβ
(4.5.8)

It will be shown below (Sec.4.8, Eq. (4.8.6)) that at least for the power-law
Hamiltonian the Lagrange parameter β does not depend on q whence β = β0.
Therefore we can assert that the physical temperature concides with the usual
thermodynamic temperature, that is T = T0 where T0 is the temperature of
a heat bath.

By the way the zeroth law of thermodynamics is reinforced for complex
systems being in contact with the entrostat.

4.6 MEP for Tsallis entropy

When the Tsallis entropy was used instead of the Gibbs–Shannon entropy, the
steady state distribution was derived by Tsallis [33] in the form

p
(Ts)
i =

(1 + β(1 − q)Hi)
1/(q−1)

∑
i (1 + β(1 − q)Hi)

1/(q−1)
,

was also known as the 1st version of thermostatistics. It was noticed there that
the parameter β was not a Lagrange multiplier because the starting functional
was taken as

LT (p) = − 1

1 − q

(
1 −

W∑

i

pq
i

)
− αβ(q − 1)

W∑

i

Hipi + α
W∑

i

pi. (4.6.1)

Here, the question arises about forms of Lagrange multipliers αβ(q − 1) and
(+α), but the main problem is that the functional LT (p) does not pass to the
functional (4.1.2) when q → 1 as the second term in (4.6.1) vanishes.

It seems reasonable to suppose that just this difficulty led to the introduc-
tion of the 3rd version of nonextensive thermodynamics [56] with the escort
distribution Pi = pq

i /
∑

i p
q
i . The consistency of the transition to the escort

distribution is partly justified by the condition of conservation of a preassigned
average value of the energy U = 〈H〉es ≡

∑
iHi Pi, however other average val-

ues are to be calculated with the use of the same escort distribution also, that
contradicts to the main principles of probability description.

For the generality sake, the resulted distribution of the Tsallis’ 3rd version
is reproduced here as

p
(T3)
i = Z−1

T3 (1 − β∗(1 − q′)(Hi − U))
1/1−q′

, (4.6.2)
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ZT3 =
∑

i

(1 − β∗(1 − q′)(Hi − U))
1/1−q′

where β∗ = β/
∑

j(p
T3
j )q′

and β is the true Lagrange multiplier in the corre-
sponding variational functional of the 3rd version.

It is shown below that careful solution of the variational problem for the
1st version of thermostatistics gives rise to a probability distribution which
does not seem to be less acceptable then p(T3)

i . If we take the functional

LT (p) =
1

1 − q

(
W∑

i

pq
i − 1

)
− β

W∑

i

Hipi − α

W∑

i

pi,

and equate its functional derivative to zero we get

δLT (p)

δpi
=

q

1 − q
pq−1

i − βHi − α = 0. (4.6.3)

Multiplying this equation by pi and summing up over i, with account of nor-
malization condition

∑
i pi = 1 we get α = (q/1 − q)

∑
i p

q
i − βU . Then, it

follows from Eq. (4.6.3) that

pi =


∑

j

pq
j − β

q − 1

q
∆Hi




1/(q−1)

=


∑

j

pq
j




1/(q−1)(
1 − β

q − 1

q

∆Hi∑
j p

q
j

)1/(q−1)

(4.6.4)

Using once more the condition
∑

i pi = 1 we get

pi = pTZ
i = Z−1

T1

(
1 − β

q − 1

q

∆Hi∑
j p

q
j

)1/(q−1)

,

ZT1 =
∑

i

(
1 − β

q − 1

q

∆Hi∑
j p

q
j

)1/(q−1)

,

our modification of the 1st version of the Tsallis distribution in the Z-form. It
differs from the 3rd version, Eq. (4.6.2), by the signs before differences q − 1
and does not invoke the escort distribution. In this respect it seems to be
much more attractive then p(T3). At q → 1 the distribution p(TZ) becomes
the Z-form of the Gibbs canonical distribution, Eq. (4.1.3). It should be noted
that both p(T3) and p(TZ) are explicitly self-referential in contrast to p(RZ).

To obtain the S-form of the modified 1st version of the Tsallis distribution
we rewrite the sum

∑
j p

q
j in the upper line of Eq. (4.6.4) in term of the Tsallis

entropy. Then we get finally
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pi = p
(TS)
i =

[
1 − (q − 1)

(
ST − β

q
U +

β

q
Hi

)]1/(q−1)

.

At q → 1 this distribution becomes the S-form of the Gibbs canonical distri-
bution, Eq. (4.1.4).

Note that both Renyi and escort Tsallis (3rd version) distributions are
identical if q′ = 1/q; in fact

1 − q′ =
q − 1

q
,

q′

1 − q′
=

1

q − 1

and β∗ is determined by the same second additional condition of MEP as
well as β. Thus, the not always justifiable linearization of the logarithm in
Renyi entropy and the questionable use of escort distribution leads to the
same Renyi distribution when q and q′ are considered as free parameters.

We conclude therefore that the numerous works (see [34]) confirming cor-
respondence of the Tsallis escort distribution (with fitted q′) with observed
distributions in complex physical, biological, social and other systems, count
more in favor of Renyi entropy rather than the nonextensive Tsallis entropy.

4.7 Small subsystem with fluctuating temperature

The problem to be solved for a unique definition of the Renyi distribution is
determination of a value of the Renyi parameter q.

An excellent example of a solution to this problem for a physical non-
Gibbsian system was presented by Wilk and Wlodarczyk [57]. They took into
consideration fluctuations of both energy and temperature of a minor part
of a large equilibrium system. This is a radical difference of their approach
from the traditional Gibbs method in which temperature is a constant value
characterizing the heat bath. As a result, their approach led (see [58]) to the
Renyi distribution with the parameter q expressed via heat capacity CV of
the minor subsystem.

The approach by Wilk and Wlodarczyk was advanced by Beck [59] and
Beck and Cohen [60] who offered for it a new apt term “superstatistics”. In the
frame of superstatistics, the parameter q is defined by physical properties of
a system which can exchange energy and heat with a heat bath. As a result,
q �= 1 but |q − 1| ≪ 1, because of exchange entropy with an entropy bath
is not taken into account by superstatistics explicitly. To clear up a physical
sense of the Renyi distribution (4.5.3) and parameter q for such a subsystem
we use here an approach proposed by Wilk and Wlodarchuk [57].

We will treat the subsystem as a small part of a larger equilibrium system
that experiences thermal fluctuations of both energy and temperature. This is
a radical difference of the suggested approach from the Gibbs approach tradi-
tionally employed in statistical physics, in which temperature is preassigned
by a constant characterizing the heat bath.



4 Non-Boltzmannian Entropies 137

In order to analyze the temperature fluctuations, we will invoke the
Landau-Lifshitz theory of hydrodynamic fluctuations [61], in which the re-
spective fluctuation contributions are added to regular flows of mass, momen-
tum, and energy entering the set of hydrodynamic equations. No flows of mass
and momentum are present in the case under consideration; however, an en-
ergy flux must be observed because of the temperature fluctuations. Then,
the equation of conservation of energy density of the system E(r, t) takes the
form

∂E(r, t)

∂t
= −div(qR(r, t) + qF (r, t)) (4.7.1)

where qR(r, t) describes a regular flow of energy density, and qF (r, t) repre-
sents the flow fluctuations.

We will single out in the system a subsystem of preassigned volume V ,
integrate Eq. (4.7.1) with respect to the volume V , and use the Gauss-
Ostrogradsky formula to derive the equation of conservation for the energy of
this subsystem,

dĒ(t)

dt
= −QR(t) −QF (t), QR,F =

∫

A

dA · qR,F , (4.7.2)

where the surface area A of the singled-out subsystem is introduced. We will
further restrict ourselves to fluctuations of only one parameter, namely, tem-
perature, and represent the energy Ē(t) in the form of Ē(t) = CV T (t), where
CV is the heat capacity of the subsystem. In addition, the flux QR may be
conveniently written in the form of the heat-transfer equation

QR(t) = −Aη(T (t) − T0)

where η is the heat-transfer coefficient, and T0 is the average temperature of
the system. Then, Eq. (4.7.2) takes the form

CV
dT (t)

dt
= −Aη(T (t) − T0) −QF (t). (4.7.3)

This equation is the Langevin equation for the temperature which character-
izes the singled-out part of the system and fluctuates under the effect of a
random energy flux QF (t) through the boundary of the discontinuous system
being treated.

In the nonequilibrium linear thermodynamics [62], the thermodynamic
force conjugate to the flux QR is provided by the quantity

(
1

kBT0
− 1

kBT (t)

)
≃ 1

kBT 2
0

(T (t) − T0).

rather than by the temperature difference.
Accordingly, the kinetic coefficient of the heat transfer equation must have

the form kBT
2
0Aη. Then, according to the Landau-Lifshitz theory of hydro-

dynamic fluctuations [61], in a linear approximation with respect to deviation
from equilibrium, the stochastic properties of random flux have the form
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〈QF
l (t)〉 = 0, 〈QF

l (t)QF
l (t′)〉 = 2kBT

2
0Aηδ(t− t′)

The second one of these expressions indicates that, within the linear theory,
QF

l ∝ T0. This fact suggests a simple way of including the nonlinearity by
replacing QF

l (t) by QF (t) = T (t)ξ(t), where ξ(t) is a random function of time
satisfying the relations

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2kBAηδ(t− t′)

As a result, Eq. (4.7.3) takes the form of nonlinear stochastic Langevin equa-
tion,

dT (t)

dt
= −1

τ
(T (t) − T0) −

1

CV
T (t)ξ(t), (4.7.4)

where τ = CV /(Aη).
Corresponding to the derived stochastic Langevin equation with δ-correlated

noise is the Fokker Planck kinetic equation for the temperature distribution
function f(T, t),

∂f(T, t)

∂t
= − ∂

∂T
W1(T )f(T, t) +

1

2

∂2

∂T 2
W2(T )f(T, t), (4.7.5)

The coefficients W1(T ) and W2(T ) of this equation are expressed in terms of
the first 〈T (t)−T (t+τ)〉 and second 〈(T (t)−T (t+τ))2〉 conditional moments
of stochastic equation (4.7.4), which correspond to some preassigned value of
T (t). For a linear stochastic Langevin equation, these moments are determined
quite simply (see, for example, [63]). For nonlinear equations of the type of
Eq. (4.7.4), the solution to this problem is also known and used in various
applications of the theory of random processes [64]. For the case treated by
us, the coefficients of the Fokker Planck equation take the form

W1(T ) = −1

τ
(T − T0) + kBT

1

τ2Aη
, (4.7.6)

W2(T ) = 2kBT
2 1

τ2Aη
. (4.7.7)

Because these coefficients are not explicitly dependent on time, a steady-state
solution to Eq. (4.7.5) exists,

f(T ) =
K

W2(T )
exp

{
2

∫ T W1

W2
dT

}
(4.7.8)

The constant K will be determined from the normalization condition; as a
result, the choice of the lower limit of integration in the exponent is arbitrary
and may be omitted. We substitute expressions (4.7.6) and (4.7.7) into (4.7.8)
to derive

f(T ) = −K
T

exp

{
τAη

kB

∫ T −T + T0

T 2
dT

}
,
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whence follows
f(T ) = −KT−1−γe−γT0/T

where the dimensionless constant γ = CV /kB is introduced. Note that the
resultant steady-state solution does not depend on either the heat-transfer
coefficient η or the surface area A. This fact suggests that the obtained distri-
bution may be more general than the treated model of heat transfer. In what
follows, we will be interested in the distribution function with respect to the
quantity β = 1/(kBT ), rather than in the distribution function with respect
to the temperature. In view of the relation dβ = −dT/(kBT

2), we derive

f(β) = Kβγ−1e−γkBT0β

The constant K is determined from the normalization condition reduced to

K−1 =

∫ ∞

0

βγ−1e−γkBT0βdβ

= (γkBT0)
−γΓ (γ),

whence we finally derive

f(β) =
(γkBT0)

γ

Γ (γ)
βγ−1e−γkBT0β .

This function may also be represented in the form of the distribution of the
temperature ratio u = kBT0β = T0/T ,

f(u) =
γγ

Γ (γ)
uγ−1e−γu.

or of the distribution of the dimensionless quantity z = γkBT0β = γT0/T ,

f(z) =
1

Γ (γ)
zγ−1e−z. (4.7.9)

Therefore, the distribution function of the inverse temperature of the sub-
system in the dimensionless form of (4.7.9) is a gamma distribution. In con-
crete calculations below, we will largely use f(β) or f(u); for brevity, we will
refer to them as gamma distributions as well.

Note that, if the mean energy of the singled-out volume Ē0 = CV T0 is
introduced, the expression for f(β)) takes the form

f(β) =
(γβ/β0)

γ

βΓ (γ)
e−βĒ0 .

By its form, this expression is close to the Gibbs distribution; however, un-
like the latter, it reflects the inclusion of the temperature fluctuation of the
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Fig. 4.2. Gamma distribution f(u) of the temperature ratio u = T0/T for different
values of the parameter γ = CV /kB = 104 (lower curve), 0.5 · 105 (middle curve),
105 (upper curve).

subsystem with the preassigned energy Ē0. Fig. 2 shows the form of gamma
distribution f(u) at γ = 104, 0.5 · 105, and 105. One can see that the dis-
persion of the inverse temperature of the subsystem decreases abruptly with
increasing γ. However, small values of γ correspond to very small subsystems.
Indeed, for an ideal monatomic gas at normal conditions, γ = 3N/2, where
N is the number of particles in the volume; according to the Avogadro law,
N ≃ 0.3 ·1020 V . Then, for the singled-out volume with the characteristic size
of the order of the free path length (about 10−5 cm), we have the value of
γ = 0.5 ·105. One can see in the figure that the temperature dispersion in this
case is of the order of 0.005, which coincides with the result of the thermody-
namic theory of fluctuations [65] δT/T0 ≃ (kB/CV )1/2. It appears to be more
promising to apply these relations to heterogeneous systems in which the size
of small particles (for example, atomic nucleus [66]) may not exceed several
angstroms, and to low-temperature systems [67] with CV → 0 at T0 → 0

In order to describe a subsystem in contact with a large thermally equilib-
rium system (heat bath), the Gibbs canonical distribution is used in statistical
physics (here and below, the factor Gi allowing for number of states of energy
Hi will be omitted):

ρi = Q−1e−βHi , (4.7.10)

where Hi is the energy of the subsystem (the subscript i may indicate the
number of discrete energy level or totality of the values of coordinates and
momenta of molecules of the subsystem), and Q is the partition function. In so
doing, the inverse temperature β = 1/kBT is taken to be known preassigned
quantity. As was demonstrated above, the temperature may fluctuate. In view
of this, the question arises as to how the Gibbs distribution is modified under
the effect of temperature fluctuations. The answer to this question may be
obtained by the way of averaging the Gibbs distribution (4.7.10) with the
gamma-distribution for temperature T (or β). For further treatment, ρi may
be conveniently represented in an equivalent form,
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ρi = Q−1e−β∆Hi , Q =
∑

i

e−β∆Hi , ∆Hi = Hi − H̄

where the symbol
∑

i may indicate both the summation and integration over
a totality of the values of coordinates and momenta. The temperature depen-
dence of ρi is defined both by the factor β in the exponent and, in the general
case, by the unknown temperature dependence of partition function Q(β) (in
the simplest case of classical ideal gas Q ∝ β−3N/2, where N is the number of
molecules). Using the mean value theorem we represent the Gibbs distribution
averaged over β in the form

ρ̄i =

∫ ∞

0

dβf(β)ρi =
1

Q∗

∫ ∞

0

dβf(β)e−β∆Hi ,

where Q∗ lies in the range of possible variation of Q(β) from Q(0) to Q(∞).
From the conditions of normalization to unity of the distributions f(β) and
ρ, we have

1

Q∗

∑

i

∫ ∞

0

dβf(β)e−β∆Hi = 1

whence we find

Q∗ =
∑

i

∫ ∞

0

dβf(β)e−β∆Hi .

Therefore, it is sufficient to calculate only the average value of the exponent,

∫ ∞

0

dβf(β)e−β∆Hi =
(γkBT0)

γ

Γ (γ)
βγ−1

∫ ∞

0

dββγ−1e−β(γkBT0+∆Hi)

=

(
1 +

β0

γ
∆Hi

)−γ

.

Finally, the averaged Gibbs distribution takes the form

ρ̄i =

(
1 +

β0

γ
∆Hi

)−γ

∑
i

(
1 +

β0

γ
∆Hi

)−γ . (4.7.11)

In the γ → ∞ limit corresponding to a high heat capacity of the singled-out
subsystem, ρ̄i goes to ρi.

The resulting equation for the modified Gibbs distribution is similar to
the Renyi distribution p(R)

i in its structure. To identify ρ̄i with pi it is enough
to present γ as γ = (1 − q)−1 when Eq. (4.7.11) takes the form

ρ̄i =
[1 + β0(1 − q)∆Hi]

−1/1−q

∑
i [1 + β0(1 − q)∆Hi]

−1/1−q
.
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The full identity of this expression with the probability pi (4.5.3) ensuring the
extremality of Renyi entropy enables one to take a new view of the physical
meaning of the Renyi entropy and parameter

q = 1 − 1

γ
=
C − kB

C
.

So, the Renyi parameter differs significantly from unity only in the case where
the heat capacity of the singled out system is of the same order of magnitude
as the Boltzmann constant kB . This implies that the Renyi distribution for
large systems in contact with a heat bath coincides practically with the Gibbs
distribution. To obtain real description of complex self-organizing systems the
superstatistics should be generalized with allowance made for entropy transfer
due to contact with an entropy bath.

4.8 Power-law Hamiltonian

When q → 1 the Renyi distribution {p(R)
i } becomes the Gibbs canonical

distribution and β/q → β0 = 1/kBT . Such behavior is not enough for unique
determination of β. Indeed, in general, it may be an arbitrary function β(q)
which becomes β0 in the limit q → 1.

To find an explicit form of β, we return to the additional condition of
the pre-assigned average energy U =

∑
iHipi and substitute there Renyi

distribution (4.5.3). For the sake of simplicity, we will confine the discussion
to the particular case of a power-law dependence of the Hamiltonian on a
parameter x

Hi = Cxκ
i .

This type of the Hamiltonian corresponds to an ideal gas model that is widely
used in the Boltzmann-Gibbs thermostatistics and it seems reasonable to say
that it may be useful in construction of thermostatistics of complex systems.
Moreover, in most social, biological and humanitarian sciences the system
parameter x can be considered (with κ = 1) as a kind of the Hamiltonian
(e.g. the size of population of a country, effort of a word pronouncing, bank
capital, etc.).

If the distribution {pi} allows for smoothing over the ranges much larger
than the average distance ∆xi = xi−xi+1 without significant loss of informa-
tion, we can pass from the discrete variable xi to the continuous x. Then the
condition (4.1.1) of a fixed average energy for the Renyi distribution becomes

Z−1

∫ ∞

0

Cxκ

(
1 − β

q − 1

q
(Cxκ − U)

)1/(q−1)

dx = U (4.8.1)

or

Z−1

∫ ∞

0

Cux
κ

(
1 − βU

q − 1

q
(Cux

κ − 1)

)1/(q−1)

dx = 1, (4.8.2)
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where

Z =

∫ ∞

0

(
1 − βU

q − 1

q
(Cux

κ − 1)

)1/(q−1)

dx (4.8.3)

and Cu = C/U . Both integrals in these equations may be calculated with the
use of a tabulated [68] integral

I =

∫ ∞

0

xµ−1dx

(a+ bxν)λ
=

1

νaλ

(a
b

)µ/ν Γ
[µ
ν

]
Γ
[
λ− µ

ν

]

Γ [λ]

under condition of convergence

0 <
µ

ν
< λ, λ > 1.

For the integrals in Eqs. (4.8.2) and (4.8.3) this condition becomes

0 <
1 + κ

κ
<

1

1 − q
. (4.8.4)

Then, finally, we find from Eqs. (4.8.2), (4.8.3) with the use of the relation
Γ [1 + z] = zΓ [z], that

βU =
1

κ
for all q. (4.8.5)

Independence of this relation from q means that it is true, in particular, for
the limit case q = 1 where the Gibbs distribution takes a place and, therefore,

β = β0 ≡ 1/kBT for all q. (4.8.6)

When H = p2/2m (that is, κ = 2) we get from (4.8.5) and (4.8.6) that
U = 1

2kBT , as would be expected for one-dimensional ideal gas. Additionally,
the Lagrange parameter β can be eliminated from Renyi distribution (4.5.3)
with the use of Eq. (4.8.5) and we have, alternatively,

p(R)(x|q, κ) = Z−1

(
1 − q − 1

κq
(Cux

κ − 1)

)1/(q−1)

(4.8.7)

or

pR
i (q, κ) = Z−1

(
1 − q − 1

κq
(Cux

κ
i − 1)

)1/(q−1)

.

So, at least for power-law Hamiltonians, the Lagrange multiplier β does not
depend on the Renyi parameter q and coincides with the Gibbs parameter
β0 = 1/kBT and can be eliminated with the use of the relation (4.8.5).
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4.9 Transfer to Renyi thermostatistics as a phase
transition

Thus, we have Gibbs and Renyi thermostatistics. Each of them provides an
adequate description of corresponding class of systems and we need in a rigor-
ous formulation of conditions of transfer from one thermostatistics to another.
Indeed, the Renyi thermostatistics is more general and includes the Gibbs
thermostatistics as a partial case of value q = 1 of the Renyi parameter.

Transfer from the Gibbs distribution describing a state of dynamic chaos
[25] to power–law Renyi distributions that are characteristic for ordered self-
organized systems [14] corresponds to an increase of an “order parameter”
η = 1 − q from zero at q = 1 up to ηmax = 1 − qmin. As this takes place, the
Gibbs–Shannon entropy passes into the Renyi entropy.

In accordance to the Landau theory [61] of phase transitions an entropy
derivative with respect to the order parameter undergoes a jump at a point of
the phase transition. In particular, when the order parameter is a temperature
gain, the jump corresponds to a heat capacity jump that is characteristic for
phase transitions of the second type.

Here we deal with the transfer from the Gibbs thermostatistics to the Renyi
thermostatistics corresponding to non-zero values of the order parameter η.
Let us consider a variation of the entropy at this transition. Substituting the
Renyi distribution (4.5.3) into the Renyi entropy definition (4.2.3), we find
the thermodynamic entropy in the Renyi thermostatistics as

S̃(R) = S(R)
η (p(R)

η )

= kB ln

W∑

i

(
1 + β

η

1 − η
∆Hi

)−1/η

= lnZ(R)
η . (4.9.1)

where, as before, the Boltzmann constant kB is introduced.
When η → 0, (q → 1), this entropy passes into thermodynamic entropy in

the Gibbs thermostatistics

S̃(G) = S(G)(p(G)) = kB ln
W∑

i

e−β∆Hi . (4.9.2)

Now it is not difficult to calculate the limiting value at η → 0 of the derivative
of the entropy difference ∆S = S̃(R) − S̃(G) with respect to η. We get

lim
η→0

(
d∆S

dη

)
=
kB

2
β2

W∑

i

p
(G)
i (∆Hi)

2

According to a fluctuation theory for the Gibbs equilibrium ensemble we have

W∑

i

p
(G)
i (∆Hi)

2
=

1

kBβ2

dU

dT
=

1

kBβ2
CV
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whence

lim
η→0

(
d∆S

dη

)
=

1

2
CV .

where CV is the heat capacity at a constant volume.
Thus, the derivative of the entropy gain with respect to the order parame-

ter exhibits the jump (equal to CV /2) at η = 0. This permits us to consider
the transfer to the Renyi thermostatistics as a peculiar kind of a phase transi-
tion into a more organized state. We can give this transition the name entropic
phase transition.

A derivative of the entropy gain with respect to temperature can be cal-
culated in the same manner. Hence

lim
η→0

{(
d

dT0
S(R)

η (p(R)
η )

)
−
(
d

dT0
S(G)(p(G))

)}
= 0.

from which it follows that usual phase transition does not take place at η = 0.
As a result of the entropic phase transition the system passes into an

ordered state with the order parameter η �= 0. In contrast to the usual phase
transition that take place at the temperature of phase transition, conditions
of the entropic phase transition are likely to be determined partially for each
concrete system. For example, a threshold of appearance of turbulence (see
[69]) as an ordered structure is determined by a critical Reynolds number and
an appearance of Benard cells is determined by a critical Reyleigh number (see
[25]). Social, economic and biological systems are realized as a rule in ordered
self-organized forms. This is the reason why power-law and closely related
distributions are characteristic for them but not canonical Gibbs distribution.

The question of a definite value of the order parameter for different systems
is treated next.

4.10 The most probable value of the Renyi parameter

The problem to be solved for a unique definition of Renyi distribution is
the determination of a value of the Renyi parameter q. Some successes in
this direction were achieved for particular cases of small subsystems with
fluctuating temperature (so-called “superstatistics” discussed in Sec. 7), a set
of independent harmonic oscillators [70, 71] and fractal systems [72]. On the
other hand, there are many complex systems for which we have no information
related to a source of fluctuations. In that cases the parameter q cannot be
determined with the use of the superstatistics.

Here, we propose a further extension of MEP that consists of looking
for a maximum of the Renyi entropy in a space of Renyi distributions with
different values of q. Substitution of Renyi distribution pR(x|q, κ) into the
definition of the Renyi entropy, Eq. (4.2.3), and variation of the q-parameter
results in the picture of S(R)[p(R)(x|q, κ)] as shown in Fig. 3 (left). It is seen



146 A. G. Bashkirov

0.6

0.7

0.8

0.9

q
1

1.5

2

2.5

3

k

1

1.5

2

0.6

0.7

0.8q

0.5
0.6

0.7
0.8

0.9q
1

1.5

2

2.5

3

k

0

0.5

1

5
0.6

0.7
0.8

0.9q

Fig. 4.3. The entropies S
(R)
q [p(R)(q, κ)] (left) and S(G)[p(R)(q, κ)] (right) for the

power-law Hamiltonian with the exponent κ within the range 3 > κ > 0.5 and
q > 1/(1 + κ).

that S(R)[p(R)(x|q, κ)] attains its maximum at the minimal possible value of
q which fulfills the inequality (4.8.4), that is,

qmin =
1

1 + κ
.

For q < qmin, the integral (4.8.1) diverges and, therefore, Renyi distribution
does not determine the average value U = 〈H〉p, that is a violation of the
second condition of MEP.

To check self-consistency of the proposed extension of MEP a simi-
lar procedure is applied to the Gibbs-Shannon entropy S(G)(p). Substitut-
ing p = pR(x|q, κ) we get the q-dependent function S(G)[p(R)(x|q, κ)] illus-
trated in Fig. 3 (right). As would be expected, the Gibbs-Shannon entropy
S(G)[p(R)(x|q, κ)] attains its maximum value at q = 1 where p(R)(x|q, κ) be-
comes the Gibbs canonical distribution.

Hence, the maximum of the Renyi entropy is realized at q = qmin and is
just the value of the Renyi parameter that should be used for the particular
case of the power-law Hamiltonian when we have no additional information on
behavior of the stochastic process under consideration. Recall that the Renyi
entropy was derived here as a functional which attain its maximum value at
the steady state of a complex system just as the Helmholtz free energy does
for a thermodynamic system. (The kind of extremum, that is, maximum or
minimum is determined by the sign definition for the constant λ). Then, a
radically important conclusion follows from comparison of these two graphs:

In contrast to the Gibbs-Shannon entropy the Renyi entropy increases with
increasing complexity (η = 1 − q), suggesting its consideration as a potential
that allows evolution of the system to self-organization.

In support of such a conclusion, recall that a power-law distribution char-
acteristic for self-organizing systems [14] is realized when the Renyi entropy
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is maximal. Substitution of q = qmin into Eq. (4.8.7) leads to

p = Z−1x−(1+κ);

hence, for q = qmin the Renyi distribution for a system with the power-law
Hamiltonian becomes the pure power-low distribution over the whole range
of x.

For a particular case of the impact fragmentation where H ∼ m2/3 the
power-law distribution of fragments over their masses m follows from (4.9.2)
as p(m) ∼ m−5/3 that coincides with results of our previous analysis [73]
and experimental observations [74]; for the case of κ = 1 the power-low dis-
tribution is p ∼ x−2. Such a form of the Zipf-Pareto law is the most useful
in social, biological and humanitarian sciences (see, e. g. [75, 76, 77]). The
same exponent of power-low distribution was demonstrated [78] for energy
spectra of particles from atmospheric cascades in cosmic ray physics and for
distribution of users among the web sites [79].

It is necessary to notice here that inequalities (4.8.4) suggest in fact q >
qmin, that is, q = qmin + ǫ where ǫ ≪ 1 is a positive infinitesimal value that
should be a finite constant in physical realizations4. Taking into account that
finite ǫ gives rise to Renyi distribution in the form

pR(x) = Z−1(Cux)
−K
[
1 − ǫ(κ+ 1)2(1 − Cux

−κ)
]−K/κ

where we have used K := (κ+ 1)(1 + ǫ(κ+ 1)/κ). For sufficiently large x this
Renyi distribution passes to the power law distribution where all terms with
ǫ can be neglected. On the other hand, for sufficiently small x, only the term
ǫ(κ+1)2Cux

−κ may be accounted for in the expression in the square brackets,
hence

pR(x)|x≪1 ∼ (ǫ(κ+ 1)2)−(κ+1)/κ.

This equation points to the fact that the asymptote to Renyi distribution for
small x′s is a constant. Figure 4 shows the Renyi distribution over the whole
range of x. Now there is no methods for a unique theoretical determination of
ǫ, so it may be considered as a free parameter. It can be estimated for those
experimental data where the head part preceding power law distribution is
presented. As an example, for the probability distribution of connections in
World Wide Web network [80] the parameter ǫ is estimated as ∼ 10−4.

4.11 Conclusive Notes on the Renyi entropy and
Self-Organization

An equilibrium state of a thermodynamic system coupled with a heat bath is
characterized by extremum (minimum) of the Helmholtz free energy that can

4 The participant of the workshop Dr. Ramandeep S. Johal pointed to the fact that
the Lagrange multiplier α, Eq. (4.5.2), tends to zero when q = qmin. It is really
so due to relation (4.8.5). For q = qmin + ǫ we have α ∝ ǫ.
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Fig. 4.4. The Renyi distributions (non-normalized) for the power-law Hamiltonian
H ∼ xκ, κ = 1 (left) and κ = 2/3 (right) and different values ǫ = 10−6, 10−5, 10−4

from upper to below in each graph.

be obtained [5] as a cumulant average of the Hamiltonian in contrast to the
internal energy that is a simple mean of the Hamiltonian. It is known that
the internal energy is not extremal for a system in contact with a heat bath.
In a similar manner, the standard Gibbs-Shannon entropy for inhomogeneous
distributions is derivable [16, 17] by simple averaging of the Boltzmann en-
tropy for an uniform distribution. So, there is no reason to believe that the
Gibbs-Shannon entropy for a complex system coupled with an entropy bath
will be extremal at a steady state of the system. It is shown here that the pro-
cedure of cumulant averaging when applied to the Boltzmann entropy leads
to the Renyi entropy. This provides reason enough to believe that the Renyi
entropy should be extremal (maximal) at a steady state of a system being in
contact with the entropy bath. Such a form of the information entropy and
its maximality are justified by the Shore-Johnson theorem.

The MEP applied to the Renyi entropy gives rise to a Renyi distribution
that depends on the Renyi parameter q < 1 and Lagrange multiplier β. It is
shown here that for the particular case of a power-law Hamiltonian Hi = Cxκ

the multiplier β does not depend on the Renyi parameter q and coincides with
β0 = 1/kBT0. Moreover, it can be expressed in terms of U and κ and thus
eliminated completely from Renyi distribution function. In the absence of any
additional information on the nature of a complex system, the q parameter can
be determined with the further use of MEP in the space of the q-dependent
Renyi distributions.

The q-dependent thermodynamic entropy in the Renyi thermostatistics is
determined as the Renyi entropy for the Renyi distribution. Maximum max-
imorum of such an entropy is attained at minimal possible value q = qmin =
1/(1 + κ), that is, at maximal possible value of an order parameter η = 1− q.
The Renyi distribution at such η becomes the power–law distribution that is
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characteristic for complex systems. When applying such MEP to the Gibbs-
Shannon entropy for the q-dependent Renyi distribution, S(G)[pR(x|q, κ)], its
maximum is found at q = 1 that corresponds to the Gibbs distribution, as
would be expected. Transfer from usual Gibbs thermostatistics to the Renyi
thermostatistics takes the form of a phase transition of ordering with the order
parameter η. As soon as the system passes into this new phase state of the
Renyi thermostatistics, a spontaneous development of self–organization of a
more ordered state begins accompanied with gain of thermodynamic entropy.

In contrast to the usual entropy, the Renyi thermodynamic entropy in-
creases as the system complexity (departure of the η from zero) increases (see
Fig. 3). So, it can be considered as a kind of potential that drives the system
to self-organized state. Such a behavior of the entropy in the Renyi thermo-
statistics eliminates a contradiction between the principle of entropy increase
and a system evolution to self-organization. Moreover, it may be supposed that
biological evolution or development are governed by the extremal principle of
the Renyi thermostatistics.

4.12 Thermodynamics of a Quantum Mechanical system
in Coherent State

Considerable recent attention has been focused on coherent states [81] in the
context of a new interpretation of quantum mechanics in which the crucial
point is an interaction of the system with its surrounding. During the interac-
tion process most of the states of the open quantum system becomes unstable,
and, as a result, an arbitrary state of this system becomes a superposition
of “selected states” that provides classical description. This phenomenon has
come to be known as a decoherence.

An intrinsic connection between the decoherence phenomena and coherent
states of a system was suggested in [82]. Moreover, it was noted there [82] that
decoherence might produce coherent states. This was proved for the particular
case of a system of harmonic oscillators in [83]. Analyzing a master equation
for an open quantum system interacting with a thermostat Paz and Zurek
[84] found that the coherent states were sampled as “selected states”, when
self-energy of the system was of the same order as an energy of its interaction
with the thermostat. This process is accompanied by an increase of both the
open system entropy and the thermostat entropy due to losing information
about their states. If a total closed system was initially in a pure state (with
the zero entropy) then the theorem states [85, 86, 87, 88] that the entropies
produced in the open system and thermostat are equal.

At first glance there is a paradox of non-zero entropy and temperature of
a coherent state which is a pure state. In our opinion, it is resolved by the fact
that the coherent states are eigenstates of non-Hermitian operator, and hence
values of observable variables (that are eigenvalues of Hermitian operators)
remain indeterminate in the coherent state, among them an energy. Thus,
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it is found to be fruitful to consider a density matrix of the coherent state
and determine entropy and temperature with the use of standard methods of
statistical physics. Such a concept will be illustrated below (in Subsecs. 12.1
and 12.2) by the examples of well-known coherent states of open quantum
systems, namely, a quantum harmonic oscillator and quantum scalar field in
a vicinity of a static source.5 This approach provides also fresh insight (in
Subsec. 12.3) into the problem of the black hole entropy.

4.12.1 Entropy of an oscillator in a coherent state

The known isomorphism of Hilbert spaces of states of arbitrary quantum
systems ensures that a space of states of any n-dimensional quantum system
can be mapped on the space of states of n-dimensional harmonic oscillator.
Owing to this fact, properties of particular model systems discussed below
may be considered as sufficiently general.

For purposes of clarity we begin with the simplest system, that is the one-
dimensional quantum harmonic oscillator. In our approach the oscillator in
a coherent state is treated as an open system in a steady interaction with
an external force center (e.g. atomic nucleus). The interaction with internal
variables of the force center could ensure a modification of the Shrödinger
equation such that it describes the decoherence of a harmonic oscillator and
the passage of its state into a coherent state. Here, however we will confine
our discussion to a prepared coherent oscillator state.

The Hamiltonian of the system is

H =
1

2m
(p2 +m2ω2q2),

where p, q are respective momentum and coordinate operators satisfying the
commutation relation [q, p] = i�. Coherent states are conveniently [90] dis-
cussed in terms of non-Hermitian creation and annihilation operators

a =
mωq + ip

(2m�ω)1/2
, a† =

mωq − ip

(2m�ω)1/2
, (4.12.1)

satisfying the commutation relations [a, a] = [a†, a†] = 0, [a, a†] = 1. A co-
herent state can be defined as an eigenstate of the non-Hermitian operator
a:

a|d〉 =
(mω

2�

)1/2

d|d〉. (4.12.2)

where the eigenvalue d is a complex number.
The density matrix of the d-coherent state is ρd = |d〉〈d|. To construct a

thermodynamics of this state we need in a partition function of ρd. Since it is
defined as a value ensuring the condition Tr[ρd] = 1 we consider only diagonal

5 This is an advanced and enlarged version of the paper [89].
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elements of ρd. Since coherent states are not mutually orthogonal and form
an overcomplete basis, we get in a coherent state representation

ρd
ff = |〈f |d〉|2 = exp

{
−mω|d|

2

2�

}
exp
{mω

2�

(
−|f |2 + d∗f

)}
.

The first multiplier does not depend on the index f and can be considered as
a normalizing factor, that is, a reverse value of the partition function

Qd
osc = end . (4.12.3)

where nd = mω|d|2/(2�) is the well-known [91] mean number of quanta in
the state d. Considering that an energy representation is the most used in
statistical mechanics, we demonstrate the same result in this representation:

ρd
nn = |〈n|d〉|2 =

1

n!
|〈0|an|d〉|2 =

1

n!
nn

d |〈0|d〉|2,

where the equation (4.12.2) and property |n〉 = (a†)n|0〉/
√
n! are used. The

partition function Qd
osc = |〈0|d〉|−2 is determined with the use of a condition

of completeness of the set |n〉, that is Tr[ρd] =
∑

n |〈n|d〉|2 = 1, whence we
get again Eq. (4.12.3). For the mean energy of the coherent |d〉-state of the
oscillator we have

Ed
osc = 〈d|H|d〉 =

∑

n

ρd
nn〈n|H|n〉 = �ω

(
nd +

1

2

)
.

According to one of basic principles of the statistical mechanics, all thermody-
namic properties of a system can be found when the partition function Q(T)
is known. Really, in general, a characteristic thermodynamic function F is
defined as

F = −kBT lnQ(T) (4.12.4)

and known as the Helmholtz free energy F (T, V,N) for a canonical ensemble,
or thermodynamic potential J(T, V, µ) for grand canonical ensemble, or Gibbs
free energy G(T, p,N) for T − p ensemble. At any case the thermodynamic
entropy is defined as

S = −∂F

∂T
. (4.12.5)

This is just the key point of the proposed approach. Transition from the
statistical mechanics to thermodynamics is performed here in Eq. (4.12.4) for
the Helmholtz free energy only. The entropy is defined in terms of it with
no use of microscopic interpretations of entropy. As for the temperature T,
it should be determined on the base of thermodynamic relations between the
entropy S and mean energy E, that is, an internal energy of the system under
consideration. The difference of entropy in the two neighboring equilibrium
states E and E+dE (other thermodynamic parameters are fixed) in accordance
with the first law of thermodynamics is
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dS =
1

T
dE,

whence temperature is defined as

T =

(
∂S

∂E

)−1

. (4.12.6)

Thermodynamics of the |d〉-state of the oscillator is constructed in the same
manner on the base of the partition function Qd

osc:

F d
osc = −kBToscnd, (4.12.7a)

Sd
osc = kBnd + kBTosc

∂nd

∂Tosc
, (4.12.7b)

Tosc =

(
∂Sd

osc

∂Ed
osc

)−1

(4.12.7c)

In contrast to common thermodynamics where the temperature is the known
parameter of a system state, here Eqs. (4.12.7a-c) are used as a self-consistent
definition of the effective temperature of the coherent state. We assume first
that Tosc is in the form Tosc = C|d|q, where C, q are nonzero constants to be
found. Presenting nd as (Tosc)

2/qmω/(2�C2/q) Eqs. (4.12.5-4.12.6) become

F d
osc = −kB(Tosc)

1+2/q mω

2�C2/q
, (4.12.8a)

Sd
osc = kB

(
1 +

2

q

)
nd, (4.12.8b)

Tosc =
�ω

kB(1 + 2/q)
. (4.12.8c)

From the obtained equation for Tosc we see that the assumed form Tosc =
C|d|q is invalid as the constant q is to be equal zero, and all Eqs. (4.12.8a-c)
lose their meanings.

Another alternative form for the temperature is Tosc = Cωp. Then nd can
be presented as (Tosc)

1/pm|d|2/(2�C1/p) and Eqs. (4.12.5-4.12.6) become

F d
osc = −kB(Tosc)

1+1/p m|d|2
2�C1/p

,

Sd
osc = kB

(
1 +

1

p

)
nd,

Tosc =
�ω

kB(1 + 1/p)
,

whence the constants in the sought-for form of Tosc are p = 1, C = �/(2kB).
We can introduce an area Ad = π|d|2 of a phase portrait (circle) of the corre-
sponding classical oscillator in (q, p/ω) - phase plane, since 〈q(t)〉d = d cosωt
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and 〈p(t)〉d = −dω sinωt. Then, nd, entropy and temperature of the coherent
state are found as

nd =
kBToscmAd

2π�2
=

Ad

2πl20
, (4.12.9a)

Sd
osc = 2kBnd = kB

Ad

πl20
, (4.12.9b)

Tosc =
�ω

2kB
, (4.12.9c)

where l0 =
√

�/(mω) is the amplitude of zero-point oscillations. Hence, the
entropy and temperature do not vanish even for a dynamical quantum system
in the coherent state.

An alternative approach to definition of the temperature can be obtained
with the use of a Wigner distribution function based on a coordinate repre-
sentation of a wave function for the oscillator in the coherent state

W (p, q) =
1

π�
exp

{
− (p− 〈p(t)〉d)2/2m+mω2(q − 〈q(t)〉d)2/2

�ω/2

}
,

where the expression in the numerator of the exponent represents an energy of
fluctuations around a classical trajectory (〈p(t)〉d,〈q(t)〉d). Thus, the Wigner
function W (p, q) can be considered as an equilibrium canonical distribution
of a sort, where the factor �ω/2 presents an efficient temperature of quantum
fluctuations kBTW , whence we get TW = �ω/(2kB), that is, the same value
Tosc as above. To clarify a physical sense of this temperature we consider a
reduced Wigner distribution over coordinate

w(q) =

∫
W (p, q) dp =

√
mω2

2πkBTosc
exp

{
−mω

2(q − 〈q(t)〉d)2
2kBTosc

}
, (4.12.10)

that is the statistical distribution of q for the one-dimensional wave packet
[90]. It is illustrated in Fig. 5.

On the other hand, the well-known Bloch formula (see, e.g. [65]) defines a
probability distribution b(q) for a harmonic oscillator interacting with a heat
bath of a temperature Thb:

b(q) =

√
mω2

2πkBTBl
exp

{
− mω2q2

2kBTBl

}
, TBl =

�ω

2kB
coth

�ω

2kBThb
.

At very low temperature of the heat bath, kBThb ≪ �ω, we get TBl = T0 ≡
�ω/(2kB). The temperature T0 does not depend on Thb and determined by ze-
roth fluctuations entirely. It is remarkable that T0 = Tosc. It can be noted that
the Bloch formula for this limit case is a particular case of the Wigner reduced
function w(q) when 〈q〉d = 0. We can argue, therefore, that the temperature
Tosc of a coherent state is of the same nature as T0 and determined by the
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Fig. 4.5. The landscape of statistical distribution of the coordinate q for the one-
dimensional wave packet of the coherent oscillator, that is, the reduced Wigner
function, Eq. (4.12.10).

zeroth fluctuations as well. Just as T0 does not change even when Thb → 0 the
temperature Tosc is fixed also and can not be decreased without destroying
the system.

Up to now we considered the thermodynamic definition of the entropy
(4.12.5). Next we discuss the von Neumann statistical-mechanical entropy
SSM = Tr[ρd ln ρd] of the coherent state |d〉. For a pure state it is to be zero.
Indeed, we have the expansion ln ρd = −Q−Q2/2−Q3/3−Q4/4− ..., where
Q = 1 − ρd. Since the density matrix ρd = |d〉〈d| is a projection operator,
that is, (ρd)2 = ρd, we get ρdQ = 0 and ρd ln ρd = 0. Therefore, the von
Neumann entropy SSM is equal to zero, as should be expected for the pure
state. It would be different from zero for an ensemble of oscillators distributed
over different coherent states. On contrary, the coherent state entropy Sd

osc,
Eq. (4.12.9c), corresponds to an indeterminancy of the single coherent state
by itself. This indeterminancy is illustrated in Fig. 5 as a Gauss error curve
of a frontal section of the landscape. Dispersion of this Gaussian distribution
is determined by the temperature of zero-point oscillations Tosc.

4.12.2 Entropy of scalar Klein-Gordon-Fock field

We now consider another example of an open quantum system, the scalar
mesonic field φ(r, t) described by the Klein-Gordon-Fock (KGF) equation with
a static source term in the right hand side,

(
1

c2
∂2

∂t2
−∇2 +

m2c2

�2

)
φ(r, t) = g̺(r). (4.12.11)

The density ̺(r) and intensity g of the source are given and fixed, which
is natural if we treat (4.12.11) as a pure field problem and consider only
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processes outside the source. On the other hand, such a problem setting is an
idealization because we disregard all processes that occur inside the source
which is a real extended physical system. As in the previous example, we
restrict the discussion by the supposing that these internal processes provide
formatting of a coherent state of the field and will consider the field φ(r, t) in
the resulted coherent state. Equation (4.12.11) has been analyzed in detail in
quantum field theory (see, e.g. [91]). In particular it was shown that with non-
Hermitian operators ak and a†

k
similar to operators (4.12.1), coherent states

of the physical vacuum are eigenstates of the operators ak.
The well-known solution for the Klein-Gordon-Fock equation with a static

source term determines the probability of finding a given number of quanta
in the vacuum disregarding their moments, that is the sum of numbers of
quanta with different moments. This probability is governed by the Poisson
distribution

ρnn = Q−1
KGF

nn

n!
, n =

∑

i

nki
.

Hence we led to the same relations which were introduced above for the par-
ticular case of the harmonic oscillator. The partition function and entropy of
this ensemble are

QKGF =

∞∑

n=0

n̄n

n!
= en̄, (4.12.12a)

FKGF = −kBTKGFn̄, (4.12.12b)

SKGF = 2kBn̄. (4.12.12c)

An energy of virtual quanta is presented as the sum of energies of harmonic
oscillators of the frequencies ωi and mean occupation numbers n̄ki

:

EKGF = n�ω +
1

2
�ω,

where ω =
∑

i ωin̄ki
/n̄ is the mean frequency. Then, we find the thermody-

namic temperature of the field as

TKGF =
�ω

2kB
.

Here, as in the previous example, the coherent state temperature is determined
by the system properties and can not be decreased without destroying the
coherent state.

To estimate n̄, we consider the expectation value of the field potential of a
spherical source of radius d, which can be represented [91] in the ground state
as

〈0|φ(r)|0〉|r>d = g

∫
d3r′

e−|r−r
′|/λc

|r − r′| ̺(r′), (4.12.13)
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where λC = �/(mc) is the Compton length for meson. Equation (4.12.13)
implies that a cloud of virtual quanta envelops the source by a spherical layer
of thickness λC , which do not depend on a size of the source. Therefore, n̄
must be proportional to the volume of the layer λC Ad (here Ad = 4πd2 is
the area of the layer surface and it is supposed that d≫ λC), divided by the
quantum volume element ∼ λ3

C :

n̄ ∼ Ad

λ2
C

.

Entropy (4.12.12c) then becomes

SKGF ∼ kB
Ad

λ2
C

. (4.12.14)

An important fact is that entropy (4.12.14) is proportional to the source sur-
face area (cf. the equation (4.12.9c) for the harmonic oscillator). We have such
a dependence because of the entropy results from stochastic processes occur-
ring in the vacuum near the surface of the source. The contribution from the
source itself into the entropy of the total system is not taken into account in
accordance with the initial statement of the problem.

4.12.3 Black hole entropy

The entropy SBH of a black hole is

SBH = kB
ABH

4λ2
P

, (4.12.15)

where ABH = 16πG2M2
BH/c

4 is the horizon area, λP = (�G/c3)1/2 the Planck
length and MBH the black hole mass. The entropy SBH in the form (4.12.15)
was first found by Bekenstein [92, 93] and Hawking [94] using purely thermo-
dynamic arguments based on first and second laws of thermodynamics.

It is evident that the entropy (4.12.15) of a black hole SBH is of the same
form as the entropy SKGF, Eq. (4.12.14). The proportionality of the entropy
to the surface area of a black hole seemed paradoxical over a long time. This
paradox was mostly resolved in [95, 96], where the contribution to SBH coming
only from virtual quantum modes which propagate in the immediate vicinity
of the horizon surface was calculated. However, an ambiguity remains in the
procedure for selecting such modes and we therefore think that the problem of
justifying the expression (4.12.15) from the standpoint of statistical mechanics
is still open, see for example the recent discussion in [97].

In this respect the review paper by Bekenstein [98] is worth mentioning,
where a model quantization of the horizon area was proposed in the section
with the ambitious title “Demystifying Black Hole’s Entropy Proportionality
to Area”. There the horizon is formed by patches of equal area αλ2

P which
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get added one at a time. Since the patches are all equivalent, each will have
the same number of quantum states, say, κ. Therefore, the total number of
quantum states of the horizon is

QBH = κn̄α , n̄α =
ABH

αλ2
P

.

In essence Bekenstein considers his model construction as a microcanonical
ensemble for the patches. As a result, he treats QBH as the thermodynamic
weight of the system and defines the entropy of the horizon as the statistical
(Boltzmann’s) entropy for the microcanonical ensemble

SB
BH = kB lnQBH = kBn̄α lnκ.

An appearance of logarithmic function in an entropy expression is inevitable
if one starts with Boltzmann’s or von Neumann’s statistical definitions of
entropy. To exclude it, Bekenstein divided the obtained expression by the
same logarithm function lnκ with the use of re-definition of the constant α:

α = γ lnκ

to obtain

QBH = enγ , nγ =
ABH

γλ2
P

,

The Bekenstain-Hawking formula (4.12.15) for the black hole entropy follows
with γ = 4. Thus, the partition function, mean number of quanta, and entropy
of a black hole are of the same form as the relevant values for coherent states
of the harmonic oscillator or quantum field in a vicinity of the static source.
Indeed, it was found [99, 100] that a strong gravitational field provides a
decoherence of a system placed in the domain of this field. It is therefore quite
natural to expect that a coherent state of virtual excitations of a vacuum is
formed in a vicinity of the black hole horizon and, as a result, the black hole’s
entropy is the thermodynamic entropy of this coherent state. Then, according
to the first law of thermodynamics, the black hole temperature is defined as
(see Eq. (4.12.6))

TBH =

(
∂SBH

∂EBH

)−1

=
�c3

8πkBGMBH
, EBH = MBHc

2

and should be associated with zero-point fluctuations of vacuum, just as in
the earlier examples of the harmonic oscillator and quantum mesonic field.
Needless to say, any further rigorous treatment of the subject requires a so-
lution of the problem of quantum field fluctuations of the physical vacuum
in the strong gravitational field of a black hole, as was demonstrated above
(Subsec. 12.2) for the mesonic field.

On behalf of the proposed approach we point to great unsolved problems
in deriving the thermodynamic black hole’s entropy (4.12.15) with the use of
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the standard Gibbs’ equilibrium statistical ensemble and the von Neumann
formula for entropy. Some years ago one could even read the assertion: “ · · · it
has been shown that the Bekenstein-Hawking entropy does not coincide with
the statistical-mechanical entropy SSM = −Tr(ρ ln ρ) of a black hole” [101].
This point of view gained acceptance in recent years. In support of this asser-
tion we present yet another quotation: “there are strong hints from black hole
thermodynamics that even our present understanding of the meaning of the
’ordinary entropy’ of matter is inadequate” [102]. Discussions are continuuing
[97] on the question of whether SBH is the entropy of only the surface system,
and thus does not include an interior of black hole, or SBH counts the to-
tal number of black hole’s microstates including all configurations of interior,
with all estimates of SBH performed on the basis of statistical Boltzmann’s or
von Neumann’s definitions of the entropy.

In my opinion, many problems of the black hole’s entropy can be resolved
if the statistical definitions of the entropy is abandoned in favor of thermo-
dynamic definition, as it was demonstrated above for the particular case of
the coherent state of the harmonic oscillator. I suppose that such an approach
enhances the position of those who consider SBH as a vacuum fluctuation
entropy.
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Summary. A theoretical framework based on non-extensive Tsallis entropy is pro-
posed to study the implication of long-range dependence in traffic process on net-
work performance. Highlighting the salient features of Tsallis entropy, the axiomatic
foundations of parametric entropies are also discussed. Possible application of non-
extensive thermodynamics to study the macroscopic behavior of broadband network
is outlined.

5.1 Introduction

The phenomenon of long-range dependence (LRD) seems to be ubiquitous. It
has been observed in a variety of systems ranging from physical, engineering,
biological and social systems [1-3]. The resulting correlation structure charac-
terizing LRD decays in accordance with a power law indicating the presence
of multifractal structure. There are numerous examples which illustrate power
law like behavior in problems related to turbulence [4], DNA sequences [5], city
populations [6], linguistics [7], fractal random walks [8], complex high energy
processes [9], cosmic rays [10] and stochastic resonance [11]. Attempts have
been made to capture power law using approaches based on Boltzmann Gibbs
(BG) statistical mechanics and maximum entropy principle due to Jaynes [12]
which seeks to maximize entropy subject to auxiliary conditions or moment
constraints. The entropic form based on Shannon’s measure of information [13]
has successfully been employed in the context of BG statistical mechanics.

BG statistical mechanics describes systems in stationary states charac-
terized by thermal equilibrium. Such systems are known to be ergodic and
extensive [14]. Broadening the framework of BG statistical mechanics, Tsallis
[15] proposed an entropic form to deal with systems which are non-extensive
and non-ergodic. These systems are characterized by stationary states which
are metastable.

As an extension of Shannon entropy, the proposed non-extensive paramet-
ric entropy by Tsallis [15] is defined as
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Sq = K
1 −∑w

i=1 p
q
i

q − 1
(5.1.1a)

where w denotes the number of states, pi represents the probability that the
system is in state i ∈ I = {1, · · · , w}, the parameter q measures the degree of
non extensivity of the system and K is a constant. The non-extensive entropy
Sq is concave for q > 0 and convex for q < 0. In the limit q tending to 1,
Tsallis entropy reduces to Shannon entropy [13]

S1 = lim
q→1

Sq = −K
∑

i

pi ln pi. (5.1.1b)

which corresponds to entropy of the discrete random variate. It may be in-
structive to note that the case of continuous random variate is not on the
same footing as that of discrete variate. As a limiting process, one can see
from Eq. (5.1.1b), the entropy of continuous distribution becomes infinitely
large and thus it cannot be used as a measure of uncertainty. However, the
discrepancy can be reconciled if one takes the difference between two entropies
with the same reference. To distinguish the case of continuous variate from
that of discrete, the differential entropy of random variate X with probability
density function f(x) is defined as

hB(X) = −
∫ ∞

−∞

f(x) ln f(x)dx (5.1.2)

It is well-known that maximization of differential entropy Eq. (5.1.2) sub-
ject to appropriate constraints on the probability distribution may also yield
distribution with a power tail such that f(x) ∼ Ax−υ. For the purpose of illus-
tration, one can obtain Cauchy as a maximum entropy probability distribution
when the moment constraint on the auxiliary function φ(x) = ln(a2 + x2) is
given. Accordingly, the maximization of Eq. (5.1.2) subject to the following
constraints

∫ ∞

−∞

f(x)dx = 1 and
∫ ∞

−∞

ln(a2 + x2)f(x)dx = const

yields the Cauchy distribution

f(x) =
a

π(a2 + x2)
, −∞ < x <∞

Montroll and Shelsinger [16] have noted that any distribution with a power
law behavior Ax−υ would require auxiliary function to behave asymptotically
as υ lnx. They further observe “such a function has not been considered a
natural one for use in auxiliary conditions. The general situation is even worse
since one of the most natural long-tailed inverse power distributions that is
connected with some physical model is the Lèvy distribution which is generally
defined only through its Fourier integral representation.” However, as has been
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demonstrated by Montroll and Shelsinger [16], in case of income distribution,
the basic function which determines one’s course of action, is the Bernoulli
utility U(x) = ln (x/x̄). Employing maximum entropy formalism, subject to
the constraints E[U2] = const, they have introduced a model to indicate that
Pareto-Lèvy tails can be derived from log-normal distribution.

Within the framework of maximization of Tsallis entropy subject to con-
straints, the power law behavior emerges in a natural way. Several researchers
have successfully employed Tsallis entropy to capture power law behaviour in
a variety of fields such as edge of chaos [17], Lèvy flights [18], earth-quakes [19],
internet traffic [20]. Tsallis entropy framework could find useful applications
in the field of teletraffic and internet engineering due to the fact that network
traffic shows characteristic features which differ in fundamental ways from the
conventional voice networks. It is interesting to note that data traffic mea-
surements reveal the existence of long-range dependence having self-similar
structure over a wide range of time scales. Based on simulation experiments
with actual traces of ethernet LAN traffic, Erramilli, Narayan and Willinger
[21] have shown that the effects of LRD dominate the behaviour of queuing
system in terms of larger delays and buffer requirement. It is also observed
that traffic in various packet networks such as LAN, WAN, WWW, SS7 and
B-ISDN exhibits LRD [22-25]. The characteristic feature of such traffic is on
account of burstiness with large variances. The new features in queuing sys-
tem resulting from LRD traffic cannot be studied on the basis of traditional
traffic models based on Markovian assumptions [26].

The purpose of this article is to highlight some of the salient features of
non-extensive Tsallis entropy. The axiomatic foundations of various paramet-
ric entropies viz Renyi, Havrda-Charvat and Tsallis are underlined. We discuss
the robustness of Jaynes entropy concentration theorem for both parametric
and non-parametric entropies. The relevance of Tsallis entropic framework is
brought out in the context of network traffic characterization as an alternative
approach to model the phenomenon of LRD. This in turn helps to study its
impact on network performance and gain a better insight into the quality of
service (QofS) parameters. It is shown that the effect of LRD results in power
law behavior of queue size as well as overflow probability. The usefulness of
Tsallis statistics in connection with internet traffic is also discussed. The pos-
sibility of non-extensive thermodynamics for studying broadband network is
suggested. The article ends with conclusion.

5.2 Tsallis Entropy and Some Other Parametric
Entropies

5.2.1 Tsallis entropy and mutual information

Abe [27] has drawn attention to the attractive property of Tsallis entropy
which can be uniquely identified by the principles of thermodynamics. Abe [27]
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observed that non-equilibrium states of such systems are occupied for signifi-
cantly long periods with preserving scale invariant and hierarchical structures.
A notable feature of the phase space is that it is generically inhomogeneous
and additivity requirement may not be satisfied any more [28]. Thus for two
independent systems one finds

Sq(A,B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) (5.2.1a)

In the limit q → 1, Eq. (5.2.1a) reduces to the result due to Shannon

Sq(A,B) = Sq(A) + Sq(B) (5.2.1b)

which states that sum of joint entropies is equal to the sum of marginal en-
tropies.

An interesting observation is made by Abe [29] in connection with use
of generalized differential operator introduced by Jackson (1909) [30, 31] in
Tsallis entropy framework. The generalized differential operator is defined as

Dqf(x) =
f(qx) − f(x)

qx− x

which in the limit q → 1 reduces to

D1 = lim
q→1

Dq =
d

dx
,

Abe [28] notes

−K
(
Dq

∑

i

pq
i

)
= K

1 −∑i p
q
i

q − 1
= Sq

whereas the result corresponding to Shannon entropy is recovered for q = 1,
i.e.

−K
(
d

dq

∑

i

pq
i

)

q=1

= −K
∑

i

pi ln pi = S1

Measures of divergence and mutual information: The divergence mea-
sure also referred to as Kullback-Leibler measure, denotes the distance be-
tween probability distributions R = {ri} and P = {pi} which in context of
Shannon entropy reads as

D(R||P ) =
∑

i

ri ln
ri
pi

(5.2.2)

The distance is not symmetric implying that D(R||P ) �= D(P ||R). The mea-
sure of divergence can be used to provide insight into Jaynes’ entropy con-
centration theorem (JECT) which states that most of the probability dis-
tributions consistent with the given constraints will be centred around the
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probability distribution with the maximum entropy. Jaynes proved that for
large number N of observations, the statistic 2N(Smax−S) follows chi-square
distribution where Smax is maximum entropy value and S is the entropy of any
other probability distribution [32]. Shachi, Krishnamachari and Karmeshu [33]
have investigated the validity of JECT in the context of parametric entropies,
particularly the Tsallis entropy. The divergence measure for Tsallis entropy

D(R||P ) =
1

q − 1

∑

i

pi

[(
ri
pi

)q

− ri
pi

]

which for q → 1 yields Eq. (5.2.2). Shachi et. al. [33] find that JECT re-
mains valid for Tsallis entropy and statistic 2N(Smax−S)/q is asymptotically
distributed as chi-square.

Recently an interesting application of Tsallis mutual information in con-
junction with stochastic optimization approximation algorithm has been sug-
gested in the area of image registration [34]. Tsallis mutual information can
be expressed as

I(X : Y ) = Sq(X) + Sq(Y ) + (q − 1)Sq(X)Sq(Y ) − Sq(X,Y )

where Sq(X,Y ) is the entropy for the joint probability distribution of (X,Y ).
The authors [34] find that Tsallis entropy improves image registration accuracy
and speed of convergence.

5.2.2 Some other parametric entropies

As early as 1967, Havrda and Charvat [35] proposed a non-additive measure
of entropy of order α

SHC
α (P ) = SHC

α (p1, · · · , pn) =

∑n
i=1 p

α
i − 1

21−α − 1
, α �= 1

which is almost similar to Tsallis entropy given in Eq. (5.1.1a). SHC
α (P )

reduces to Shannon entropy as α tends to 1. Here, we use the convention
0α = 0, (α �= 0). Though, Havrda and Charvat [35] obtained entropy measure
similar to that of Tsallis [15], yet it remained obscured as the full import of its
relevance could not be understood. It is Tsallis [36] who demonstrated the full
relevance by generalizing BG statistical mechanics to non-extensive physical
systems.

Another well-known additive parametric entropy is due to Renyi [37] in-
volving only one parameter. Renyi’s additive entropy of order α is defined
as

SR
α (P ) = SR

α (p1, · · · , pn) =
1

1 − α
ln

n∑

i=1

pα
i , α > 0, α �= 1 (5.2.3)
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which also gives Shannon entropy in the limit α→ 1. An important finding is
the connection between Havrda-Charvat entropy and Renyi entropy [38], i.e.

SHC
α (P ) =

2(1−α)SR
α (P ) − 1

21−α − 1
, α �= 1 (5.2.4)

It is obvious from Eq. (5.2.4) that Renyi and Tsallis entropies are also related
to each other as a monotonic function. Accordingly, a pertinent question to
be answered relates to appropriate choice of entropic measure. To this end,
notion of stability can be useful for observable quantities to be experimentally
reproducible [39].

5.2.3 Stability of Tsallis entropy

On the basis of stability consideration, Abe [39] has compared the three non-
extensive entropies namely: Renyi entropy, Tsallis entropy and normalized
Tsallis entropy, listed below

S(R)
q =

1

1 − q
ln

n∑

i=1

pq
i (5.2.5a)

S(T )
q =

1

1 − q

(
n∑

i=1

pq
i − 1

)
(5.2.5b)

S(NT )
q =

1

1 − q

(
1 − 1∑n

i=1 p
q
i

)
(5.2.5c)

It is known from the principle of maximum entropy that all three entropies
yield the q-exponential distribution. This raises an obvious question as to
the choice of suitable criterion for selecting appropriate entropy form. Such a
criterion is based on stability considerations which require small change under
an arbitrary small deformation of the distribution. Using l1 norm as a measure
of size of deformation from {pi}i=1,··· to {ṕi}i=1,···, i. e.

‖p− ṕ‖1 =
∑

i

|pi − ṕi|,

Abe [39] established that only Tsallis entropy given by Eq. (5.2.5b) is stable
under perturbations.

5.3 Axiomatic Foundations of Parametric Entropies

An area of investigation in vogue relates to characterization of entropy mea-
sure in terms of different sets of postulates. Notable attempts in the context
of Shannon measure have been made by Khinchin [40] and Fadeev [41]. Sub-
sequently, attempts have been made to characterize additive and non-additive
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measures of entropies due to Renyi and Havrda-Charvat [38]. Recently, Su-
yari [42] has generalized Shannon-Khinchin (GSK) axioms for non-extensive
entropies. For the sake of completeness, we give the sets of postulates in the
context of Shannon, Renyi, Havrda-Charvat and Tsallis entropies, with the
following definition of state space

△n =

{
(p1, · · · , pn) : (pi ≥ 0)

(
n∑

i=1

pi = 1

)}
. (5.3.1)

5.3.1 Shannon-Khinchin axioms

We closely follow the article of Suyari [42] in this sub-section. The Shannon’s
measure of entropy S1 is given by Eq. (5.1.1b). The Shannon-Khinchin axioms
are:

1. Continuity : For any n ∈ N , the function S1 is continuous with respect to
(p1, · · · , pn) ∈ △n.

2. Maximality : For given n ∈ N and (p1, · · · , pn) ∈ △n, the function S1

takes its largest value for pi = 1/n.
3. Additivity : If

pij ≥ 0, pi =

mi∑

j=1

pij , (∀i = 1, · · · , n), (∀j = 1, · · · ,m)

then the following equality holds

S1(p11, · · · , pnmn
) = S1(p1, · · · , pn) +

n∑

i=1

piS1

(
pi1

pi
, · · · , pimi

pi

)

4. Expandability :
S1(p1, · · · , pn, 0) = S1(p1, · · · , pn)

The proofs of these axioms can be found in Khinchin [40].

5.3.2 Axioms for Renyi entropy

Renyi entropy as defined in Eq. (5.2.3) satisfies the following postulates [43]:

1. Symmetry: SR
α (P ) is a symmetric function of its variables for n = 2, 3, · · ·

2. Continuity: SR
α (P ) is a continuous function for p for 0 ≤ p ≤ 1.

3. SR
α

(
1
2 ,

1
2

)
= 1

4. Additivity: For two probability distributions P = (p1, · · · , pn) and Q =
(q1, · · · , qn), the entropy of the combined distribution is equal to the sum
of entropies of the individual distributions i.e.

SR
α (P ∗Q) = SR

α (P ) + SR
α (Q)
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5.3.3 Axioms for Havrda-Charvat entropy

Havrda-Charvat [35] introduced a set of postulates for non-additive structural
α-entropy. Following Karmeshu and Pal [43], the postulates are:

1. SHC
α (p1, · · · , pn;α) is continuous in the region pi ≥ 0,

∑
i pi = 1, α > 0

2. SHC
α (1, α) = 0, SHC

α ( 1
2 ,

1
2 ;α) = 1

3. SHC
α (p1, · · · , pi−1, 0, pi+1, · · · , pn;α) = SHC

α (p1, · · · , pi−1, pi+1, · · · , pn;α)
for every i = 1, 2, · · · , n

4.

SHC
α (p1, · · · , pi−1, ri1 , ri2 , pi+1, · · · , pn;α) =

SHC
α (p1, · · · , pi−1, pi+1, · · · , pn;α) + αpα

i S
HC
α

(
ri1
pi
,
ri2
pi

;α

)

for every ri1 + ri2 = pi > 0, i = 1, · · · , n

Another attempt to characterize non-additive measure is due to Forte and Ng
[44]. Following Mathai and Rathie [38], we present the axioms for Havrda-
Charvat entropy:

1. Symmetry : SHC
α (p1, · · · , p6) is a symmetric function of its variables.

2. Expansibility :

SHC
α (p1, · · · , pn, 0) = SHC

α (p1, · · · , pn), (p1, · · · , pn) ∈ △n, n ≥ 2

3. Branching :

SHC
α (p1, · · · , pn+1) − SHC

α (p1 + p2, p3, · · · , pn+1) > 0

∀(p1, · · · , pn+1) ∈ △n+1, p1, p2 > 0, n ≥ 2

4. Compositivity :

SHC
α (pp1, pp2, pp3, pp4, (1 − p)q1, (1 − p)q2) =

ψ4,2[S
HC
α (p1, p2, p3, p4), S

HC
α (q1, q2), p],

for all (p1, p2, p3, p4) ∈ △4, (q1, q2) ∈ △2, p ∈ [0, 1] and

SHC
α (p1, p2) not constant in △2

5. Continuity : SHC
α (p1, p2, p3) is continuous at the boundary points of △3

6. Nullity : SHC
α (0, 1) = 0

7. Normalization : SHC
α ( 1

2 ,
1
2 ) = 1
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5.3.4 Axioms for Tsallis entropy

Suyari [42] in a recent paper has proposed generalized Shannon-Khinchin ax-
ioms (1-4) for determining the function Sq : △n → R+ such that

Sq(p1, · · · , pn) =
1 −∑n

i=1 p
q
i

φ(q)

where q ∈ R+ and φ(q) satisfies properties (i)–(iv)

(i) φ(q) is continuous and has same sign as q − 1, i.e.,

φ(q)(q − 1) > 0, q �= 1

(ii)
lim
q→1

φ(q) = φ(1) = 0, φ(q) �= 0, q �= 1

(iii) there exists an interval (a, b) ⊂ R+ such that a < 1 < b and φ(q) is
differentiable on the interval

(a, 1)
⋃

(1, b)

(iv) there exists a constant k > 0 such that

lim
q→1

dφ(q)

dq
=

1

k

1. Continuity : Sq is continuous in △n and q ∈ R+

2. Maximality : for any q ∈ R+, any n ∈ N and any (p1, · · · , pn) ∈ △n

Sq(p1, · · · , pn) ≤ Sq

(
1

n
, · · · , 1

n

)

3. Generalized Shannon additivity : under the normalization constraint of prob-
abilities, the following equality holds

Sq(p1, · · · , pnmn
= Sq(p1, · · · , pn) +

n∑

i=1

pq
iSq

(
pi1

pi
, · · · , pimi

pi

)

4. Expandability

Sq(p1, · · · , pn, 0) = S1(p1, · · · , pn)

It would be worth examining the similarities and dissimilarities among the
set of postulates for non-extensive entropies by Havrda-Charvat [35], Forte
and Ng [44] and Suyari [42]. This will enable to identify the minimal set of
postulates from physical considerations.
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5.4 Tsallis Entropy and Network Traffic

The maximum entropy principle (MEP) as conceived by Jaynes [12] allows one
to choose a probability distribution when some prior information about the
system is prescribed. In the current setting, it is assumed that the kth moment
of number of packets is known a priori. When Tsallis entropy as given in Eq.
(5.1.1a) is maximized subject to kth order moment constraint

∑

i

ikpi = A (5.4.1a)

and normalization constraint
∑

i

pi = 1 (5.4.1b)

the queue length distribution of number of packets is obtained by employing
Lagrange’s method of undetermined multipliers. The Lagrangian function is
given by

φq =
Sq

K
− α

(
1 −
∑

i

pi

)
+ αβ(q − 1)

(
A−

∑

i

ikpi

)
(5.4.2)

Here, α and β are Lagrange’s parameters. By differentiating Eq. (5.4.2) with
respect to pi and making use of normalization constraint the queue length
distribution is given by

pi = Z−1[1 + β(1 − q)ik]1/(q−1) (5.4.3)

where
Z =

∑

i

[1 + β(1 − q)ik]1/(q−1) (5.4.4)

This result for k = 1 is similar to the one due to Tsallis [15]. In the limit q
tends to 1, Eq. (5.4.3) becomes

pi =
exp(−βik)∑
i exp(−βik)

For large number of packets i in the network, Eq. (5.4.3) behave as

pi ∼ ik/(q−1)

and mimicking power law behavior for q < 1. We next discuss cases for various
values and ranges of k.

Case I: 0 < k < 1. This case pertains to the fractional moments [45]. The
packet networks traffic having long-range dependence may not have finite
mean and variance. In such scenarios, some knowledge of finite fractional
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moment may be available. The range of entropic parameter q then becomes 1−
k < q < 1 since k is a fraction. This condition is required for the convergence
of Z.

The mean number of packets in the network is given by

N = Z−1
∑

i

i
[
1 + β(1 − q)ik

]1/(q−1)
(5.4.5)

which for finiteness requires q > 1 − k/2. It is easy to notice when q lies
between 1 − k and 1 − k/2, mean becomes infinite.

Case II k = 1. This case corresponds to availability of first moment as
the constraint [46]. The corresponding probability distribution as given by Eq.
(5.4.3) and Eq. (5.4.4) becomes

pi =

[
1

β(1 − q)
+ i

]1/(q−1)

ζ

[
1

1 − q
,

1

β(1 − q)

]

where ζ
[

1
1−q ,

1
β(1−q)

]
denotes the Hurwitz-Zeta function [47] defined by

ζ

[
1

1 − q
,

1

β(1 − q)

]
=

∞∑

i=0

[
i+

1

β(1 − q)

]−1/(q−1)

The probability distribution of pi is also known as the Zipf-Mandelbrot dis-
tribution [48].

The first moment of number of packets can also be expressed in terms of
Hurwitz-Zeta function as

N =

ζ

[
q

1 − q
,

1

β(1 − q)

]

ζ

[
1

1 − q
,

1

β(1 − q)

] − 1

β(1 − q)
, q >

1

2

The range of entropic parameter now becomes 1
2 < q < 1.

Case III k > 1. This pertains to the case when higher order integral
moments of number of packets is known to be finite. This available information
is used as the constraint. The distribution of queue length is given by Eqs.
(5.4.3) and (5.4.4), and for convergence we require 1 − k < q < 1. Since k is
positive integer exceeding unity, q can be less than zero. The expression for
the mean number of packets is same as given in Eq. (5.4.5) which for finiteness
requires 1 − k−1 < q < 1.

5.4.1 Performance Measures

One of the important QofS parameter is the overflow probability which de-
notes the probability of exceeding a given buffer size. This is often obtained
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from the tail of the probability of exceeding a threshold value in an infinite
buffer system, given by

P (i > x) = Z−1
∞∑

i=x+1

[
1 + β(1 − q)ik

]1/(q−1)

For large buffer size x, one finds

P (i > x) ∼ x−k/(1−q)+1

depicting again power law behaviour for k/(1 − q) > 1.
Another QofS parameter of interest is the system utilization defined by

U = 1 − p0 = 1 −
∑

i

[
1 + β(1 − q)ik

]1/(q−1)

5.4.2 Tsallis entropy and Escort distribution

In the context of non-extensive systems, it is suggested that the usage of
probability {Pi} defined as

Pi =
pq

i∑
i p

q
i

(5.4.6)

is more appropriate. Equation (5.4.6) is known as the Escort distribution of pi

of order q [28]. It has been argued that for power law distribution, mean values
or q-expectation values formed with Escort distribution give more consistent
results [49, 50]. Shachi and Karmeshu [51] observe that formalism based on
q-expectation yields similar results as discussed in previous section except the
admissible range of entropy parameter q. In the context of queueing problems,
further information about system’s utilization Ue is also known. The problem
can be reformulated as,

Max Sq = Max K
1 −∑i p

q
i

q − 1
(5.4.7)

subject to ∑

i

pi = 1,
∑

i

ikPi = Ae (5.4.8a)

∑

i

h(i)Pi = Ue, with h(i) = 0 if i = 0

h(i) = 1 if i = 1. (5.4.8b)

The entropy optimization can be carried out using Langrange’s method. This
yields

p0 = 1 − Ue, i = 0
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pi = p0λ1

[
1 + λ2(q − 1)ik

]1/(q−1)
, i �= 0 (5.4.9)

where λ1 and λ2 are parameters to be calculated from Eq. (5.4.8a) and Eq.
(5.4.8b). It is easy to see that Eq. (5.4.9) also asymptotically yields the well-
known power law behavior for q > 1. The convergence of moment constraint
given in Eq. (5.4.8a) requires q < (k + 1). Hence, the admissible range of q
becomes 1 < q < (k + 1).

5.5 Internet Traffic and Tsallis Entropy

There is evidence to the effect that Tsallis statistics describes the scale-
invariant states of internet traffic [20]. Noting that internet provides an in-
teresting example of self-organizing system, Abe and Suzuki [20] suggest that
the actions of a large number of users can be understood within statistical
mechanics framework. Based on data analysis of the echo experiment, the cu-
mulative probability distribution of sparseness time interval in the internet is
examined. They observe that the data is in accordance with the q-exponential
distribution. The problem in a more generalized setting including kth order
moment can be stated mathematically as

Max Sq = Max K
1 −
∫∞

0
pq(x)dx

q − 1
(5.5.1)

subject to

∫ ∞

0

xkp(x)dx = A (5.5.2a)
∫ ∞

0

p(x)dx = 1 (5.5.2b)

Extremizing Eq. (5.5.1) subject to Eq. (5.5.2a) and Eq. (5.5.2b) results in

p(x) = Z−1[1 + β(1 − q)xk]1/(q−1), x ≥ 0 (5.5.3)

for

Z =

∫ ∞

0

[1 + β(1 − q)xk]1/(q−1)dx

where β is the Lagrange parameter and can be calculated from Eq. (5.5.2a),
we found,

β =
1

A[q(1 + k) − 1]
(5.5.4)

Substituting Eq. (5.5.4) in Eq. (5.5.3), the resulting distribution of queue
length reads as
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p(x) =

kΓ

(
1

1 − q

)[
A

(
kq

1 − q
− 1

)
+ xk

]1/(q−1)

Γ

(
1

k

)
Γ

(
1

1 − q
− 1

k

)[
A

(
kq

1 − q
− 1

)]1/(q−1)+1/k
, x > 0

(5.5.5)
which reduces to that of Abe and Suzuki [20] for k = 1. The moment gener-
ating function (MGF) is given by,

Mx(t) =

∞∑

j=0

tj

j!

[
A

(
kq

1 − q
− 1

)](1+j)/k

Γ

(
1 + j

k

)
Γ

(
1

1 − q
− 1 + j

k

)

[
A

(
kq

1 − q
− 1

)]1/k

Γ

(
1

k

)
Γ

(
1

1 − q
− 1

k

)

The effect of higher order moment (i.e k > 1) of sparseness time interval on
the cumulative distribution function is worth examining.

5.6 Broadband Networks and Non-Extensive
Thermodynamics

Broadband networks with large capacity of network components can be char-
acterized as a dynamical system with complex nonlinear interactions among
them. The understanding of the network performance has largely been depen-
dent on the microscopic description of nodes and network dynamics. Due to
unverifiable data, the microscopic description may sometimes not be reliable.
Further, the presence of chaos in networks may render such data futile. In con-
trast to microscopic description Hui and Karasan [52] proposed a macroscopic
description based on extensive thermodynamics employing scalability postu-
late for grade of service, bandwidth and buffer assignments and bandwidth
demand. Earlier Benes [53] using Shannon’s entropy framework proposed a
theory for connecting networks and telephone theory.

We propose to extend the extensive thermodynamics framework to exam-
ine the role of non-extensivity in the field of broadband networks. It is widely
known that characteristic features of traffic is long range dependent and ex-
hibits the power law behaviour. Since Tsallis entropy captures such behaviour
in a natural manner, it would be profitable to use non-extensive thermody-
namics formalism to investigate broadband network behaviour. This will also
give an insight into the dynamic routing of broadband traffic.

5.7 Conclusion

The article demonstrates the usefulness of non-extensive Tsallis entropic
framework for capturing the phenomenon of long-range dependence in the
context of broadband network traffic. It is noted that the effect of LRD results
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in the power law behavior of queue sizes in network. The apparent success of
applicability of non-extensive statistical mechanics in widely diverse systems
ranging from physical to social is noteworthy. This would suggest a deeper
underlying mechanism as has been observed by Gellmann and Tsallis [14].
They observe: “An intriguing question that remains unanswered is: exactly
what do all these systems have in common? One suspects, of course that the
deep explanation must arise from microscopic dynamics. The various cases
could all be associated with something like a scale-free dynamical occupancy
of phase space, but this certainly deserves further investigation.”
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Summary. We study two points of view regarding the origin of irreversible processes.
One is the “chaotic hypothesis” that says that irreversible processes are rooted in the
randomness generated by chaotic dynamics. The second point of view, put forward
by Prigogine’s school, is that irreversibility is rooted in non-integrable dynamics, as
defined by Poincaré. Non-integrability is associated with resonances. We consider a
simple model of Brownian motion, a harmonic oscillator (particle) coupled to lat-
tice vibration modes (field). We compute numerically the “(ǫ, τ) entropy”, which
indicates how random are the trajectories and how close they are to Brownian tra-
jectories. We show that (1) to obtain trajectories close to Brownian motion it is
necessary to have a resonance between the particle and the lattice, which allows the
transfer of information from the lattice to the particle. This resonance makes the
system non-integrable in the sense of Poincaré. (2) For random initial conditions,
chaos seems to play a secondary role in the Brownian motion, as the entropy is sim-
ilar for both chaotic and non-chaotic dynamics. In contrast, if the initial conditions
are not random, chaos plays a crucial role, as it leads to the thermalization of the
lattice, which then induces the Brownian motion of the particle through resonance.

6.1 Introduction

In this work we study the relationship that some features of mechanical sys-
tems (such as Poincaré resonances and chaos) keep with irreversible phenom-
ena, specifically Brownian motion, a topic which has woken up great interest
over the last years. We center on two points of view regarding the origin
of irreversible processes. One is the “chaotic hypothesis” that says that irre-
versible processes are rooted in the randomness generated by chaotic dynamics
[1, 2]. The second point of view, put forward by Prigogine’s school, is that
irreversibility is rooted in non-integrable dynamics, as defined by Poincaré
[3, 4, 5, 6, 7, 8, 9].

Poincaré’s non-integrability occurs when the perturbation expansions of
the invariants of motion diverge due to resonances. Chaotic systems are
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206, 179–206 (2006)
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non-integrable in Poincaré’s sense, but systems that are non-integrable in
Poincaré’s sense are not necessarily chaotic. Chaos is a sufficient but not nec-
essary condition for Poincaré’s non-integrability.

The chaotic hypothesis may be regarded as an extension of the ergodic
hypothesis to systems out of equilibrium which are in a stationary state. In
fact, the condition of Anosov implies the existence of an invariant measure
µ univocally determined, known as the SRB distribution (after Sinai, Ruelle
and Bowen) such that, for almost all the points P ∈ Γ of the phase space Γ
and all the observables f , the following equality holds [10, 11]:

lim
T→∞

1

T

∫ T

0

f(StP0)dt =

∫

Γ

f(P )dµ(P )

where St is the dynamical evolution group. Concerning to the chaotic hypoth-
esis, Gaspard et. al. [12] have carried out an experiment measuring 145 612
successive positions of a Brownian particle at regular time intervals τ = 1/60 s
in order to calculate the ǫ-entropy of the so-obtained time series. On the basis
of this analysis they claim to have found experimental evidence of chaos on
the microscopic level, a conclusion which has been subject to many discussions
(see e.g. Dettmann and Cohen [13]).

In this paper we will focus on Brownian random motion. We will investigate
the roles that chaos and resonance (thus Poincaré’s non-integrability) play in
the generation of Brownian motion. We will study a simple model, a harmonic
oscillator (Brownian particle) coupled to a lattice. The lattice vibration modes
have a non-linear coupling as in Fermi-Pasta-Ulam’s model, which may lead to
chaos depending on the coupling strength. In order to identify the Brownian
motion we will compute numerically the “pattern entropy” and the “(ǫ, τ)-
entropy,” which give a measure of the degree of randomness (or information
content) of the motion of the particle. We start by giving a review of the
ideas of Prigogine’s school concerning irreversibility. In subsequent chapters
we present a review on entropy and information and we give our numerical
results.

6.2 The Prigogine school

Irreversibility of the physical processes in Nature is characterized by statisti-
cal entropy. For systems in equilibrium this magnitude is expressed as a func-
tional of the probability distribution in phase space, S = −kB

∫
ρ log ρdΓ .

Nonetheless, because of Liouville’s theorem this quantity remains constant
along the evolution toward equilibrium, in contradiction with the second law
of thermodynamics.

The proposal of Prigogine’s school is to introduce a change of representa-
tion through a transformation operator Λ, such that for

ρ̃ = Λρ (6.2.1)
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the quantity S̃ = −kB

∫
ρ̃ log ρ̃ dΓ does increase monotonically with time. In

the Λ representation time-symmetry is broken. The transformed distribution
ρ̃ follows an irreversible dynamics associated with noise and fluctuations. The
existence of Λ imposes some restrictions over dynamics. Misra [3] showed that
a necessary condition is that the system is mixing, while a sufficient condition
is that it is a K-system.1 Nevertheless, it is possible to establish the existence
of Λ for systems that display weaker instabilities, as that associated with the
existence of Poincaré resonances in non-chaotic systems, provided there is a
continuous spectrum of frequencies and we restrict to a suitable set of initial
conditions. The transformation Λ is non-unitary. However, it is invertible.
This allows us to go back to the original representation. As we discuss now,
this transformation is directly connected to the problem of integrability of
dynamics, as studied by Poincaré (for more details see [3, 4, 7]).

The time evolution of ensembles is given by Liouville’s equation

i
∂ρ

∂t
= LHρ

where LH = {H, } is the Liouville operator. We consider a system that can be
described by a free motion component L0 and an interaction λLV , where λ is
the interaction strength. We have LH = L0 +λLV . If the system is integrable
in the sense of Poincaré, then we can construct by perturbation expansion in λ
a canonical transformation U such that L̄0 = ULHU

−1 has the same form as
L0. We obtain a dynamics of free (although renormalized) particles. U maps
unperturbed invariants to perturbed invariants of motion. With ρ̄ = Uρ the
transformed Liouville equation is

i
∂ρ̄

∂t
= L̄0ρ̄

Changing ρ to ρ̄ allows us to integrate the equations of motion. Defining a
suitable inner product between dynamical variables A and ensembles ρ such
as

〈A|ρ〉 =

∫
dΓ A∗ρ

where dΓ is the phase space volume element, we can define the Hermitian
conjugate operator,

〈A|Uρ〉 = 〈U†A|ρ〉
and show that U is unitary, U−1 = U†. Moreover U is time reversal invariant.
This means that dynamics is equivalent to a time reversible dynamics of free
particles through a unitary transformation.

1 Mixing implies that under the dynamics an evolving subset At becomes uniformly
distributed on the complete phase space S. Thus for a fixed subset B the measures
satisfy limt→∞ µ(At ∩ B)/µ(B) = µ(A0)/µ(S) [5]. K-systems are systems with
positive Kolmogorov-Sinai entropy (or KS-entropy). For systems without escape
this is equivalent to the requirement that the system is chaotic [14].
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The perturbation expansion of U has terms of the form

λLV
1

ω − L0
, λLV

1

ω − L0
λLV

1

ω′ − L0
, · · ·

Here the parameters ω, ω′ are characteristic frequencies of the system. For
integrable systems in Poincaré’s sense, the denominators are non-vanishing.
The physical meaning of this is that there are no resonances in the system.
As a result, each term of the perturbation expansion of U is well defined.

For non-integrable systems there appear resonances, and the denominators
may vanish, giving divergences. The perturbation expansion of U loses its
meaning. We can however regularize the denominators by interpreting them
as distributions

1

ω − L0
⇒ 1

±iǫ+ ω − L0

where ǫ is an infinitesimal. Then we have

1

±iǫ+ ω − L0
= P 1

ω − L0
∓ πiδ(ω − L0)

where P is the principal part and δ is Dirac’s delta function. The regularization
of the denominators leads to the transformation Λ, which is no longer unitary
and which breaks time-reversal invariance. Time reversal invariance is broken
when we fix the sign of iǫ. For ρ̃ = Λρ the Liouville equation is transformed
to

i
∂ρ̃

∂t
= Θρ̃, with Θ = ΛLHΛ

−1 (6.2.2)

The transformed Liouville operator Θ takes the form of a kinetic collision
operator. For example for the Friedrichs model of Brownian motion we con-
sider below, Θ is a Fokker-Planck operator [6]. Eq. (6.2.2) describes a Markov
process that breaks time-symmetry. An interesting property of Λ is that it is
non-distributive with respect to multiplication. This introduces fluctuations,
which are equivalent to the fluctuations associated with stochastic processes,
e.g., white noise in Brownian motion.

The main point of Prigogine’s school is that irreversibility and fluctuations
emerge from reversible, deterministic dynamics when the dynamics is non-
integrable in Poincaré’s sense. One cannot construct a transformation U that
allows the integration of the equations of motion, but one can construct a
transformation Λ that reveals the irreversible, fluctuating dynamics that is
hidden in the usual formulation of dynamics. The invertible transformation Λ
maps Hamilton’s equations to stochastic irreversible equations.

Poincaré’s work was based on the three-body problem, which was one of the
first examples of chaotic systems. Prigogine and coworkers have shown that
Poincaré’s resonances appear not only in chaotic systems with few degrees
of freedom, but also in large systems with many degrees of freedom (not
necessarily chaotic) where there is a continuum of energies.
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6.3 Mechanical model for Brownian motion

We investigate the evolution of a classical system that consists of a harmonic
oscillator (which we will call “particle”) and a lattice in one-dimensional space,
represented as a chain of oscillators. The particle corresponds to an impu-
rity within the lattice that weakly interacts with the lattice atoms through
harmonic potentials. The coupling between the impurity and the atoms is
assumed to be much weaker than the coupling between the lattice atoms.

We consider two cases:

◮ Friedrichs model: the oscillators of the chain interact among themselves
via a nearest-neighbor harmonic potential in which case the interaction
can be eliminated with a transformation to normal modes.

◮ Friedrichs-Fermi-Pasta-Ulam (FFPU) model: the chain of oscillators in-
cludes nearest-neighbor nonlinear interactions (anharmonic potential) which
are not eliminated in the normal-mode representation.

The Friedrichs model gives linear equations of motion, so all the Lyapunov
exponents are equal to zero. However, this system may present a Poincaré
resonance between the particle and the lattice modes that leads to Brownian
motion in the thermodynamic limit.2. The existence of the thermodynamic
limit requires that initial phases of the lattice modes are distributed at random
[15]. In terms of ensembles, this means that the initial ensemble is indepen-
dent of the phases of the lattice modes. The initial condition contains a large
amount of information. As we shall show, the resonance allows the transfer of
information from the lattice to the particle, giving the time evolution of the
particle a flavor of stochasticity.

The FFPU model, on the contrary, is non-linear and may show chaotic
behavior with sensitivity to initial conditions, though it does not constitute
an Anosov system. Chaotic dynamics can generate a lot of information by
extracting digits from initial conditions represented by irrational numbers.
This mechanism works even if we have few degrees of freedom. Thus the
FFPU model has two sources of randomness, namely: chaotic dynamics and
the large amount of degrees of freedom that are randomly distributed at t = 0.

The question we want to investigate is to what extent these two sources
contribute to the Brownian motion.

6.3.1 Friedrichs model

First, let us consider a lattice with N harmonic oscillators and denote dis-
placement from equilibrium positions as x1, . . . , xN and respective momenta
as p1, . . . , pN . The Hamiltonian of this system is given by

2 Total number of particles N and volume V go to infinity, keeping N/V finite.



184 John Realpe and Gonzalo Ordonez

H
latt
0 =

1

2

N∑

n=1

pn +
Ω2

2

N∑

n=1

(xn+1 − xn)2, (6.3.1)

where Ω2 characterizes the harmonic coupling intensity among nearest neigh-
bors. Periodic boundary conditions are assumed. Introducing the modes

qk =
1√

2Nωk

N∑

n=1

(
ωkxne−i 2πnk/N + i pnei 2πnk/N

)
, (6.3.2)

with

ω2
k = Ω2

[
2 sin

(
kπ

N

)]2
,

Hlatt
0 takes the “diagonal” form

H
latt
0 =

N∑

k=1

ωkqkq
∗
k. (6.3.3)

For N large the dispersion relation is (with L = N/Ω ∼ size of the box)

ωk =

∣∣∣∣
2πk

L

∣∣∣∣

with k ∈ Z. As L and N go to infinity, ωk becomes a continuous variable over
the positive real line, thus

2π

L

∑

k

−−−−→
L→∞

∫
dωk and

L

2π
δk0 −−−−→

L→∞
δ(ωk),

As described above, the Friedrichs model consists of a harmonic oscilla-
tor, the particle, coupled to a scalar field, which here is the field of lattice
vibrations. Introducing an additional mode corresponding to the particle

q0 =
1√
2ω0

(ω0x0 + i p0), (6.3.4)

the Hamiltonian of the Friedrichs model may be written as follows

H
F = ω0q0 q

∗
0 + H

latt
0 + λV, (6.3.5)

where λV represents the linear part of the interaction between particle and
lattice. Since we assume the coupling is weak we neglect the terms quadratic
in the field modes in the interaction V. In modes representation V takes the
form

V =
∑

k

(Vkq
∗
0 qk + V ∗

k q0 q
∗
k).
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To guarantee existence of the continuous limit L → ∞, we must have Vk ∼
O(L−1/2), in other words

Vk =

√
2π

L
vk, with vk ∼ O(L0).

When there is a continuous spectrum of frequencies ωk, there can appear a
resonance between the particle frequency ω0 and the frequencies ωk. Reso-
nance means that there is an ωk ∈ σ(H) such that ω0 = ωk, where σ(H)
stands for the continuous spectrum of H. As a result of this resonance, the
system can become non-integrable in the sense of Poincaré. This means that
there is no perturbed action of the particle obtained by a unitary transforma-
tion that is expandable in a power series in λ (for more details see [16, 7]).
Because of the linearity of Hamilton’s equations for the Friedrichs model, the
time-dependent normal mode of the particle takes the linear form

q0(t) = f00(t)q0(0) +
∑

k

f0k(t)qk(0), (6.3.6)

from which we get

d

dt
q0(t) = −i z0(t)q0(t) +R(t), (6.3.7)

with

z0(t) = i
∂

∂t
ln f00(t), (6.3.8)

R(t) =
∑

k

hk(t)qk(0), (6.3.9)

hk(t) = ḟ0k + i z0(t)f0k(t). (6.3.10)

We will consider the thermodynamic limit, where we have L → ∞ with the
condition that 〈qkq∗k〉 ∼ O(L0) in such a way that the average energy per field
mode is finite (independent of L) and non-vanishing as L → ∞. To satisfy
this condition, the initial field modes qk(0) must have random phases [15]. If
the phases were not random, then the displacement or velocity of the particle
would diverge as L→ ∞.

As a result of the randomness in the qk(0) modes,R(t) is an erratic function
and it plays the role of noise. In general, this noise keeps memory,

〈R∗(t)R(t′)〉 �= 0, for t �= t′,

where 〈 · 〉 denotes statistical average over a Gibbs ensemble. For time scales
t > 0 of the order of the relaxation time of the oscillator, z0(t) approaches
the constant value z0, which is an energy pole of the resolvent operator. If
there is a resonance between the particle and the field, then z0 is a complex
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number z0 = ω0 − i γ, which gives the shifted frequency and the damping
rate of the oscillator. Under these conditions the function R(t) behaves as a
complex Gaussian white noise R̂(t) satisfying

〈R̂∗(t)R̂(t′)〉 = R̂2
cδ(t− t′),

with R̂2
c = 2γ〈q∗kqk〉.

The replacement of z0(t) by z0 and R(t) by R̂(t) is traditionally associated
with the “Markovian approximation.” However, as shown in [6] one can obtain
the exact stochastic Langevin equation (t > 0)

d

dt
q̂0(t) = −iz0q̂0(t) + R̂(t), (6.3.11)

that is equivalent to the time evolution of the transformed variable Λ†q0. Here
Λ is the transformation discussed in section 6.2. The autocorrelation function
for q̂0(t) is given by

〈q̂0(t)q̂∗0(t)〉 = q̂0(0)q̂∗0(0)e−2γt +
R̂2

c

2γ
(1 − e−2γt), (6.3.12)

which is characteristic of a Markov process.
To see the connection between resonance and irreversibility, consider the

lowest order approximation of γ in a perturbation expansion in powers of λ.
This corresponds to Fermi’s Golden Rule,

γ = λ2|vk|2δ(ω0 − ωk) + O(λ4)

If there is resonance between the particle and the lattice, the Dirac delta-
function is non vanishing, and hence γ is non-vanishing. If there is no reso-
nance, then ω0 �= ωk for all ωk ∈ σ(H), and γ vanishes. There is no damp-
ing and no approach to equilibrium. In short, we see that the appearance
of Brownian motion is closely connected to the existence of a resonance be-
tween the particle and the lattice, and consequently, it is closely connected to
Poincaré’s non-integrability.

6.3.2 FFPU model

The well-known Fermi-Pasta-Ulam (FPU) model consists on a chain of an-
harmonic oscillators, whose Hamiltonian is given by

H
FPU = H

latt
0 + gVlatt,

where Hlatt
0 has been defined in (6.3.1) and g is the intensity of interaction

due to potential Vlatt which, in terms of the coordinates xn and pn, may be
written as
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V
latt =

N∑

n=1

(xn+1 − xn)4.

It’s a well-known fact that this system may present chaotic behavior for high
enough energy values [17].

The FFPU model is a fusion of the Friedrichs and FPU models. The Hamil-
tonian of the model is

H
FFPU = H

F + gVlatt.

Using xn and pn coordinates for field oscillators and q0 for the particle, HFFPU

reads

H
FFPU =ω0 q

∗
0 q0 +

1

2

N∑

n=1

p2n +
Ω2

2

N∑

n=1

(xn+1 − xn)2 + g

N∑

n=1

(xn+1 − xn)4

+ λ

{
N∑

n=1

(fnxn − i gnpn) q0 + c.c.

}
;

(6.3.13)

here c.c. denotes complex conjugate of the previous term. The terms fn and
gn stand for the sums

fn =

N∑

k=1

√
ωk

2N
Vke−i 2πkn/N ,

gn =
N∑

k=1

1√
2Nωk

Vkei 2πkn/N ;

for g = 0 the Friedrichs model is recovered.

6.4 Entropy and information

In the English language there exists less probability of hearing words start-
ing with the letter Z than starting with letter C, for the same reason, in a
crossword puzzle, the letter Z gives us more information than letter C. This
simple example contains the fundamental idea behind information theory and
of entropy as a quantification of it.

Let (X, Ω, µ) be a probability space where X is the sample space, Ω a
σ-algebra of subsets of X and µ a probability measure on Ω. Let ı be the
amount of information gained to know that event A ∈ Ω has occurred; such
a measurement must satisfy the following conditions [18]:

1. ı(µ(A)): the amount of information depends on the degree of uncertainty.
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2. ı ≥ 0: there is no loss of information by knowing something new.
3. ı(µ(A)) = 0 if µ(A) = 1: there is no gain of information by knowing

something completely certain.
4. ı(µ(A)) ↑ if µ(A) ↓: for more certainty there is less information to

transmit.
5. ı(µ(A∩B)) = ı(µ(A))+ı(µ(B)): the information gained to know that two

independent events A, B ∈ Ω occurred is equal to the sum of the information
gained to know, independently, that each one has occurred.

The function

ı(µ(A)) = − log(µ(A)),

satisfies all these requirements. There is full arbitrariness in the choice of the
basis of the logarithm. We will use here logarithm in base 10. In the theory
of communication [19, 20] it is common to talk about a source of information
emitting bi-infinite sequences

· · ·ω−T · · ·ω0ω1 · · ·ωT · · ·

of characters (letters) from a set α = {1, . . . ,L} (alphabet) that here we
assumed finite. Each one of these letters is considered as a random variable
since if there were no uncertainty there would be no information to transmit.
In this way the sequence turns out to be a stochastic process defined by the
distributions µ(ω0 · · ·ωT−1) which, for each value of T , yield the probability to
obtain a sequence containing the so called T -word ω0 · · ·ωT−1. The source is
defined by the alphabet and the probability measure µ together. The average
information or block entropy corresponding to the T -words is given by

HT = −
∑

ω0···ωT−1

µ(ω0 · · ·ωT−1) log µ(ω0 · · ·ωT−1). (6.4.1)

For stationary sources HT does not depend on the place on the sequences
where we choose the T -words so that, on average, the amount of information
per symbol emitted by the source is HT /T . The limit

h = lim
T→∞

HT

T
, (6.4.2)

is known as the entropy of the source. If the T -words are equally probable we
have µ(ω0 · · ·ωT−1) = L−T where L is the number of letters in the alphabet,
such a way that HT = T logL and h = logL, hence the total number of
T -words can be expressed as η = LT = eTh.

For a nonuniform distribution, the interpretation of h is provided by the
following (see e.g. [20])

Theorem: For any stationary and ergodic source the following equal-
ity holds
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lim
T→∞

∫

sequences

∣∣∣∣
log µ(ω0 · · ·ωT−1)

T
+ h

∣∣∣∣dµ(ω0 · · ·ωT−1) = 0,

except perhaps for a set of zero measure.

That is, for any ǫ, δ > 0 and T large enough, the set of the T -words can be
divided in two groups such that:

1. For any set of the first set we have

∣∣∣∣
logµ(ω0 · · ·ωT−1)

T
+ h

∣∣∣∣ < ǫ.

2. The sum of the probabilities of all the T -words of the second set is less
than δ.

Thus in the first group we have

µ(ω0 · · ·ωT−1) ≈ e−hT ,

and then the number of T -words in this group is ηeff ≈ ehT , whereas the total
number of T -words is η = LT = eT logL. Thus, for h < logL the first group
contains just a fraction of the total number of T -words. In this way, h charac-
terizes the number of T -words typically observable (of high probability) which
are those that practically are detected in experiments. Despite h is statistical
in nature as it refers to the source, if the source is ergodic h can be obtained
from a unique sequence, provided that it is long enough and chosen from the
first group as described above. In this sense it is meaningful to talk about the
entropy of a (typical) sequence of an ergodic source. Moreover, a simplified
version of Shannon’s first theorem [19] states that the T -words emitted from
a source with entropy h and an alphabet of L letters, can be reconstructed
(on average) from m-words of an alphabet with the same number of letters,
where m ≥ h/ logLT . Thus, h/ logL is the maximum compression rate that
can be reached.

Therefore, the entropy characterizes the complexity of a source of informa-
tion from two points of view. First, it gives an estimate of how many T -words
are really representative for a given value of T ; a source with a value of entropy
greater than another one can be considered more complex, i.e. less predictable,
than the latter. Second, it gives the maximum compression rate theoretically
possible (on average) for a typical sequence of the source. A source allows
more compression than another one with a greater value of h and can be con-
sidered less complex than the latter since it contains more recurrence patterns
and then is more predictable. For instance, a source whose typical sequences
are of the form

· · · · · · 10110010011000000011 · · · · · · ,
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can be considered more complex than another whose typical sequences are of
the form

· · · · · · 10101010101010101010 · · · · · · .

6.4.1 (ǫ, τ )-entropy

Up to now we have discussed discrete process. In the continuous case (e.g.
withe noise) entropy may become infinite since information is obtained from
arbitrarily small scales of observation. To deal with this situation, the de-
pendence of entropy on spatial and temporal scales of observation (ǫ and τ ,
respectively) is taken into account [1, 21]. The behavior of the divergence of
the entropy as ǫ → 0 and τ → 0 characterizes the stochastic process. With
this aim, the signal X(t) is discretized in time intervals ∆t = τ obtaining a
new random variable which approximates the signal, namely

X = {X(t0), . . . , X(t0 + Tτ − τ)}.
where T is the number of points in the time series. For the particle lattice
models we consider in this paper, X(t) = q0(t) is the trajectory of the particle
mode. We focus on a coarse grained description relative to a partition

∆ = {C1, . . . , CL}
in one-to-one correspondence with an alphabet α = {1, . . . ,L}.

Let µ(ω0 · · ·ωT−1) be the probability to visit successively the cells indexed
by ω0, . . . , ωT−1 (ωj ∈ α). Using Eqs. (6.4.1) and (6.4.2) we get the entropy
relative to the partition ∆ and time scale τ , h(∆, τ).

The entropy so defined depends on the chosen partition; to avoid this
ambiguity, the (ǫ, τ)-entropy either is defined either as

h(ǫ, τ) = inf
∆:diam(∆)≤ǫ

h(∆, τ)

or

h(ǫ, τ) = sup
∆:diam(∆)≥ǫ

h(∆, τ),

where diam(∆) denotes the maximum diameter of the cells over the partition.

6.4.2 Cohen-Procaccia method

Cohen and Procaccia [22] proposed a numerical method for the evaluation of
the (ǫ, τ)-entropy of any time series. The calculation of h(ǫ, τ) involves the
study of the asymptotic behavior of the term HT /T which can be rewritten
as
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HT

T
=

1

T

T∑

k=2

(Hk −Hk−1) +
H1

T
=

1

T

T∑

k=1

Ak,

where

Ak =

{
Hk −Hk−1 if k ≥ 2,
H1 if k = 1.

It can be shown that Ak ≥ 0 and that Ak ≤ Ak−1 and hence, there must exist
a number A such that

lim
k→∞

Ak = A.

Hence for T and n large enough, with n fixed, we have

1

T

T∑

k=1

Ak ≈ 1

T

n∑

k=1

Ak +
T − n

T
A −−−−→

T→∞
A,

thus

h = lim
T→∞

HT

Tτ
=

1

τ
lim

T→∞
(HT −HT−1). (6.4.3)

Furthermore

HT

T
=

1

T

T∑

k=1

Ak ≥ AT ,

such a way that

|AT −A| ≤
∣∣∣∣
HT

T
−A

∣∣∣∣ ,

which shows that AT converge faster than HT /T resulting more efficient to
work with the right hand side of (6.4.3).

Let {Xn}T
n=1 be the time series (TS) to be studied and ∆ = {Ci}i a

uniform partition of the phase space in cubic cells with sides of length ǫ. Let
Ti be the number of points of the TS within the cell Ci. The points of the
TS can also be indexed as Xk

i , where 1 < k < Ti. The distance between two
points, Xr and Xp, of the TS is defined as ρ1(Xp, Xr) = |Xp − Xr|. Based
on the the law of large numbers we expect that pi ≈ Ti/T , where pi is the
probability to find a point in the cell Ci. Then H1 can be calculated as

H1 ≈ −
∑

i

Ti

T
log

Ti

T
= − 1

T

∑

i

Ti logR1
Zi

( ǫ
2

)
, (6.4.4)

where Zi denotes the center of the cell Ci and
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R1
Z(ǫ) =

# of trajectories Xr such that ρ1(Xr, Z)) < ǫ

T
,

Assume that

(
∏

k=1

R1
Xk

i

( ǫ
2

))1/Ti

= R1
Zi

( ǫ
2

)
, (6.4.5)

whose meaning is that the value of RZ(ǫ/2) calculated at the center of the
cell (Z = Zi) coincides with the geometric mean of the values of RZ(ǫ) cal-
culated at each point of this cell (Z = Xk

i ), which seems to make sense if the
distribution is smooth and ǫ is small enough.

Introducing (6.4.5) into (6.4.4) we obtain

H1 ≈ − 1

T

∑

i

Ti∑

k=1

logR1
Xk

i

( ǫ
2

)
= − 1

T

∑

n

logR1
Xn

( ǫ
2

)
= −

〈
logR1

( ǫ
2

)〉
,

where 〈 · · · 〉 denotes average over all the points of the TS.
Similar considerations show that

Hl = −
〈
logRl

( ǫ
2

)〉
, (6.4.6)

with

Rl
Z(ǫ) =

# of trajectoriesXr such that ρl(Xr, Z)) < ǫ

T − l + 1
, (6.4.7)

and

ρl(Xp, Xr) = max{|Xp −Xr|, . . . , |Xp+l−1 −Xr+l−1|}. (6.4.8)

In order to evaluate the entropy we choose NR ≪ T random reference
trajectories of length l and count the total number of trajectories within a
ρl-distance of length ǫ. The block entropy is then

Hl(ǫ, τ) = − 1

NR

NR∑

r=1

logRl
Xr

In our model the trajectories of the particle have an oscillating character.
If there are no interactions, the trajectories in phase space (with scaled vari-
ables) are on a circle centered at the origin. Different sections of the circle
are not really different trajectories. To take this into consideration, we will
work with the pattern entropy H(ǫ, τ, l), rather than the block entropy. The
only difference between the pattern entropy and the block entropy lies in the
definition of the distance between two trajectories. For the pattern entropy
the distance is defined as
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ρl(Xp, Xr) = max{(|(Xp −Xp+a) − (Xr −Xr+a)|}a=1···l−1 (6.4.9)

instead of Eq. (6.4.8). This distance measures how similar two trajectories are,
independent of their position or orientation. It is expected that in a random
process H(ǫ, τ, l) will grow linearly with l for T → ∞ and l → ∞. Indeed,
the information content of random “words” of length l is proportional to l.
Moreover, the probability of finding two identical words is an inverse power
of the length of the words.

Let us then define the h(ǫ, τ, l) entropy as

h(ǫ, τ, l) =
H(ǫ, τ, l) −H(ǫ, τ, l − 1)

τ

This measures the rate of increase of information content as we increase the
length of the words. i.e., the degree of randomness of the trajectory. The
(ǫ, τ)-entropy is obtained as

h(ǫ, τ) = lim
T,l→∞

h(ǫ, τ, l)

In practice, we have a limitation in the maximum number of data T . The
pattern entropy cannot grow past the maximum value H(ǫ, τ, l) = log T . We
will find though that for certain parameter values H(ǫ, τ, l) grows fairly lin-
early with l and hence h(ǫ, τ, l) is fairly constant with respect to l. For an
Ornstein-Uhlenbeck process (Brownian motion), the set of curves for different
values of τ form an envelope that behaves as [1, 21]

henv(ǫ) ∼ 1

ǫ2
.

So the slope of the envelope of a plot of log h vs. log ǫ for different values of τ
should have a slope of -2 for Brownian motion.

6.5 Results

The fourth order Runge-Kutta method has been implemented in order to
solve the equations of motion corresponding to Hamiltonian (6.3.13). The
initial modes qk, have been chosen as

|qk(0)|2 =
kBT

ωk
, k = 1, . . . , N − 1

with random phases. We note that the mode qk with k = N does not con-
tribute to the total energy. Moreover it is proportional to the total momentum,
which we set equal to zero. Hence we exclude it in the numerical simulations.
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The computer simulations were done with a system consisting of 1000 field
modes. For the interaction in the Hamiltonian we chose the function

v(k) =

√
2ωk

1 + (ωk/ωM )2

with ωM = 2. The size of the one-dimensional box containing the system was
chosen as L = 250, and we imposed periodic boundary conditions on the field.
We chose β = 1/(kBT ) = 1.5. The coupling constant of the particle-lattice
interaction was set to λ = 0.07. The simulations were run from t = 0 to
t = 200, taking 20000 time steps. For the frequency of the oscillator we chose
either ω0 = −1 (non-resonant case, namely ω0 �∈ σ(H)) or ω0 = 1 (resonant
case, namely ω0 ∈ σ(H)). The coupling constant of the non-linear interaction
between lattice modes was set to either g = 0 (non-chaotic case, Friedrichs
model) or g = 1 (chaotic case, FFPU model).

In short, we consider the following four Cases:

1. No resonance, no chaos (Friedrichs model with ω0 = −1 and g = 0)
2. Resonance, no chaos (Friedrichs model with ω0 = 1 and g = 0)
3. No resonance, chaos (FFPU model with ω0 = −1 and g = 1)
4. Resonance, chaos (FFPU model with ω0 = 1 and g = 1)

Fig. 6.1 shows the evolution of the distance between two points of the full
phase space (including all the field modes) initially close (d(t) ∼ 10−8 units),
for the case with resonance and chaos.

As can be seen, the trajectories present exponential divergence charac-
teristic of chaos. The non-resonant, chaotic case presents a similar behavior,
while the non-chaotic cases (either resonant or non-resonant) present no ex-
ponential divergence of trajectories, as expected (see Fig. 6.2). Below we show
examples of trajectories for each one of these cases (Figs. 6.3-6.6). As we see
there is a striking difference between the cases where there is resonance and
there is no resonance, regardless of the presence or absence of chaos. For the
non-resonant cases the trajectories follow a cyclic pattern. For the resonant
cases the trajectories are erratic.

To see this more in detail we consider the pattern entropy. Figs. 6.7-6.9
show the pattern entropyH(ǫ, τ, l) as a function of the trajectory length l, with
τ = 36, ǫ = 0.45 × 1.116s and s = 1, · · · , 12. The different curves correspond
to different values of ǫ starting with s = 1 for the top curve. The number of
reference trajectories is 50. Since there are 20000 time steps, taking τ = 36
gives a small enough time interval to calculate the entropy.

For the cases with no resonance (Figs. 6.7, 6.8) there is a flat region in
the pattern entropy. This means that no information is generated by the
corresponding trajectories. In contrast, for the cases with resonance, we see
that there is a region of approximately linear increase of the pattern entropy.
This corresponds to generation of information in the trajectory of the particle.
This is the information transferred from the lattice to the particle. In Fig. 6.9
we compare the chaotic and non-chaotic resonant cases. We see that in both
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Fig. 6.1. Distance in phase space between two initially close points vs. time for
the resonant chaotic case (Case 4). The non-resonant chaotic case (Case 3) gives a
similar result.

Fig. 6.2. Distance in phase space between two initially close points vs. time for
the resonant non-chaotic case (Case 2). The non-resonant non-chaotic case (Case 1)
gives a similar result.
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Fig. 6.3. Trajectory for the non-resonant, non-chaotic case (Case 1). The x and y
axis are the real and imaginary part of the mode q0, and are proportional to the
oscillator’s position and momentum, respectively.
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Fig. 6.4. Trajectory for the resonant, non-chaotic case (Case 2).
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Fig. 6.5. Trajectory for the non-resonant, chaotic case (Case 3).
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Fig. 6.6. Trajectory for the resonant, chaotic case (Case 4).
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Fig. 6.7. Pattern entropies for the non-resonant non-chaotic case (Case 1, +) and
the resonant, non-chaotic case (Case 2, ×).
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Fig. 6.8. Pattern entropies for the non-resonant chaotic case (Case 3, +) and the
resonant, chaotic case (Case 4, ×).
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Fig. 6.9. Pattern entropies for the resonant non-chaotic case (Case 2, +) and the
resonant, chaotic case (Case 4, ×).

cases there is a region of approximately linear growth, and the slopes are quite
similar.

The slopes of the pattern entropies correspond to the h(ǫ, τ, l) entropies,
which give the rate of information transfer from the lattice to the particle. In
Figs. 6.10-6.13 we show a set of curves log h(ǫ, τ, l) vs. log ǫ, for τ = 36 and l =
14, 16, · · · , 26, τ = 30 and l = 18, 20, · · · , 30, τ = 24 and l = 22, 26, · · · , 34,
τ = 18 and l = 26, 28, · · · , 38, and τ = 12 and l = 30, 32, · · · , 40.

For the resonant cases, the set curves display a region where each curve
has approximately a constant slope. This region gives an approximation of
the (ǫ, τ)-entropy, which gives the asymptotic behavior of h(ǫ, τ, l) for l→ ∞,
and T → ∞. Recall that for Brownian motion we expect to find a slope of
−2 in the curve of log h(ǫ, τ) vs. log ǫ. We see that the sets of curves display
a region with a slope close to −2 both for the chaotic and non-chaotic cases.
In contrast for the non-resonant cases (either chaotic or non-chaotic) any
grouping of curves around a common slope is much less evident, so we cannot
see a clear trend of the (ǫ, τ)-entropy. This can be expected, since the pattern
entropy remains more or less flat in the linear region, regardless of the value
of ǫ (see Figs. 6.7 and 6.8).

6.6 Thermalization of the lattice

So far we discussed results where the phases of the initial modes were com-
pletely random numbers between 0 and 2π. Now we choose the initial con-



200 John Realpe and Gonzalo Ordonez

-4.5

-4

-3.5

-3

-2.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

lo
g
 h

(e
p
s
ilo

n
,t
a
u
,l
)

log epsilon

Fig. 6.10. h(ǫ, τ, l) entropies for the resonant, non-chaotic case (Case 2). The line
in the upper right corner has a slope of −2.
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Fig. 6.11. h(ǫ, τ, l) entropies for the resonant, chaotic case (Case 4). The line in the
upper right corner has a slope of −2



6 Role of Chaos and Resonances in Brownian Motion 201

-4.5

-4

-3.5

-3

-2.5

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

lo
g
 h

(e
p
s
ilo

n
,t
a
u
,l
)

log epsilon

Fig. 6.12. h(ǫ, τ, l) entropies for the non-resonant, non-chaotic case (Case 1).
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Fig. 6.13. h(ǫ, τ, l) entropies for the non-resonant, chaotic case (Case 3).
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Fig. 6.14. Trajectory for the resonant, non-chaotic case (Case 2).
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Fig. 6.15. Trajectory for the resonant, chaotic case (Case 4).

ditions in such a way that the initial phases are nearly identical for all the
lattice modes. We choose the initial phases as random numbers between 0 and
10−3.

In Figs. 6.14 and 6.15 we show trajectories obtained for the resonant case
with and without chaos, respectively. We see that now chaos does introduce
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a big difference in the trajectory. For the non-chaotic case the trajectory of
the particle shows an initial large excitation, which can be explained by the
initial excitation from the lattice modes having virtually the same phase. After
the initial excitation the particle is damped, but its trajectory remains fairly
regular. In contrast, for the chaotic case the trajectory becomes erratic, and
appears to correspond to Brownian motion. To see this more quantitatively,
we show the pattern entropies in Fig. 6.16. For the non-chaotic case the curves
are mostly flat, showing that after the initial stage almost no information is
transferred to the particle. This can be expected, because the initial phases
were all nearly equal. In contrast, for the chaotic case, the pattern entropy
shows regions of approximate linear increase corresponding to the transmission
of information. This is generated by the chaotic dynamics, which “thermalizes”
the lattice modes.
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Fig. 6.16. Pattern entropies for the resonant non-chaotic case (Case 2, +) and the
resonant, chaotic case (Case 4, ×).

In Fig. 6.17 we show the h(ǫ, τ, l) entropy for the non- chaotic case. The
curves are totally different from the curves we obtained before, when the
initial phases of the lattice modes were random. Most of the curves fall below
a truncation value of h = 10−7, because the slopes of the pattern entropy
are nearly zero. In contrast, for the chaotic case (Fig. 6.18 ) the curves are
quite similar to the curves obtained with random initial conditions, and they
are consistent with the slope −2 associated with Brownian motion. For the
non-resonant cases (either non-chaotic or chaotic) there is no big difference
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Fig. 6.17. h(ǫ, τ, l) entropies for the resonant, non-chaotic case (Case 2).
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Fig. 6.18. h(ǫ, τ, l) entropies for the resonant, chaotic case (Case 4). The line in the
upper right corner has a slope of −2
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with the results of the previous section, except that there is an initial large
excitation of the particle.

6.7 Conclusion

We have studied numerically the pattern entropy and the (ǫ, τ)-entropy of the
trajectory of a harmonic oscillator coupled to a lattice, in order to see how
close the motion of the oscillator is to Brownian motion.

We studied parameters that led to either resonance or no resonance be-
tween the oscillator and the lattice modes, and either chaotic or non-chaotic
behavior for the lattice modes. Moreover, we considered initial conditions
where the initial phases of the complex lattice modes qk are either uniformly
distributed at random, or are nearly all equal. The first type of condition is
consistent with the existence of the thermodynamic limit, because only for
random phases we get particle displacements that are independent of the size
of the system. The second type of condition gives displacements that diverge
as the size of the system goes to infinity. For the first type of condition, both
chaotic and non-chaotic lattice modes produce similar pattern entropies and
(ǫ, τ)-entropies. The presence or absence of chaos does not influence the gross
behavior of the entropies (see also [23]). In contrast, the absence or presence
of resonance between the particle and lattice modes has a dramatic effect on
the degree of randomness of the particle motion. This resonance (and thus
Poincaré’s non-integrability) allows an effective transfer of information from
the lattice to the particle, and gives rise to Brownian motion. Without res-
onance there is no Brownian motion. In short, the initial randomness of the
lattice modes combined with resonance plays the major role in the Brownian
motion. The chaotic dynamics produces perhaps some additional randomness,
but within the accuracy of our present analysis this cannot be seen. It would
be interesting to see more in detail any differences that may arise from the
chaotic dynamics (see Ref. [25]).

If the initial conditions are not random, then only the FFPU model with
chaotic lattice modes produces Brownian motion of the particle. The chaotic
dynamics leads to a randomization or thermalization of the lattice modes.
If there is no chaos, then there is no Brownian motion, because there is no
mechanism to generate randomness in the lattice modes. This leads to an in-
teresting question: were the initial conditions of the Universe already random?
If this is the case, then it would seem that the chaotic dynamics has played
a secondary role in the generation of kinetic processes such as Brownian mo-
tion. On the contrary, if the initial conditions were not random, then chaotic
dynamics has been necessary to randomize the positions or velocities in many-
particle systems. In either case, the existence of resonances is essential to have
kinetic processes. Resonance associated with Poincaré’s non-integrability al-
lows an effective “communication” between different degrees of freedom, and
leads to the appearance of basic irreversible processes.
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Summary. We consider the approach of a sample system in contact with a heat
bath environment, to arrive at equilibrium distributions for the energies of the sam-
ple system. In canonical ensemble, we assume the size of the bath to be infinite. The
real baths or environments are expected to have a finite size. Different conditions on
the bath properties yield different equilibirum distributions of the sample system.
Explicitly, the gaussian ensemble and q-exponential distributions are discussed. The
various thermodynamic quantities like entropy and free energy are nonadditive in
these formalisms. We also present a new model which can be seen as an intermedi-
ate case of the above two scenarios. The connection between noadditivity in these
models with the deformed numbers in the context of q-analysis is also highlighted.

7.1 Introduction

The development of statistical mechanics based on ensemble theory is founded
on the postulate of “equal a priori probabilities”, which is assumed to apply to
all microstates consistent with the given macrostate of an isolated system [1].
The corresponding statistical ensemble is the so-called microcanonical ensem-
ble. A representative system in this ensemble has all “mechanical” variables
such as energy E, volume V , magnetization M etc., fixed. For convenience
in calculations, other ensembles are used which invariably suppose the exis-
tence of a subsidiary system or reservoir in contact with the actual system.
For instance, in the canonical ensemble the walls of the system permit an
exchange of energy with the reservoir while in the grand canonical ensemble,
both energy and matter can be exchanged. In general, the different ensembles
are constructed by allowing one or more mechanical variables to fluctuate.
The exchange of each of these variables is controlled by a parameter which
is a characteristic of the reservoir. For instance, in the case of the canonical
ensemble, this parameter is precisely the temperature of the reservoir and de-
termines the mean energy of the system. Actually, this is adequate when the
reservoir is a very large system that can exchange arbitrary amounts of energy,
without modification of its intensive properties. In practical situations, this is

R.S. Johal: Models of Finite Bath and Generalised Thermodynamics, StudFuzz 206, 207–217
(2006)
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not always the case. However, very few studies have been devoted to analyse
the consequences of possible deviations from these ideal reservoir properties.

In this contribution, we discuss the derivation of equilibrium distributions
in the context of statistical mechanics, by considering the contact of the sample
system with a finite heat bath. We discuss two previously studied models
of finite bath; section (7.2) summarises the standard text-book derivation
of the canonical ensemble. Section (7.3) is devoted to the so-called gaussian
ensemble. Section (7.4) discusses the origin of q-exponential distributions from
the specific properties of a finite bath. Then in section (7.5), we propose a novel
model with specific bath properties as an intermediate case to the above two
models. The last section is devoted to the connection between q-analysis and
nonadditive statistical mechanics.

7.2 Derivation of canonical ensemble from
microcanonical ensemble

Consider a system 1, exchange energy with an environment (system 2), with
which it is in thermal contact. The energy E of the total system (system 1 +
system 2) is being held fixed. Thus when system 1 has energy E1, the environ-
ment has energy E2 = E−E1. According to the postulate of apriori equiproba-
bilities, each accessible microstate of the total system is equally probable. The
probability denoted by p(E1), of finding system 1 in a microstate with energy
E1 is thus directly proportional to the number of microstates available to the
environment at the corresponding energy E2. Therefore,

p1(E1) =
Ω2(E − E1)

Ω1+2(E)
, (7.2.1)

where Ω1+2(E) is the total number of states available for the set 1 + 2. We
define the entropy of the reservoir as: S2(E2) = lnΩ2(E2), where we choose
the entropy units so that Boltzmann’s constant, kB = 1. Thus equivalently,
the probability for a microstate of system 1, is given by

p1(E1) =
eS2(E−E1)

Ω1+2(E)
. (7.2.2)

In the following, we present the so called small-E1 derivation of the canonical
ensemble. Thus expanding S2(E2) around the energy value E2 = E−U , where
U is the equilibrium value for energy of system 1, we can write

S2(E2) = S2(E − U) +
dS2

dE2

∣∣∣∣
E−U

(U − E1). (7.2.3)

Using Eq. (7.2.3) in (7.2.2), we get

p(E1) ∝ exp(−βE1), (7.2.4)
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where we have defined the inverse temperature at equilibrium of the bath or
environment, as

β =
dS2

dE2
. (7.2.5)

The lesson is that if we look at a small subsystem of a much larger micro-
canonical system, then the distribution of the smaller system appears to be
exponentially distributed. The same conclusion can be derived if we assume
that the environment is so large that its temperature is constant, i.e. its heat
capacity is infinite so that any finite exchange of energy does not change its
temperature. However, realistically speaking, it may be the case that the bath
is not infinitely large or we look at the subsystem of the larger system which
is after all not that small as compared to the rest of the system. Then it seems
reasonable to include the higher order terms in the expansion of S2. Different
approaches have been suggested to model finite size of the baths. Below, we
discuss a couple of them.

7.3 Gaussian ensemble

This generalisation was proposed by Hetherington and Challa [2, 3, 4]. Later,
it was extended and studied from different aspects in [5, 6]. It was introduced
so that it is equivalent to the canonical ensemble in the limit of large sys-
tems, except in the energy range of a first-order transition. Interestingly, it
enables a smooth interpolation between the microcanonical and the canoni-
cal ensembles. Taking into account these features, Challa and Hetherington
[3, 4] showed the interest of this ensemble for Monte Carlo simulation studies
of phase transitions. They demonstrated a significant reduction in computer
time (compared to standard simulations in the canonical ensemble) and, its
adequacy for distinguishing second-order from first-order transitions. More re-
cently, Costeniuc et. al [6] have proposed generalised canonical ensembles and
shown their equivalence in the thermodynamic limit, to the microcanonical
ensemble. The gaussian ensemble forms an important particular case of this
class of ensembles.

Gaussian ensemble is defined [5] if, in the expansion of S2, we also keep
the second order term. Thus

S2(E−E1)=S2(E−U)+
dS2

dE2

∣∣∣∣
E−U

(U−E1)+
1

2!

d2S2

dE2
2

∣∣∣∣
E−U

(U−E1)
2+O(U−E1)

3.

(7.3.1)
where apart from inverse temperature β, we also define the second order deriv-
ative of the entropy as

d2S2

dE2
2

∣∣∣∣
E−U

= −2γ. (7.3.2)

Then substituting (7.3.1) in (7.2.2) and denoting the energies of the mi-
crostates of the sample by ǫi (i = 1, ...,M), we obtain
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pi =
1

ZG
exp[−βǫi − γ(ǫi − U)2], (7.3.3)

where the normalization constant ZG is given by

ZG =

M∑

i=1

exp[−βǫi − γ(ǫi − U)2]. (7.3.4)

Note that U is the mean energy and must be obtained self-consistently from
the equation:

UZG =

M∑

i=1

ǫiexp[−βǫi − γ(ǫi − U)2]. (7.3.5)

Eqs. (7.3.3), (7.3.4) and (7.3.5) reduce to the standard canonical ensemble
definitions when γ = 0. Therefore, it is natural to relate the parameter γ with
the finite size of the reservoir.

We remark that the above distribution within the gaussian ensemble can
also be derived from a maximum statistical entropy principle. Thus we maxi-
mize the standard Gibbs-Boltzmann-Shannon entropy given by

SG = −
M∑

i=1

pi ln pi, (7.3.6)

subject to the constraints of normalisation of the probability, the given mean
value of the energy and the fixed value of the fluctuations, respectively as

M∑

i=1

pi = 1, (7.3.7)

〈ǫi〉 ≡
M∑

i=1

ǫipi = U, (7.3.8)

〈(ǫi − U)2〉 ≡
M∑

i=1

(ǫi − U)2pi = W. (7.3.9)

Then the maximization procedure is done by introducing the Lagrange multi-
piers λ, β and γ for the respective constraints, and maximizing the following
functional L:

L = −
∑

i

pi ln pi − λ

(
∑

i

pi − 1

)

−β
(
∑

i

ǫipi − U

)
− γ

(
∑

i

(ǫi − U)2pi −W

)
. (7.3.10)

By requiring the condition:
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∂L
∂pi

= 0, (7.3.11)

it is easy to see that the optimum form of the probability distribution is given
by the expression in Eq. (7.3.3). Therefore β and γ, within this context, are
simply Lagrange multipliers that allow to fix, self-consistently, a mean value
of the energy U = 〈ǫi〉 and a specific value of the variance W = 〈(ǫi − U)2〉.

To indicate the modification incurred in the standard thermodynamic re-
lations, we define a thermodynamic potential Φ(β, γ) as

Φ(β, γ) = lnZG. (7.3.12)

By differentiating Eq. (7.3.4), it can be straightforwardly obtained that:

−
(
∂Φ

∂β

)

γ

= U(β, γ), (7.3.13)

−
(
∂Φ

∂γ

)

β

= W (β, γ). (7.3.14)

The second derivative renders:

−
(
∂2Φ

∂β2

)

γ

= −
(
∂U

∂β

)

γ

=
1

W−1(β, γ) − 2γ
, (7.3.15)

which represents a generalization of the standard formula for energy fluctu-
ations in the canonical ensemble. It is natural to define the extended heat
capacity as:

C ≡ −β2

(
∂U

∂β

)

γ

=
β2W

1 − 2γW
. (7.3.16)

This equation is the same that was already derived in Ref. [4]. Note that,
contrary to what happens in the standard canonical ensemble, the positivity
of the fluctuations W does not guarantee the positivity of C.

For γ → 0, it is seen that the relations (7.3.13) and (7.3.15) go to the
corresponding relations for the case of canonical ensemble. Also in this limit,
from Eqs. (7.3.14) and (7.3.15) we get an interesting relation given by:

lim
γ→0

(
∂Φ

∂γ

)

β

=

(
∂2Φ

∂β2

)

γ

, (7.3.17)

which resembles in form with a diffusion equation.
The entropy SG as given by (7.3.6) is the inverse Legendre transform of

Φ(β, γ), and can be expressed as:

SG(U,W ) = βU + γW + Φ, (7.3.18)

whereby SG is a function of the specified values of the constraints i.e. U and
W . Therefore we have the following thermodynamic relations
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(
∂SG

∂U

)

W

= β, (7.3.19)

(
∂SG

∂W

)

U

= γ. (7.3.20)

Also note that the thermodynamic potential Φ = lnZG is in general, nonaddi-
tive with respect to two subsystems with additive hamiltonians. Thus assume
that a composite system hamiltonian can be written as H = H1 +H2, where
Hi are the hamiltonian of the subsystems. Then the average energy of the
total system is U1+2 = U1 + U2. The potential is given as

Φ1+2(β, γ) = Φ1(β, γ) + Φ2(β, γ) − ln
〈
e2γ(H1−U1)(H2−U2)

〉
. (7.3.21)

7.4 q-exponential distributions and model of finite heat
bath

q-exponential distributions are the central predictions of the generalized sta-
tistical mechanics proposed by Tsallis [7]. These distributions have been con-
sidered as model distributions to describe various complex systems at their
stationary states [8, 9, 10]. The general form of such distributions is given by
p(x) ∼ eq(x), where the q-exponential is defined as eq(x) = [1+(1−q)x]1/(1−q).
This function goes to the usual exp(x) function for q → 1. For definiteness, we
restrict to the range 0 < q < 1. For our purpose, we rewrite the q-exponential
as

eq(x) = exp

[
ln[1 + (1 − q)x]

(1 − q)

]
, (7.4.1)

and expand the ln function using the series ln[1 + y] = y − y2

2 + y3

3 − ...,
provided that −1 < y ≤ 1. Thus we can write

eq(x) = exp

[
∞∑

n=1

1

n
{−(1 − q)}n−1xn

]
, (7.4.2)

for −1 < (1 − q)x ≤ 1.
Now we show that the q-exponential distributions can be obtained by

imposing the following requirements on the first and second derivatives of the
entropy of the bath (see also [11]):

dS2

dE2
= β(E2);

d2S2

dE2
2

= −(1 − q)β2(E2). (7.4.3)

In general, for all integer values of n

dnS2

dEn
2

= (n− 1)!(−(1 − q))n−1βn(E2). (7.4.4)
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Now the entropy of the bath expanded around the equilibrium value of the
bath energy, is given by

S2(E − E1) = S2(E − U) +

∞∑

n=1

1

n!

dnS2

dEn
2

∣∣∣∣
E−U

(U − E1)
n. (7.4.5)

On applying Eq. (7.4.4) for the case of equilibrium, we can write

S2(E − E1) = S2(E − U) +
∞∑

n=1

1

n
(−(1 − q))n−1βn(U − E1)

n, (7.4.6)

where note that β is given by its value at equilibrium. The equilibrium prob-
ability distribution is then given from (7.2.2) as

p(E1) ∼ exp

[
∞∑

n=1

1

n
(−(1 − q))n−1βn(U − E1)

n

]
, (7.4.7)

which is in the form of q-exponential distribution, Eq. (7.4.2).

7.5 A new model for finite bath

In the above sections, we have encountered two possible models motivated
from the fact that the environment or the bath with which the sample system
exchanges energy, may be finite in size, in contrast to the infinite size ide-
alisation assumed in the derivation of the canonical ensemble. We note that
different conditions modeling the bath, can in principle, give rise to different
equilirium distributions for the energies of the sample system. In this manner
one may hope to arrive at distributions more general than the expoential, by
route of ensemble theory or more precisely, by considering thermal contact of
system with a specifically modelled finite bath. We obtained two distributons
above: q-exponential and the distribution of the gaussian ensemble. It may be
remarked that one reason for intense interest in q-exponential distributions is
due to the fact that they can mimic power-law type distributions.

The conditions yielding the gaussian ensemble and the q-exponential en-
semble are Eqs. (7.3.2) (together with the definition of inverse temperature)
and (7.4.3), respectively. In the following, we propose a new set of conditions,
which may be seen as a case intermediate to the above two scenarios. We
define our new model of the finite bath, by specifying

dS2

dE2
= β(E2);

d2S2

dE2
2

= rβ(E2), (7.5.1)

where r is a parameter, independent of energy. Clearly, r = 0 implies canonical
ensemble. In fact, using the above conditions, all derivatives of S2 in this
model, can be expressed in a compact form as
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dnS2

dE2
n = r(n−1)β; n ≥ 1. (7.5.2)

Then the entropy of the bath can be written as Taylor series in the form

S2(E − E1) = S2(E − Ur) +

∞∑

n=1

1

n!
r(n−1)β

∣∣∣
E−Ur

(Ur − E1)
n, (7.5.3)

where we have denoted the equilibrium of energy of the system in the present
case as Ur.

Finally, the probability of the microstate with energy E1 can be written
as

pr(E1) =
1

Zr
exp(β{∆E1}r), (7.5.4)

where ∆E1 = Ur − E1, {x}r = (exp(rx) − 1)/r and Zr is the normalising
partition function.

The number {x}r has a nice nonadditive property. Thus {x1 + x2}r =
{x1}r + {x2}r + r{x1}r{x2}r. More of this will be mentioned in the section
below on discussion.

The mean value Ur is to be obtained in a self-consistent way from the
equation

Ur =
∑

E1

E1pr(E1), (7.5.5)

noting that pr is also a function of Ur.
Now it is also easy to see that the distribution (7.5.4) can be obtained

from maximisation of the Gibbs-Shannon entropy, subject to two constraints:
(i) normalisation of the probability, and (ii) fixed mean value of the quantity,
〈{∆E1}r〉 = Ar. The second constraint is equivalent to the constraint on mean
value of energy, imposed within the maximum entropy derivation of canonical
exponential distribution. This is due to the fact that, pr → p0 ∝ exp(−βE1),
as r → 0 and Ur → U0, the canonical ensemble mean value. Therefore, we
must have A0 = 0 and the constraint (ii) reduces to the canonical constraint.

It is interesting to study the above distribution for real physical systems
and compare the results with those obtained from q-exponential distributions
or from the predictions of the gaussian ensemble. The details of these studies
will be given elsewhere.

7.6 Discussion

After the investigations into finite bath models, we highlight in this section,
the connection between q-analysis and nonadditive thermodynamics. The the-
ory of q-analysis was formulated in the beginnings of 20th century and it
provides a framework to study basic hypergeometric series [12]. q-series were
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studied even during the time of Euler and is significant in the theory of parti-
tions [13]. In the previous decade, it was intensively studied in the context of
quantum group theory [14, 15]. Quantum groups are mathematically a very
rich subject and they constitute generalisations of the Lie symmetries. Fur-
ther, q-derivative defined as [16]

Dq,xf(x) =
f(qx) − f(x)

(q − 1)x
, (7.6.1)

plays a central role in the noncommutative q-calculus. Such calculus arises as
a set of algebraic relations which are covariant under quantum group trans-
formations.

First note that q-exponential distributions may also be obtained from max-
imisation of Tsallis entropy subject to the constriaints of normalisation of
probability and mean value of energy [10]. Tsallis entropy is given by

Sq[p] = −
∑

i

(pi)
q−1 − 1

q − 1
pi. (7.6.2)

Now, although nonextensive thermodynamics does not as such embody a
quantum group structure, the two subjects can be linked via q-analysis. The
connection mainly stems from the observation that a q-number defined as:

[x]q = (qx − 1)/(q − 1), (7.6.3)

satisfies a similar nonadditive property as Tsallis entropy. Thus

[x1 + x2]q = [x1]q + [x2]q + (q − 1)[x1]q[x2]q, (7.6.4)

whereas for Tsallis entropy, we have

Sq[p
(A+B)] = Sq[p

(A)] + Sq[p
(B)] + (1 − q)Sq[p

(A)]Sq[p
(B)]. (7.6.5)

It is being assumed, for the purpose of illustration, that the two systems A
and B are statistically independent, so that the joint probability distribution
is factorisable : p(A+B) = p(A)p(B). Now let us define [17] Shannon entropy
for a given distribution {pi} as follows:

S = − d

ds

∑

i

(pi)
s

∣∣∣∣
s=1

. (7.6.6)

Then Tsallis entropy is obtained by simply replacing the ordinary derivative
by a q-derivative. Thus

Sq = −Dq,s

∑

i

(pi)
s

∣∣∣∣
s=1

. (7.6.7)
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For q → 1, one obtains the ordinary derivative as well as the definition of
Shannon entropy. Further connection between q-analysis and generalised en-
tropies was explored in [18, 19].

Now within the new model for finite bath, the constraint on the energy
is modified. The effective energies {∆E1}r satisfy very similar nonadditive
properties as the q-numbers or the deformed bit number in the definition of
the Tsallis entropy. On the other hand, to derive Eq. (7.5.4) from maximum
entropy principle, we need to optimise only the Gibbs-Shannon entropy. Thus
this procedure seems as complementary to the maximisation of Tsallis entropy
under the standard mean value constraints.

Concluding, we have considered the approach of a sample system in contact
with a heat bath to arrive at equilibrium distributions for the sample system.
We have indicated different models for the finite bath. The real baths or
environments are expected to have a finite size. In canonical ensemble, we
assume the size of the bath to be infinite. In fact, that constitutes the very
definition of a reservoir. Different conditions on bath properties yield different
equilibirum distributions of sample system energies. Explicitly, the gaussian
ensemble and q-exponential distributions have been discussed. The various
thermodynamic quantities like entropy and free energy are nonadditive in
these formalisms. We have also presented a new model which can be seen as
an intermediate case of the above two scenarios. Lastly, we have indicated the
possible connection between noadditivity in these models with the deformed
numbers in the context of q-analysis.
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Summary. Black hole thermodynamics is reviewed for non-experts, underlining
the need to go beyond classical general relativity. The origin of the microcanonical
entropy of isolated, non-radiant, non-rotating black holes is traced, within an ap-
proach to quantum spacetime geometry known as Loop Quantum Gravity, to the
degeneracy of boundary states of an SU(2) Cherns Simons theory. Not only does
one retrieve the area law for black hole entropy, an infinite series of finite and unam-
biguous corrections to the area law are derived in the limit of large horizon area. The
inclusion of black hole radiance is shown to lead to additional effects related to the
thermal stability of black holes. A universal criterion for such stability is derived, in
terms of the mass and the microcanonical entropy discussed earlier. As a byproduct,
a universal form for the canonical entropy of black holes is obtained, in terms of the
better-understood microcanonical entropy.

8.1 Introduction

Black holes are very special objects, different from anything in the universe:

◮ They are regions of spacetime (almost) entirely out-of-bounds to external
observers. Everything, including electromagnetic waves, are trapped inside
these regions by means of gravitational fields. However, these trapped ob-
jects, be they matter or radiation, inevitably lose their identity as they fall
through the ‘hole’. A black hole then cannot be said to ‘contain’ these ob-
jects; they have been devoured and digested, producing the purest source
of gravitation ever.

◮ They are exact solutions of a fundamental equation of physics, viz., the
Einstein equation of general relativity. Yet, they are of macroscopic size,
with ‘gravitational radii’ ranging from a kilometre to a million kilometres.
This prompted S. Chandrasekhar to say that ‘black holes ... are the most
perfect macroscopic objects there are in the universe ... are the simplest
as well.’ [1]

P. Majumdar: Quantum Black Hole Thermodynamics, StudFuzz 206, 218–246 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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◮ However, as we shall see, black holes also delineate the realm of validity of
general relativity, and perhaps of the notion of the spacetime continuum
itself. In other words, quantization of spacetime geometry, of general rel-
ativity in particular, becomes a necessity for understanding black holes,
without the need at all for espousing aesthetic motivations like ‘since the
strong, weak and electromagnetic interactions have quantum theories, so
must gravitation, being a fundamental interaction like the other three’; or
indeed ‘quantum gravity must exist because without that we shall not be
able to formulate a unified theory of all fundamental forces.’

◮ Classically, black holes are quintessentially general relativistic. This means
that they cannot occur within Newton’s law of gravitation. Why not?
What about the Mitchell-Laplace considerations of the 18th century, in-
volving the escape velocity? According to these ideas, the escape velocity
from a sphere of radius R and mass M , v2 = 2GM/R increases with de-
creasing R, reaching the velocity of light c for R = RS ≡ 2GM/c2; thus,
if the radius decreases slightly below RS, we have v > c, which is impos-
sible since nothing travels faster than light. Hence, it was concluded in
the 1780s, that dense gravitating objects with such sizes would become
invisible, trapping everything including light. For an object having the
earth’s mass, if its contents were to be squeezed into a glass marble of a
centimetre in radius, this would render the marble invisible. There are a
couple of flaws with this reasoning. First of all, the Newtonian gravita-
tion law is founded on the Galilean principle of relativity which provides
us with the notion of relative velocity for all velocities, including that of
light. If a source of light moves relative to a stationary observer with a
velocity v, light from the source moves, according to Galilean relativity,
with a velocity c+ v relative to the stationary observer, and not c! There
is nothing absolute at all about c in Galilean relativity. Further, in the
Newtonian framework, only mass produces and is affected by gravitation.
Electromagnetic waves carry no mass, and hence cannot be trapped by
gravitation within this framwork.

◮ How about special relativity? Since Newton’s law of gravitation strictly
conforms to Galilean relativity, it could not possibly be consistent with
special relativity where the velocity of light is an absolute constant. Could
not a generalization of the Newtonian law be consistent with special rel-
ativity, though? No, because gravitation appears to require non-inertial
frames of reference! The Principle of Equivalence, first hypothesized by
Einstein, asserts that we can locally remove a gravitational field by a suit-
able acceleration, as has been experienced by anyone in a lift at the start
of a descent when the lift momentarily falls freely. A stronger version of
this principle states that physical laws are the same in all reference frames.
Different non-inertial frames are related by coordinate diffeomorphisms

xi → x′i = x′i({xj}) , i, j = 0, 1, 2, 3
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Invariance under such diffeomorphisms lies at the heart of general relativ-
ity.

In the last part of this introduction, an extremely brief recap of general rel-
ativity is given, mainly to set notation and to agree on conventions. Readers
uninitiated in general relativity will have to consult any of the excellent text-
books that are now available [2].

◮ The spacetime manifold is a metrically connected four dimensional pseudo-
Riemannian manifold, with the metric gij(x) having signature − + ++.
Geodesics, affinely parametrised in terms of the proper time τ on such a
manifold are given by

d2xi

dτ2
+ Γ i

jk

dxj

dτ

dxk

dτ
= 0, (8.1.1)

where the affine connection Γ i
jk = Γ i

kj is required to be metric compatible,
leading to the Christoffel connection

Γ i
jk =

1

2
gil[∂(jgk)l − ∂lgjk]. (8.1.2)

◮ The Riemann curvature tensor is given by

Rl
ijk = ∂[iΓ

l
j]k + Γ l

m[iΓ
m
j]k,

from which the Ricci tensor and Ricci scalar are obtained by contraction

Rik ≡ δl
jR

l
ijk, R ≡ gikRik.

◮ The Einstein equation is

Gij ≡ Rij −
1

2
gijR = 8πGTij , (8.1.3)

where, Tij is the energy-momentum tensor of all matter and radiation.
This remarkable equation has two momentous implications

◮ The geometry of spacetime is a dynamical field, determined locally by the
energy-momentum tensor of matter and radiation.

◮ Spacetime geometry and matter/radiation have a symbiotic relationship :
‘matter tells space how to curve, space tells matter how to move’.

The plan for the rest of this review is as follows: in the next section, we begin
with a description of the spacetime view of black holes together with a very
brief description of how they may form out of gravitational collapse of massive
stars. We focus on the main attributes of black hole spacetimes : a one-way
null 3-surface which functions as an inner boundary of spacetime known as
the event horizon, and a curvature singularity where continuum spacetime
geometry loses its meaning. We then go on to discuss theorems related to
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the event horizon derived from general relativity, and point out the similar-
ity the results have with the laws of thermodynamics. We discuss the work
of Bekenstein, which heralded the entire area of black hole thermodynamics,
especially the notion of black hole entropy, underlining the need to formu-
late a quantum version of spacetime geometry. The next section is devoted
to a review of a particular formulation of quantum spacetime geometry of-
ten called Loop Quantum Gravity (LQG). The notion of an isolated horizon
which corresponds to a non-stationary (in the sense of the absence of a time-
like isometry globally) but non-radiant, null inner boundary of spacetime is
also briefly described. These two formulations are then employed to analyze
the boundary quantum field theory describing the quantum isolated horizon.
From a statistical mechanical standpoint, the isolated horizon corresponds to
a microcanonical ensemble, whose entropy can be computed unambiguously.
The results include not only the area law anticipated by Bekenstein (and
Hawking) but a whole slew of quantum corrections, for asymptotically large
(macroscopic) horizon areas. We then turn our attention to the phenomenon
of Hawking radiation. We address the crucial issue of negative heat capacity
and the consequent thermal instability. Employing the canonical ensemble of
equilibrium statistical mechanics, we derive a universal criterion for thermal
stability involving the mass of the isolated black hole and the microcanoni-
cal entropy discussed earlier. As a bonus, additional logarithmic corrections
to the canonical entropy are obtained. We conclude with our outlook on the
present status of the field and what needs to be done in the near future.

8.2 Black holes in general relativity

We adopt here the ‘spacetime’ view of black holes in which one deals with exact
solutions of Einstein’s equation with certain isometries. In other words, we
avoid the complications associated with the more realistic ‘astrophysical’ view
in which black holes accrete matter whose analysis is crucial for observational
detection of these objects. The spacetime viewpoint is described in terms of
a region B defined as B ≡ M − I−(I+) where, M is the entire spacetime
manifold, containing all events, and I−(I+) is the set of all events to the past
of the asymptotic null infinity I+. In other words, a black hole spacetime
is the set of all events which cannot communicate to (null) observers in the
infinite future. The boundary ∂B of such events is called the event horizon,
and is a null, one-way hypersurface. B contains a spacetime singularity which
is hidden from all distant observers by the trapping boundary ∂B.

As already mentioned, black holes are exact solutions of Eq. (8.1.3) with
a vanishing energy-momentum tensor (vacuum) or the energy momentum
tensor of the Maxwell field. Other more exotic forms of matter/radiation ap-
pear to lead to solutions which are unstable under perturbations, and shall
therefore not be considered here. The vacuum solutions form a two-parameter
family, with the two parameters being identified with the mass and the angu-
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lar momentum of spacetime. The electrovac solutions on the other hand are
characterized by one additional parameter identified as the electric charge of
the black hole.

The simplest of the vacuum solutions is the spherically symmetric Schwarz-
schild black hole, whose metric, in spherical polar coordinates, is given by

ds2 = −
(

1 − 2GM

c2r

)
c2dt2 +

(
1 − 2GM

c2r

)−1

dr2 + r2dΩ2 (8.2.1)

where, M is the mass of the spacetime, and dΩ2 is the usual Euclidean metric
on the 2-sphere. One of the singularities of the metric, on the null surface
r = 2GM/c2, is associated with the event horizon. It is not a spacetime
singularity, but one that occurs only due to a bad choice of coordinates. Thus,
the spacetime metric can be made regular at the event horizon, if we choose
as coordinates the affine parameters decribing null geodesics in this geometry.
Of course, the induced 3-metric on the event horizon is degenerate, as it must
be on any null hypersurface.

The other singularity at r = 0 is infinitely more severe, since here, the
spacetime curvature diverges. This is geometrically meaningless, and a rad-
ical departure from the basic premise of a smooth spacetime continuum, in-
herent in general relativity. For the Schwarzschild geometry, the singularity
corresponds to a spacelike surface, i.e., to a particular ‘moment of time’ at
which the notion of time itself ends. This singularity is unavoidable for all in-
coming future-directed geodesics, implying that all matter and fields crossing
the event horizon must inevitably lose their identity when reaching this sur-
face. Another way of saying this is that classical general relativity is no longer
valid as one approaches this region of singularity, just as Maxwell’s equations
of classical electrodynamics break down very close to sources of electric and
magnetic fields. And just as in the case of electrodynamics, the only logical
route around the conundrum might lie in a quantum version of spacetime
geometry.

But is all this realistic? To answer this, we need to have a brief descrip-
tion of the formation of a black hole from a dying star. As the nuclear fuel
which powers stars gets depleted, the outward thermal pressures generated
by nuclear fusion is no longer sufficient to balance the inward gravitational
attraction. Stars then begin to shrink gravitationally. This continues until
the matter inside the star is so compressed (a cubic centimetre weighing a
tonne), that quantum mechanics takes over, and the Pauli exclusion principle
comes into play. According to this principle, fermions (which constitute most
of matter as electrons, protons and neutrons) cannot be compressed arbitrar-
ily, because that will require many of them to occupy the same state, which
is not possible. Thus, the ‘Pauli degeneracy pressure’ becomes a counterforce
to gravity, and provided the mass of the star is below a certain limiting value,
about 1.5 M⊙ (as deduced by S. Chandrasekhar in 1931), the star may find
peace as a white dwarf. White dwarfs are aplenty in the universe. But not
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all stars follow this usual pattern of evolution. If the star mass exceeds the
Chandrasekhar limit, the white dwarf is unstable under gravitational contrac-
tion. As the core of the star contracts, becoming denser and accreting more
matter, the outer layers become larger and hotter, until the star explodes dra-
matically as a supernova. A lot of energy-momentum is ejected from the star
in this explosion. Meanwhile, the core has collapsed gravitationally to a com-
pact, extremely dense object, usually made up exclusively of neutrons. The
Pauli degeneracy pressure of the neutrons is often sufficient to balance their
gravitational attraction inwards, producing a neutron star. However, if the
core mass exceeds that of the sun, this balancing does not work, and another
phase of rapid collapse under gravity ensues. Such a collapse of a spherical
supernova core is depicted in Fig. 8.1

With further shrinkage of the core, even this becomes impossible. When
the local light cones align with the dotted line marked ‘event horizon’ in Fig.
8.1, light is confined to propagate along the three dimensional lightlike surface
known as event horizon. This means that, instantaneously, light will appear to

Fig. 8.1. Collapse of a spherical core. The ellipses represent instantaneous sizes of
the spherical star core at successive instants of time. The light cones exhibit the
nature of the local geometry. Distant observers do not feel the effect of curvature
due to the black hole, so that light cones stand erect as in Minkowski space. As one
approaches the collapsing star, light cones begin to tilt in response to the curvature
of the increasingly dense core. This means that particles and light starting from
the bottom of a tilted light cone find it increasingly harder to propagate as in flat
spacetime and escape to infinity. Light can still make it out to infinity, but only if
it is appropriately aimed.
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travel along the outer boundary of the spherical core, and will no longer travel
out to infinity. All other objects will be confined to the ‘inside’ of the event
horizon, remaining hidden from external observers. For a core of mass M ,
the gravitational (Schwarzschild) radius of the core is RS = 2GM/c2, exactly
the same as the limiting radius found earlier from Newtonian considerations.
Since the core now traps light and everything else, it is black. The event horizon
is thus called an outer trapping surface. The event horizon also demarkates
between the set of events accessible to a distant external observer, and the set
that is not. In this sense, from the standpoint of an external observer, the event
horizon functions as an inner boundary of spacetime, the outer boundary
being that at null (or spatial) infinity. Finally, the event horizon allows light
and other matter to enter it but not to escape from it; in this sense, it is a
one-way membrane. We shall come back to other very important properties of
the event horizon which will require going beyond classical general relativity
for a complete understanding.

Meanwhile, the shrinking of the core beyond the event horizon continues
unabated, as shown by the small ellipses occurring at time slices beyond that
corresponding to the formation of the event horizon. Light cones inside the
event horizon tilt even further, such that all matter and radiation emanat-
ing from the bottom of these cones stay firmly inside the event horizon. The
shrinking continues until the core has turned into a singularity, as disscussed
earlier. At this event, a spacetime continuum of events cannot be defined lo-
cally at all. If we consider the cone which has been tilted almost to horizontal
in Fig. 8.1, it is clear that any light ray or material particle starting at the
bottom of that light cone has a very tentative future, in that timelike and null
geodesics corresponding to their world lines end abruptly, at a finite proper
time. Such a pathology is quite generic in general relativity, as has been estab-
lished with great rigour using the Raychaudhuri equation by Geroch, Hawking
and Penrose [3].

8.3 Black hole thermodynamics

The Raychaudhuri equation can also be used to derive certain results known
as Laws of Black Hole Mechanics [4], [20], which can be stated as follows :

◮ The area of the event horizon of a black hole can never decrease:

δAh ≥ 0 (8.3.1)

In other words, if two black holes of horizon area A1 and A2 were to
coalesce adiabatically, the area of the horizon of the resultant black hole
A12 ≥ A1 + A2.

◮ The surface gravity of a black hole is a constant on the event horizon. The
surface gravity κ is a geometrical quantity relatd to the proper acceleration
at any point of a timelike geodesic. For stationary black holes, κh = const
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◮ If M is the black hole mass undergoing a change by an amount δM , the
area of the horizon must change according to

δM = κδAh.

For charged rotating black holes, this law states that

dM ≡ ΘdAh + ΦdQ+ Ω · dL, (8.3.2)

where, κ ≡ (r+ − r−)/4Ah is the surface gravity, Φ ≡ 4πQr+/Ah is the
electrostatic potential at the horizon and Ω ≡ 4πL/MAh is the angular
velocity at the horizon.

There is an obvious analogy of these laws of black hole mechanics with the
standard laws of thermodynamics: the first implies that the horizon area of
a stationary black hole behaves like an entropy, since it never decreases. In
fact, this becomes clearer if one thinks of an isolated system separated into
two parts by a partition; on removing the partition, the total entropy is never
less than the sum of the entropies in the two partitioned regions. The second
leads to an analogy of the surface gravity with the equilibrium temperature.
The third is analogous to a combination of the first and second laws of ther-
modynamics, with the black hole mass playing the role of the internal energy.
However, recall that a black holes contain nothing but pure spacetime cur-
vature; unlike ordinary matter, there are no microstates which could be held
responsible for thermodynamic behaviour.

One can adopt two standpoints with regard to these general relativistic
(and hence geometrical) theorems:

◮ These are mere analogies between these theorems and the laws of thermo-
dynamics, since black holes contain no matter or radiation which can have
any thermodynamic behaviour at all. There are no atoms or molecules
in black hole spacetimes whose microstates will reflect the randomness
characteristic of ordinary thermodynamic systems. Hence the analogies
are intriguing, but nothing beyond that. There is no fundamental physics
underlying these analogies. This is the viewpoint initially adopted by the
authors of the theorems.

◮ These analogies reflect that black holes have a certain thermodynamic
behaviour associated with them, whose origin cannot be the proofs of
the theorems alone, but a larger underlying framework of which general
relativity is only a part. For consistency, this framework must endow black
hole spacetimes with an entropy Sbh ∝ Ah. This is the viewpoint adopted
by Bekenstein [9].

For obvious reasons, we focus on the second viewpoint. Since in thermody-
namics entropy has the dimensions of the Boltzmann constant kB , the pro-
portionality stated above should be written as



226 Parthasarathi Majumdar

Sbh = ζkB
Ah

l2
, (8.3.3)

where, ζ is a dimensionless constant of O(1), and l is a length scale which is
independent of parameters characterizing the black hole. Of necessity, then, l
must be a fundamental constant, and the only one involving G and c is the
Planck length lP ≡ (G�/c3)1/2. The length that this scale corresponds to is on
the order of 10−33 centimetres, smaller than any scale ever probed. The Planck
length is often associated with the scale of the distance from a point mass at
which the quantum effects of general relativity can no longer be neglected. In
other words, while it is true that classically, black hole spacetimes can have
no entropy or thermodynamic behaviour of any sort, this may no longer be
the case when quantum gravitational effects are taken into account.

We now come to the issue as to when can the surface gravity κh on the
event horizon be identified with the black hole temperature Tbh? The tem-
perature Tbh is not the temperature of the horizon of the black hole in the
sense that a freely falling observer will sense it as he crosses the horizon. At
the horizon, the redshift factor vanishes, so the observer detects no temper-
ature at all. The notion of black hole temperature is made unambiguous if
we imagine placing the black hole in a background of black body radiation
in equilibrium at a temperature T < Tbh. In his celebrated work, Hawking
[31] showed that, for an observer located at infinity with a vanishing ambient
temperature, a black hole actually radiates in a Planckian spectrum like a
black body at a temperature Tbh! The mean number of particles emitted at a
frequency ω is given by the Planckian formula

nω =
|tω|2

exp(2πω/κh) − 1
, (8.3.4)

where, tω is the absorption coefficient and we have set the Boltzmann constant
kB = 1. The larger the mass of the black hole, the smaller is the horizon surface
gravity and hence the Hawking temperature Tbh. It follows that for most
stellar black holes, this temperature Tbh ≪ 2.7◦K, so that Hawking radiation
from such black holes is swamped by the cosmic microwave background. In
fact, these black holes absorb rather than emit, radiation. One other outcome
of Hawking’s work is fixing the constant ζ = 1/4 in (8.3.3); this law, SBH =
A/4ℓ2P is called the Bekenstein-Hawking Area Law (BHAL) .

As for the status of the second law of thermodynamics in presence of
black holes, it is true that when matter falls across the event horizon into a
black hole, the entropy of the matter is lost. One might think of this as a
decrease in the entropy of the universe. However, as Bekenstein [9] pointed
out, when matter falls into a black hole, the mass of the black hole, and hence
its area, increases. The hypothesis of black hole entropy then says that the
entropy of the black hole must increase as a consequence, by at least the same
amount as the entropy lost by the the part of the universe outside the event
horizon. Thus, in presence of black holes, the Second law of thermodynamics
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is modified into the statement that the total entropy, defined as the sum of
the entropy outside the event horizon and the black hole entropy, can never
decrease in any physical process,

δ(Sext + Sbh) ≥ 0. (8.3.5)

This relation is called the Generalized Second Law of thermodynamics and its
enunciation marks the beginning of the subject known as Black Hole Ther-
modynamics.

The essence of this section is then that the two prime aspects of black
holes, namely the existence of an event horizon as well as the existence of
a spacetime singularity, both require abandoning the notion of a spacetime
continuum. Black hole physics is perhaps one of two important reasons for
seeking a quantum description of spacetime geometry, the other one being the
Big Bang singularity. While no complete Quantum General Relativity exists at
this point, a formulation that perhaps best retains the basic spirit of general
relativity is the so-called Loop Quantum Gravity. In the following section,
the aim would be to derive the entropy of an isolated black hole within this
particular framework.

8.4 Microcanonical entropy

8.4.1 Classical Aspects

The standard formulation of general relativity is based on the notion of a
spacetime metric gµν with indefinite (Lorentzian) signature, as already men-
tioned. Now, for quantization, one needs to construct the Hamiltonian for-
mulation of the theory, towards which one must at first be able to identify
a suitable canonical pair of variables which span the classical phase space
of the theory. The so-called ADM (Arnowitt-Deser-Misner) [6] formulation
does precisely that. One chooses a spacelike hypersurface M of spacetime,
on which Cauchy data, consisting of the 3-metric qab induced by the embed-
ding of M in spacetime, and its canonical conjugate πab are chosen as the
canonical pair. ADM derive, as a function of these variables, four first class
constraints : three of these correspond to the invariance of the theory under
spatial diffeomorphisms, while the fourth arises due to invariance under tem-
poral diffeomorphisms. Unfortunately, the constraints are highly intractable
within this approach. A key step in the right direction appears to be using
the projection of the affine connection to M , rather than the 3-metric, as the
basic configuration space variable, with the extrinsic curvature of M being the
conjugate momentum. A first order formulation is also used to write down the
action.

Further improvements occur with the introduction of the self-dual SU(2)
connection [5] and finally, by means of canonical transformations, the Barbero-
Immirzi class of real SU(2) connections [7] as the configuration space variables,
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with the densitized triad on M (in ‘time gauge’) being the canonically conju-
gate momenta. This connection is defined as γAi

a ≡ Γ i
a + γKi

a ; the rescaled
densitized triad γ−1Eai, with Eai ≡ det eeai, where eai is the triad on a cho-
sen spatial slice M . Here, Γ i

a ≡ qabǫ
i
jkΓ

bjk/2, with Γ bjk being the pullback
of the Levi-Civita spin connection to the spatial slice under consideration,
and qab is the 3-metric on the slice; the extrinsic curvature Ki

a is defined as
Ki

a ≡ qabΓ
b0i; γ, the Barbero-Immirzi parameter [7] is a real positive parame-

ter. Four dimensional local Lorentz invariance has been partially gauge fixed
to the ‘time gauge’ e0a = −na where na is the normal to the spatial slice.
This choice leaves the residual gauge group to be SU(2). It is convenient to
introduce the quantity γΣij

ab ≡ γ−1ei
[ae

i
b], in terms of which the symplectic

two-form of general relativity can be expressed as

Ω =
1

8πG

∫

M

Tr[δγΣ ∧ δγA′ − δγΣ′ ∧ δγA]. (8.4.1)

The expression (8.4.1) of course is subject to modification by boundary terms
arising from the presence of boundaries of spacetime. The black hole horizon,
assumed to have the topology S2 ⊗ R, is intersected by M in a two-sphere
which thus plays the role of an inner boundary.

Rather than using the notion of event horizon appropriate to stationary
situations studied in earlier literature [20], we adopt here the concept of ‘iso-
lated’ horizon [21]. This has the advantage of being characterized completely
locally, without requiring a global timelike Killing vector field. The character-
ization, for non-rotating situations, involves a null surface H with topology
as assumed above, with preferred foliation by two- spheres and ruling by lines
transverse to the spheres. la and na are null vector fields satisfying lana = −1
on the isolated horizon. la is a tangent vector to the horizon, which is as-
sumed to be geodesic, twist-free, divergenceless and most importantly, non-
expanding. The Raychaudhuri equation is then used to prove that it is also
free of shear. Similarly, the null normal one-form field na is assumed to be
shear- and twist-free, and have negative spherical expansion. Finally, while
stationarity is not a part of the characterization of an isolated horizon, the
vector direction field la can be shown [21] to behave like a Killing vector field
on the horizon, satisfying

la∇al
b = κlb. (8.4.2)

Here, κ is the acceleration of la on the isolated horizon. Unlike standard sur-
face gravity whose normalization is fixed by the requirement that the global
timelike Killing vector generate time translations at spatial infinity, the nor-
malization of κ here varies with rescaling of la.

These features imply that while gravitational or other radiation may exist
arbitrarily close to the horizon, nothing actually crosses the horizon, thereby
emulating an ‘equilibrium’ situation. This, in turn, means that the area AH

of the isolated horizon must be a constant. Lifting of this restriction leads to
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dynamical variants (the so-called ‘dynamical’ horizons) which have also been
studied [22]; we shall however not consider these here.

The actual implementation of these properties of the isolated horizon re-
quire boundary conditions on the phase space variables on the 2-sphere foliate
of the horizon. Recalling that the horizon is an inner boundary of spacetime,
it is obvious that one needs to add boundary terms to the classical Einstein
action, in order that the variational principle can be used to derive equations
of motion. It turns out [8], [21] that the ‘boundary action’ SH that one must
add to the Einstein action (in the purely gravitational case, using the Ashtekar
self-dual connection)

SE =
−i

8πG

∫

M

TrΣ ∧ F, (8.4.3)

is an SU(2) Chern Simons (CS) action1

SH =
−i

8πG

AH

4π

∫

H

Tr

[
A ∧ dA+

2

3
A ∧A ∧A

]
, (8.4.4)

where, now, A is the CS connection, and F the corresponding curvature. The
resultant modification to the symplectic structure (8.4.1) is given by the CS
symplectic two-form

ΩH = − k

2π

∮

S

Tr[δγA ∧ δγA′], (8.4.5)

where, k ≡ AH/8πγG. In writing the boundary action (8.4.4), we have sup-
pressed other terms like the boundary term at infinity.

The sympletic structure ΩH remains the same under canonical transfor-
mation of the variables to the Barbero-Immirzi connection and the densitized
triad defined earlier. In terms of these phase space variables, it is easy to see
that the variational principle for the full action is valid, provided we have, on
the two-sphere foliation of H, the restriction,

k

2π
F i

ab +Σi
ab = 0. (8.4.6)

Eq. (8.4.6) has the physical interpretation of Gauss law for the CS theory,
with the two-form Σ playing the role of source current. We shall see shortly
that this has crucial implications for the quantum version of the theory.

1 Strictly speaking, the boundary conditions considered by [8] involve a partial
gauge fixing whereby the only independent connection on the horizon is actually
an internal radial U(1) projection of the SU(2) CS connection. However, we ignore
this subtlety at this point and continue to work with the SU(2) CS theory. The
modification to the final answer, had we chosen not to ignore this subtlety, will
be discussed later.
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8.4.2 Quantum Aspects: General

The classical configuration space consists of the space of smooth, real SU(2)
Lie Algebra-valued connections modulo gauge transformations [23]. Alterna-
tively, the space can be described in terms of three dimensional oriented,
piecewise analytic networks or graphs embedded in the spatial slice M [23] as
shown in Fig. 8.2

Fig. 8.2. Spin network graph C

Consider a particular graph C with n links (or edges) e1, . . . , en (shown
in Fig. 8.2 as links numbered 1, . . . , 12); consider also the pullback of the
connection A to C. Consider the holonomies defined as

hC(ei) ≡ P exp

∮

ei∈C

γAC , i = 1, 2 . . . , n, (8.4.7)

where γAC represents the restriction of the connection to the graph C; these
span the configuration space AC of connections on the graph C. This space
consists of [SU(2)]n group elements obtained as n-fold compositions of SU(2)
group elements characterised by the spin ji of the edge ei for i = 1, 2, . . . , n.
The edges of C terminate at vertices v1, . . . , vn (represented in Fig. 8.2 by
vertices marked a, b, c, . . . , h) which, in their turn, are characterised by group
elements g(v1), . . . , g(vm), which together constitute a set of [SU(2)]m group
elements for a given graph C. The union of spaces AC for all networks is then
an equally good description of the classical configuration space.

The transition to the quantum configuration space is made, first by enhanc-
ing the space of connections to include connections γĀ which are not smooth
but distributional, and then considering the space HC of square-integrable
functions ΨC [γĀ] of connections. For the integration measure, one uses n-
copies of the SU(2)-invariant Haar measure. For a given network C, the wave
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function ΨC [γĀ] can be expressed in terms of a smooth function ψ of the
holonomies h̄C(e1), . . . , h̄C(en) of distributional connections,

ΨC [γĀ] = ψ(h̄C(e1), . . . , h̄C(en)). (8.4.8)

The inner product of these wave functions can be defined as

〈Ψ1C , Ψ2C〉 =

∫
dµψ̄1Cψ2C . (8.4.9)

Basic dynamical variables include the holonomy operator ĥC(e) and the oper-
ator version of the canonically conjugate γ-rescaled densitized triad γÊi

a. The
holonomy operator acts diagonally on the wave functions,

[ĥC(e)ΨC ][γĀ] = h̄C(e)ΨC [γĀ].

The canonical conjugate densitized triad operators Êi
a act as derivatives on

ΨC [γĀ]:

γÊi
aΨ [γA] =

γ l2P
i

δ

δγAa
i

Ψ [γA].

One defines the kinematical Hilbert space H as the union of the spaces of
wave functions ΨC for all networks.2

Particularly convenient bases for the wave functions are the spin network
bases. Typically, the spin network (spinet) states can be schematically exhib-
ited as

ψC({hC}; {v}) =
∑

{m}

∏

v∈C

Iv
∏

i

Di
..., (8.4.10)

where, Di is the SU(2) representation matrix corresponding to the ith edge
of the network C, carrying spin ji, and Iv is the invariant SU(2) tensor in-
serted at the vertex v. If one considers all possible spin networks, the set of
spinet states corresponding to these is dense in the kinematical Hilbert space
H. Spinet states diagonalize the densitized triad (momentum) operators and
hence operators corresponding to geometrical observables like area, volume,
etc. constructed out of the the triad operators. The spectra of these observ-
ables turn out to be discrete; e.g., for the area operator corresponding to the
area of a two dimensional spacelike physical surface s (like the intersection of
a spatial slice with a black hole horizon), one considers the spins j1, j2, . . . , jp
on s at the p punctures made by the p edges of the spinet assumed to intersect
the surface. The area operator is defined as [24], [25]

2 Unfortunately, H is not the physical Hilbert space of the theory; that space is
the algebraic dual of H with no natural scalar product defined on it. However,
for the purpose of calculation of the microcanonical entropy, it will turn out to
be adequate to use H.
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Âs ≡
{√

nanbÊa
i Ê

b
i

}

reg

, (8.4.11)

where, na is the normal to the surface, and reg indicates that the operator
expression within the braces is suitably regularized. The eigenspectrum turns
out to be [24, 25]

as(p; {ji}) = 8πγ l2P

p∑

i=1

√
ji(ji + 1). (8.4.12)

Spinet basis states correspond to networks without any ‘hanging’ edge, so that
they transform as gauge singlets under the gauge group SU(2). Furthermore,
invariance under spatial diffeomorphisms is implemented by the stipulation
that the length of any edge of any graph is without physical significance.

8.4.3 Quantum Aspects: entropy calculation

As discussed in the previous subsection, the sphere SH formed by the inter-
section of the isolated horizon and a spatial slice M can be thought of as an
inner boundary of M . The dynamics of the isolated horizon is described by
an SU(2) Chern Simons theory with the bulk gravitational degrees of free-
dom playing the role of source current. This picture can be implemented at
the quantum level in a straightforward manner. Because of the isolation im-
plied by the boundary conditions, the kinematical Hilbert space H can be
decomposed as

H = HV ⊗HS,

where, HV (HS) corresponds to quantum states with support on the spatial
slice M (on the inner boundary, i.e., these are the Chern Simons states). The
boundary conditions also imply the Chern Simons Gauss law, Eq. (8.4.6); the
quantum operator version of this equation may be expressed as

k

2π
1 ⊗ F̂ i

ab + Σ̂i
ab ⊗ 1 = 0 on SH . (8.4.13)

Now, the bulk spinet states diagonalize the operator Σ̂ with distributional
eigenvalues,

Σ̂(x)|ψ〉V ⊗ |ψ〉S = γ l2P

p∑

i=1

λ(ji)δ
(2)(x,xi)|ψ〉V ⊗ |ψ〉S. (8.4.14)

Eq. (8.4.13) then requires that the boundary Chern Simons states also di-
agonalize the Chern Simons curvature operator F̂ . In other words, edges of
the bulk spin network punctures the horizon foliate SH , endowing the ith
puncture with a deficit angle [8] θi ≡ θ(ji) for i = 1, 2, . . . , p, such that
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p∑

i=1

θ(ji) = 4π. (8.4.15)

The curvature on SH is thus vanishingly small everywhere else except at the
location of the punctures. This manner of building up the curvature of the
two-sphere SH out of a large but finite number of deficit angles requires that
the number of such angles must be as large as possible. This is achieved for
the smallest possible value of all spins ji, namely ji = 1/2 for all i. This is
illustrated in Fig. 8.3 below

Fig. 8.3. Spin network links puncturing the horizon

The calculation of the entropy now proceeds by treating the isolated hori-
zon as a microcanonical ensemble with fixed area. Recalling the semiclassi-
cal relationship between horizon area and mass of the isolated horizon, this
is equivalent to considering a standard equilibrium microcanonical ensemble
where the (average) energy of the ensemble does not fluctuate thermally. The
number of configurations of such a system is equal to the exponential of the
microcanonical entropy SMC. Likewise, in this case, the number of boundary
Chern Simons states dim HS with pointlike sources, as depicted in Eq. (8.4.13)
(keeping (8.4.14) in view) yields expSMC. This number has been calculated
for all four dimensional non-rotating isolated horizons [8], [11] of large macro-
scopic fixed horizon area AH ≫ l2P . In ref. [11], the computation makes use
of the well-known relation between the dimensionality of the boundary Chern
Simons Hilbert space and the number of conformal blocks of the correspond-
ing two dimensional SU(2)k Wess-Zumino-Witten model that ‘lives’ on the
punctured two-sphere SH . This number is given by
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dim HS =
∑

p

p∏

i=1

∑

ji

N (p, {ji}), (8.4.16)

subject to the constraint that the area eigenvalues are fixed (to within a fator
of the Planck area) to the constant macroscopic area AH ,

AH = 8πγ l2P

p∑

i=1

√
ji(ji + 1), (8.4.17)

where,

N (p, {ji}) =

j1∑

m1=−j1

· · ·
jp∑

mp=−jp

[
δ(
∑p

n=1 mn),0 −
1

2
δ(
∑p

n=1 mn),1

−1

2
δ(
∑p

n=1 mn),−1

]
(8.4.18)

Instead of the area constraint, one may now recall Eq. (8.4.15) which also
is a constraint on the spins and number of punctures. Using this result in the
area formula (8.4.17) yields the maximal number of punctures

p0 =
AH

4π
√

3γl2P
. (8.4.19)

The corresponding number of Chern Simons states for this assignment of spins
is given via (8.4.18) by

N (p0) ≃
2p0

p
3/2
0

[
1 + const +O(p−1

0 )
]
. (8.4.20)

Now, the (microcanonical) entropy of the isolated horizon is given by

SIH ≡ log dim HS,

as remarked earlier. For isolated horizons with large macroscopic area , the
largest contribution to the rhs of Eq.(8.4.16) is given by the contribution of
the single term of the multiple sum, corresponding to ji = 1/2∀i and p = p0.
This contribution dominates all others in the multiple sum, so that, one has,
using Eq.(8.4.20), the microcanonical entropy formula [12]-[16]

SIH = SMC = SBH + δQSMC, (8.4.21)

where,

SBH ≡ AH

4l2P

is the Bekenstein-Hawking Area Law (BHAL), and we have set the Barbero-
Immirzi parameter γ = log 2/π

√
3 [8] in order to reproduce the BHAL with

the correct normalization. δQSMC, given by
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δQSMC = − 3

2
logSBH + const +O(S−1

BH), (8.4.22)

constitutes an infinite series (in decreasing powers of SBH) of corrections to
the BHAL due to quantum fluctuations of spacetime, and can be thought of
as ‘finite size’ corrections. One important aspect of the formula (8.4.21) is that
the coefficient of each correction term is finite and unambiguously calculable,
after γ has been fixed as mentioned.

8.4.4 It from Bit

Now consider the same object within the very loose lattice structure consid-
ered above. We can think of a two dimensional ‘floating’ (as opposed to a
rigid) lattice basically covering the sphere, as shown in Fig. 8.4.

Fig. 8.4. It from Bit

Since the area of a tiny ‘plaquette’ of this lattice may be taken to be
Planck area ℓ2P , it stands to reason that the ratio of the macroscopic area of
the event horizon to the area of an elementary plaquette A/ℓ2P ≫ 1. This
latter inequality defines our notion of a macroscopic black hole; our treatment
in this review will focus on such black holes, and not to those very interesting
but difficult cases where this number is O(1).

Let us now place, following [28], binary variables (‘bits’) on the lattice sites
(or equivalently, at the centre of the plaquettes). Then the number of such
variables p ≡ ξA/ℓ2P ≫ 1, where ξ = O(1). Without any loss of generality,
p can be taken to be an even integer. Now, we can think of the two values
of each binary variable as characterising two quantum states, so that the size
of the ‘Hilbert space’ of states on the (latticized) horizon is Nbh = 2p. The
entropy corresponding to this system is defined as Sbh ≡ logNbh; choosing
the constant ξ = (4 log 2)−1, we obtain
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Sbh =
A
ℓ2P

= SBH. (8.4.23)

The generality of the above scenario makes it appealing vis-a-vis a quan-
tum theory of black holes in particular and of quantum gravity in general.
There is however one crucial aspect of any quantum approach to black hole
physics which seems to have been missed in the above, – the aspect of sym-
metry. Indeed, the mere random distribution of spin 1/2 (binary) variables
on the lattice which approximates the black hole horizon, without regard to
possible symmetries, possibly leads to a far bigger space of states than the
physical Hilbert space, and hence to an overcounting of the number of the
degrees of freedom, i.e., a larger entropy.

8.4.5 The physical Hilbert (sub)space

But what is the most plausible symmetry that one can impose on states so as
to identify the physical subspace? The elementary variables are binary or spin
1/2 variables which can be considered to be standard spin 1/2 variables under
spatial rotations (more precisely SU(2) doublets). Recall now that at every
point on a curved spacetime one can erect a local Lorentz frame where the
basic variables can be subjected to a local Lorentz transformation. Here, of
course, we are interested in a spatial slice of the curved spacetime, and so the
transformation of interest is a ‘local spatial rotation’. Thus, the symmetry
that one would like to impose on the degrees of freedom obtained so far
would be invariance under these local spatial rotations in three dimensions.
However, since one is dealing with black holes of very large area, this amounts
to considering ‘global’ or ‘rigid’ spatial rotations or SU(2) transformations.
On very general grounds then, the most natural symmetry of the physical
subspace must be this SU(2) [16].

One is thus led to a symmetry criterion which defines the physical Hilbert
space HS of horizon states contributing to black hole entropy: HS consists of
states that are compositions of elementary SU(2) doublet states with vanish-
ing total spin (SU(2) singlets). Observe that this criterion has no allusions
whatsoever to any specific proposal for a quantum theory of gravitation. Nor
does it involve any gauge redundancies (or any other infinite dimensional sym-
metry like conformal invariance) at this point. It is the most natural choice
for the symmetry of physical horizon states simply because in the ‘It from
bit’ picture, the basic variables are spin 1/2 variables. Later on we shall show
however that this symmetry arises very naturally in the Non-perturbative
Quantum GR approach known also as Quantum Geometry. It will emerge
from that approach that horizon states of large macroscopic black holes are
best described in terms of spin 1/2 variables at the punctures of a punctured
two-sphere which represents (a spatial slice of) the event horizon.

The criterion of SU(2) invariance leads to a simple way of counting the
dimensionality of the physical Hilbert space [16]. For p variables, this number
is given by
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dimHS ≡ N (p) =

(
p
p/2

)
−
(

p
(p/2 − 1)

)
(8.4.24)

There is a simple intuitive way to understand the result embodied in (8.4.24).
This formula counts the number of ways of making SU(2) singlets from p
spin 1/2 representations. The first term corresponds to the number of states
with net J3 quantum number m = 0 constructed by placing m = ±1/2 on
the punctures. However, this term by itself overcounts the number of SU(2)
singlet states, because even non-singlet states (with net integral spin, for p
is an even integer) have a net m = 0 sector. Beside having a sector with
total m = 0, states with net integer spin have, of course, a sector with overall
m = ±1 as well. The second term basically eliminates these non-singlet states
with m = 0, by counting the number of states with net m = ±1 constructed
from m = ±1/2 on the p sites. The difference then is the net number of SU(2)
singlet states that represents the dimensionality of HS.

It may be pointed out that the first term in (8.4.24) also has another
interpretation. It counts the number of ways binary variables corresponding
to spin-up and spin-down can be placed on the sites to yield a vanishing
total spin. Alternatively, one can think of the binary variables as unit positive
and negative U(1) charges; the first term in (8.4.24) then corresponds to the
dimensionality of the Hilbert space of U(1) invariant states. As already shown
in [15], this corresponds to a binomial rather than a random distribution of
binary variables.

In the limit of very large p, one can evaluate the factorials in (8.4.24) using
the Stirling approximation. One obtains

N (p) ≈ 2p

p3/2
. (8.4.25)

Clearly, the dimensionality of the physical Hilbert space is smaller than what
one had earlier, as would be an obvious consequence of imposing SU(2) sym-
metry. Using the relation between p and the classical horizon area AS discussed
in the last section, with the constant ξ chosen to take the same value as in
that section, (8.4.25) can be shown [15] to lead to the following formula for
black hole entropy,

Sbh ≡ logN (p) ≈ A
4ℓ2P

− 3

2
log

( A
4ℓ2P

)
+ const +O(A−1). (8.4.26)

The logarithmic correction to the BHAL is not unexpected if we think of
Sbh(A) as a power series for large A with A/4 as the leading term; indeed,
various approaches to computation of black hole entropy (like the Euclidean
path integral [32], Non-perturbative Quantum GR [5], [11], boundary confor-
mal field theory [13], and so on) have been used, and a general result like

Sbh(A) =

( A
4ℓ2P

)
+ C log

( A
4ℓ2P

)
, (8.4.27)
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has been found, with various values of C, both positive and negative. In some
of the perturbative approaches, there is an added constant C ′ ∼ log(Λ) where
Λ is a length cut-off needed to yield a finite result for Sbh [14]. This is quite
in contrast to our result (8.4.26) where Sbh is intrinsically finite. Note also
that according to the Second Law of Black Hole Mechanics, if two black holes
coalesce, the minimum area of the resultant black hole is the sum of the two
horizon areas. For such a coalescence, it is easy to see that, for C > 0,

Sbh(A1 + A2) < Sbh(A1) + Sbh(A2). (8.4.28)

Assuming isolated eternal black holes which coalesce adiabatically with no
emission of gravitational waves, this property is perhaps not too desirable from
the point of view of the Second Law of Thermodynamics. From this point of
view also our result C = −3/2 appears more preferable. This is precisely the
result that was obtained earlier from Non-perturbative Quantum GR (also
called Quantum Geometry) [11] on the basis of incipient contributions in ref.
[5].

Even when the resultant black hole has a horizon area larger than the sum
of the areas, this preference for C < 0 seems to hold, although in a slightly
weaker form. Also, from the theory of isolated horizons which incorporates
radiation present in the vicinity of the horizon without crossing it, this result
seems to have a greater appeal than those others with C > 0.

8.5 Canonical Entropy

It is obvious that the foregoing analysis does not deal with even a semirealistic
situation, since all black holes (but for a set of measure zero of extremal black
holes) undergo Hawking radiation which creates a thermal bath with which
the black hole is in thermal equilibrium. One must therefore address the issue
of a canonical entropy of the black hole, presumably based upon a canonical,
rather than a microcanonical ensemble. Thus, in addition to the effects of
quantum spacetime fluctuations that preserve the area of an isolated horizon
and yield a microcanonincal entropy for it, we expect additional effects arising
out of thermal fluctuations of the area itself to arise in the canonical entropy.

8.5.1 Canonical partition function: holography?

Following [16], we start with the canonical partition function in the quantum
case

ZC(β) = Tr(exp−βĤ). (8.5.1)

Recall that in classical general relativity in the Hamiltonian formulation, the
bulk Hamiltonian is a first class constraint, so that the entire Hamiltonian
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consists of the boundary contribution HS on the constraint surface. In the
quantum domain, the Hamiltonian operator can be written as

Ĥ = ĤV + ĤS, (8.5.2)

with the subscripts V and S signifying bulk and boundary terms respectively.
The Hamiltonian constraint is then implemented by requiring

ĤV |ψ〉V = 0 (8.5.3)

for every physical state |ψ〉V in the bulk. Choose as basis for the Hamiltonian
in (8.5.2) the states |ψ〉V ⊗ |χ〉S. This implies that the partition function may
be factorized as

ZC ≡ Tr exp−βĤ
= dimHV︸ ︷︷ ︸

indep of β

TrS exp−βĤS︸ ︷︷ ︸
boundary

(8.5.4)

Thus, the relevance of the bulk physics seems rather limited due to the con-
straint (8.5.3). The partition function further reduces to

ZC(β) = dim HV ZS(β), (8.5.5)

where HV is the space of bulk states |ψ〉 and ZS is the ‘boundary’ partition
function given by

ZS(β) = TrS exp−βĤS. (8.5.6)

Since we are considering situations where, in addition to the boundary at
asymptopia, there is also an inner boundary at the black hole horizon, quan-
tum fluctuations of this boundary lead to black hole thermodynamics. The
factorization in Eq.(8.5.5) manifests in the canonical entropy as the appear-
ance of an additive constant proportional to dim HV . Since thermodynamic
entropy is defined only upto an additive constant, we may argue that the
bulk states do not play any role in black hole thermodynamics. This may be
thought of as the origin of a weaker version of the holographic hypothesis [29].

For our purpose, it is more convenient to rewrite (8.5.6) as

ZC(β) =
∑

n∈Z

g (ES(A(n)))︸ ︷︷ ︸
degeneracy

exp−βES(A(n)), (8.5.7)

where, we have made the assumptions that (a) the energy is a function of
the area of the horizon A and used the result proved earlier that this area is
quantized.

Going back to Eq. (8.5.7), we can now rewrite the partition function as an
integral, using the Poisson resummation formula
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∞∑

n=−∞

f(n) =
∞∑

m=−∞

∫ ∞

−∞

dx exp(−2πimx) f(x). (8.5.8)

For macroscopically large horizon areas A(p), x >> 1, so that the summation
on the rhs of (8.5.8) is dominated by the contribution of the m = 0 term. In
this approximation, we have

ZC ≃
∫ ∞

−∞

dx g(E(A(x))) exp−βE(A(x))

=

∫
dE exp

[
SMC(E) − log

∣∣∣∣
dE

dx

∣∣∣∣− βE

]
(8.5.9)

where SMC ≡ log g(E) is the microcanonical entropy.
Now, in equilibrium statistical mechanics, there is an inherent ambiguity

in the definition of the microcanonical entropy, since it may also be defined
as S̃MC ≡ log ρ(E) where ρ(E) is the density of states. The relation between
these two definitions involves the ‘Jacobian’ factor |dE/dx|−1

S̃MC = SMC − log

∣∣∣∣
dE

dx

∣∣∣∣ . (8.5.10)

Clearly, this ambiguity is irrelevant if all one is interested in is the leading order
BHAL. However, if one is interested in logarithmic corrections to BHAL as
we are, this difference is crucial and must be taken into account.

We next proceed to evaluate the partition function in Eq. (8.5.9) using
the saddle point approximation around the point E = M where M is to be
identified with the (classical) mass of the boundary (horizon). Integrating over
the Gaussian fluctuations around the saddle point, and dropping higher order
terms, we get,

ZC ≃ exp

{
SMC(M) − βM − log

∣∣∣∣
dE

dx

∣∣∣∣
E=M

}[
π

−S′′
MC(M)

]1/2

(8.5.11)

Using SC = logZC + βM , we obtain for the canonical entropy SC

SC = SMC(M)−1

2
log(∆)

︸ ︷︷ ︸
δthSC

, (8.5.12)

where,

∆ ≡ d2SMC

dE2

(
dE

dx

)2
∣∣∣∣∣
E=M

. (8.5.13)

Eq. (8.5.12) exhibits the equivalence of the microcanonical and canonical en-
tropies, exactly as one expects when thermal fluctuation corrections are ig-
nored. It is interesting that this now leads to the following canonical entropy
for non-rotating black holes [34]
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Scan = SMC(A) − 1

2
log∆, (8.5.14)

where

∆ ≡ [A′(x)]2
[
S′

MC(A)
M ′′(A)

M ′(A)
− S′′

MC(A)

]
(8.5.15)

Thus, the canonical entropy is expressed in terms of the microcanonical en-
tropy for an average large horizon area, and the mass which is also a function
of the area. Clearly, stable equilibrium ensues so long as ∆ > 0 [38].

Additional support for this condition can be gleaned by considering the
thermal capacity of the system, using the standard relation

C(A) ≡ dM

dT
=
M ′(A)

T ′(A)
, (8.5.16)

with T being derived from the microcanonical entropy SMC(A), and hence a
function of A. One obtains for the heat capacity the relation

C(A) =

[
M ′(A)

T (A)A′(x)

]2
∆−1, (8.5.17)

so that C > 0 if only if ∆ > 0. Since the positivity of the heat capacity is
certainly a necessary condition for stable thermal equilibrium, it is gratifying
that an identical criterion emerges for ∆ as found from the canonical entropy
(8.5.14).

Using now eq, (8.5.13) for the expression for ∆, the criterion for thermal
stability of non-rotating macroscopic black holes is then easily seen to be

M(A) > SMC(A) (8.5.18)

as already mentioned in the summary. We have been using units in which
G = � = c = kB = 1. If we revert back to units where these constants are not
set to unity, the lower bound Eq. (8.5.18) can be re-expressed as

M(A) >

(
�c

Gk2
B

)1/2

SMC(A). (8.5.19)

We remind the reader that in contrast to semiclassical approaches based on
specific properties of classical metrics, our approach incorporates crucially the
microcanonical entropy generated by quantum spacetime fluctuations that
leave the horizon area constant. Apart from the plausible assumption of the
black hole mass being dependent only on the horizon area, no other assump-
tion has been made to arrive at the result. Even so, it subsumes most results
based on the semiclassical approach. It also supercedes our earlier assay [34]
based on an assumption of a power law functional dependence of the mass on
the area.
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As a byproduct of the above analysis, the canonical entropy for stable black
holes can be expressed in terms of the Bekenstein-Hawking entropy SBH as

Scan = SBH − 1

2
(ξ − 1) logSBH − 1

2
log

[
S′

MC(A) M ′′(A)

S′′
MC(A)M ′(A)

]
. (8.5.20)

For any smooth M(A), one can truncate its power series expansion in A at
some large order and show that the quantity in square brackets in Eq. (8.5.20)
does not contribute to the log(area) term, so that

Scan = SBH − 1

2
(ξ − 1) logSBH + const +O(S−1

BH). (8.5.21)

The interplay between constant area quantum spacetime fluctuations and
thermal fluctuations is obvious in the coefficient of the log(area) term where
the contribution due to each appears with a specific sign. It is not surpris-
ing that the thermal fluctuation contribution increases the canonical entropy.
The cancellation occurring for horizons on which a residual U(1) subgroup of
SU(2) survives, because of additional gauge fixing by the boundary conditions
describing an isolated horizon [7], may indicate a possible non-renormalization
theorem, although no special symmetry like supersymmetry has been em-
ployed anywhere above. It is thus generic for all non-rotating black holes,
including those with electric or dilatonic charge. One would expect the re-
sult to hold also for rotating black holes, as well, although the details of the
microcanonical entropy for such black holes have not yet been worked out.

8.5.2 Canonical entropy of anti de Sitter black holes

The corrections to the canonical entropy due to thermal fluctuations can be
calculated in principle for all isolated horizons which includes all stationary
black holes. We shall first deal with the case of adS black holes where the
calculation makes sense for a certain range of parameters of the black hole so-
lution. Computation of such corrections has been performed in ref. [17]. Here,
we recount the computation in a slightly different form, and compare the result
with the corrections to the BHAL due to quantum spacetime fluctuations.

BTZ

The non-rotating BTZ metric is given by [26]

ds2 = −
(
r2

ℓ2
− 8G3M

)
dt2 +

(
r2

ℓ2
− 8G3M

)−1

dr2 + r2dφ2, (8.5.22)

where, ℓ2 ≡ −1/Λ2 and Λ is the cosmological constant. The BH entropy is

SBH =
πrH
2G3

,
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where, the horizon radius rH =
√

8G3Mℓ. Quantum spacetime fluctuations
produce corrections to the microcanonical BHAL, given for rH ≫ ℓ by [27]

δQSMC = −3

2
logSBH. (8.5.23)

Using (8.5.23), and identifying the mass M of the black hole with the equi-
librium energy E0, the microcanonical entropy SMC has the properties

S′′
MC(M) < 0 for rH > ℓ

S′′
MC(M) > 0 for rH < ℓ. (8.5.24)

Alternatively, the specific heat of the BTZ black hole is positive, so long as
rH ≥ ℓ. The system can therefore be thought of as being in equilibrium for
parameters in this range. It follows that the calculation of δFS yields a sensible
result in this range,

δFS =
3

2
logSBH = −δQSMC. (8.5.25)

The import of this for the canonical entropy is rather intriguing, using
Eq.(8.5.21)

SC = SBH. (8.5.26)

The quantum corrections to the BHAL in this case are cancelled by corrections
due to thermal fluctuations of the area (mass) of the black hole horizon. We
do not know the complete significance of this result yet.3

4 dimensional adS Schwarzschild

Such black holes have the metric

ds2 = −V (r) dt2 + V (r)−1dr2 + r2dΩ2, (8.5.27)

where,

V (r) = 1 − 2GM

r
+
r2

ℓ2
, (8.5.28)

with ℓ2 ≡ −3/Λ. The horizon area AH = 4πr2H , where the Schwarzschild
radius obeys the cubic V (rH) = 0. It is easy to see that the cubic yields the
mass-area relation
3 We should mention that this result ensues only if one takes recourse to the classical

relation between the horizon area and the mass. The validity of that relation in
the domain in which the QGR calculation has been performed, is not obvious at
this point.
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M =
1

2G

(
AH

4π

)1/2(
1 +

AH

4πℓ2

)
(8.5.29)

It is clear from Eq.(8.5.29) that

S′′
MC(M) < 0 for AH >

4

3
πℓ2, (8.5.30)

so that, once again the specific heat is positive in this range. The thermal
fluctuation contribution for this parameter range is

δFS = log

(
AH

l2P

)
. (8.5.31)

The net effect on the canonical entropy is a partial cancellation of the effects
due to quantum spacetime fluctuations and thermal fluctuations,

SC = SBH − 1

2
logSBH. (8.5.32)

Note that the thermal and quantum fluctuation effects compete with each
other in both cases considered above, with the net result that the canonical
entropy is still superadditive

SC(A1 +A2) ≥ SC(A1) + SC(A2).

The point rH ∼ ℓ in parameter space signifies the breakdown of thermal equi-
librium; this point has been identified with the so-called Hawking-Page phase
transition [18] from the black hole phase to a phase which has been called an
‘adS gas’. In this latter phase, the black hole is supposed to have ‘evaporated
away’, leaving behind a gas of massless particles in an asymptotically adS
spacetime.

8.6 Conclusions

The exact cancellation of the logarithmic corrections to the BHAL for the
BTZ black hole canonical entropy, due to quantum spacetime fluctuations
and thermal fluctuations, may hold a deeper significance which warrants fur-
ther analysis. In ref. [27], the microcanonical entropy is calculated from the
exact Euclidian partition function of the SU(2)×SU(2) Chern Simons theory
which describes the BTZ black hole. Perhaps this calculation can be extended
to a finite temperature canonical quantum treatment of the problem, to in-
clude the effect of thermal fluctuations. Such an analysis is necessary to allay
suspicions about using (semi)classical relations between the mass and the area
of the black hole. Likewise, for four dimensional black holes, the precise rela-
tion admitted within QGR between the boundary Hamiltonian and the area
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operator needs to be ascertained. Presumably, this relation will not qualita-
tively change the results for adS black holes, although it might lead to a better
understanding of the Hawking-Page phase transition. More importantly, this
issue needs to be addressed in order to determine if the thermodynamic in-
stability found for generic asymptotically flat black holes is an artifact of a
semiclassical approach.

It is conceiveable that inclusion of charge and/or angular momentum for
adS black holes in dimensions ≥ 4 will present no conceptual subtleties, so
long as the (outer) horizon area exceeds in magnitude the inverse cosmological
constant. However, to the best of our knowledge, the formulation of a higher
dimensional (i.e., > 4) QGR has not been completed; this will have to be done
before comparison of quantum and thermal fluctuation effects can be made
in higher dimensions.

The thermodynamic instability discerned for asymptotically flat black
holes also appears to emerge for de Sitter Schwarzschild black holes [17]. Since
current observations appear to point enticingly to an asymptotically de Sitter
universe, this instability must be better understood. In its present incarnation,
it would imply that massive black holes will continue to get heavier without
limit. On the other end of the scale, the instability can be interpreted in terms
of disappearance of primordial black holes due to Hawking radiation, except
for the possible existence of Planck scale remnants. It should be possible to
estimate the density of such remnants and check with existing bounds from
cosmological data.
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Summary. Complexity theory is applied to organizational sciences in this paper.
The implications of this application are significant, so much so that they signal a
paradigm shift in the way we understand organization and leadership. Complexity
theory alters core perceptions about the logic of organizational behavior and, con-
sequently, “discovers” the significant importance of firms’ informal social dynamics
(informal behaviors have long been treated as something that should be suppressed
or channeled). This altered perspective has implications for how we coordinate,
motivate, and lead in firms. A complexity view of organizations is particularly use-
ful and germane in light of recent movements among industrialized nations toward
knowledge-based, rather than production-based, economies.

9.1 Complexity in Organizations: A Paradigm Shift

Complexity theory has emerged in the past twenty years as a dramatically
new way to understand nature. It envisions adaptive systems (species, ani-
mals, plants, viruses, etc.) as neural-like interactive networks of agents and
seeks to understand the dynamics of network behaviors, Langston [41], Marion
and Uhl-Bien [49], Marion and Uhl-Bien [50], Miles et al. [55]. Complexity dy-
namics interact with natural selection processes to produce order (Kauffman
[37]), but they otherwise differ from natural selection (the currently domi-
nant theory of behaviors in nature) in rather significant ways. Complexity’s
causal logic, for example, is based on recursion (multi-way chains of cause
and effect; Marion and Uhl-Bien [49]) rather than the linear, functional re-
lationships of Darwinian logic (one-way temporal chains of causation, called
process logic; MacIver [44]). New behaviors emerge seemingly unbidden and
cannot typically be traced to simple input events such as mutations. Complex
systems behave in quite complicated ways because of the nature of interde-
pendent interactions, Reynolds [65], and they thrive from cooperation more
than competition Margulis and Sagan [46]. Complex systems are probably
best described as information processing systems because of their dual ability
to store, yet dynamically process and change, knowledge.

R. Marion: Complexity in Organizations: A Paradigm Shift, StudFuzz 206, 247–269 (2006)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2006
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Complexity theory is becoming an important tool for describing formal
social organizations such as businesses and government agencies (e.g., Brown
and Eisenhardt [14], Carley and Hill [19], Dooley and de Ven [24], Gronn
[28], Lichtenstein. and McKelvey [42], Marion and Uhl-Bien [48], McKelvey
[52]). This paper seeks to extend these applications of complexity and to
underscore how radically a complexity perspective of organization departs
from traditional perspectives.

A secondary intent of this paper is to develop the science of complex or-
ganizations to a new level. Early works in this area tended to assume that
organizations are uniformly complex. A few scholars, however, are beginning
to argue that complexity is unevenly distributed across an organization and
across time (C.Thomas et al. [20], Uhl-Bien et al. [73]). That is, certain organi-
zational functions, strategic goals, or production processes may demand more
complex structuring than others. Thus while the prime focus of this paper is
on developing a complexity theory perspective of organizational behavior, it
will do so in a manner consistent with the reality of uneven distribution and
will further provide a framework within which unevenness can be understood.

9.2 A Paradigm Shift

Complexity theory first emerged in the biological and physical sciences and
has migrated to the social sciences. It is not uncommon for theories from the
sciences, particularly from biology, to be adopted to explain social behavior.
The earliest known systematic theory of social behavior in the modern era ap-
peared in the early to mid-1700s; called social physics, it was directly derived
from Newtonian physics. In the late 19th and early 20th centuries, the prevail-
ing understanding of social behavior was based on Spencer’s work with Social
Darwinism. Spencer’s theory was discredited by the mid-20th century largely
because of its misuse by German Nazis to justify genocide, but it reemerged
in a more benign form in the 1980s and still enjoys currency in organizational
theory. Open systems theory from the 1950s and ‘60s was grounded in biol-
ogy; Contingency theories of the 1960s and 1970s were grounded in the same
rational epistemology that underlay physics.

The explanation for this science-to-sociology phenomenon is quite straight-
forward: Since the period of the Enlightenment, science has defined the world-
view of Western societies (and of many Eastern societies). By worldviews (or
paradigms), I refer to the manner in which society perceives reality in all
realms of its existence; thus scientific logic influences religion, politics, philos-
ophy, perceptions of causality, our understanding of day-to-day events, and,
topically, organizational behavior (Kuhn [40]). That is, the rational sciences
tend to define reality for the rest of society.

According to Kuhn, science undergoes periodic “paradigm shifts,” or sud-
den changes in perspectives regarding natural behaviors. Complexity theory
represents just such a shift. Paradigm shifts produce dramatically new ways of
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understanding present reality; they allow us to “see” new realities that, in ret-
rospect, were there all along but were ignored or were unseen. Paradigm shifts
generate whole new sets of propositions about the world and often require new
analytical tools to conduct the studies of those propositions.

The complexity paradigm is grounded in chaos theory thus it shares the
uncertainty and nonlinearity of chaos — although in more muted form. A
major difference between chaos and complexity (aside from complexity being
less dynamic) is the fact that complex systems (and the agents that comprise
them) are adaptive: They “intelligently” change their behavior and structure
to adapt to environmental contingencies. Complex systems naturally (without
volition) “seek” sufficient chaos to enable dynamicism (hence their ability to
change, to process information, and to create unpredictable outcomes) and
sufficient stability to enable change and information to be used and devel-
oped. This state, called the “edge of chaos” Langston [41], provides optimal
fitness to a system thus is favored by natural selection, Kauffman [37]. At the
edge, complex systems can process, alter, and store information with amazing
effectiveness. They are capable of engaging in change yet the stable-chaotic
balance of complexity minimizes the possibility of catastrophic, destructive
change.

Adaptive systems accomplish this by aggregating into neural-like networks,
or networks of adaptive agents. Aggregated neural networks are characterized
by interactions among agents, by moderately coupled interdependency, and
by tension (e.g., from predators or scarce resources). The nature of moder-
ate coupling allows them to dynamically process information while absorbing
perturbations that would disrupt less robust systems.

The paradigmatic implications of complexity theory for organizational the-
ories are dramatic. Table 1 contrasts differences between the current worldview
of organizational theory (beliefs, perceptions, accepted values and definitions,
etc.) and the worldview offered by complexity theory. The differences are not
simply matters of style, they get at the very heart of how we think about
organization and leadership.

Complexity theory permits us to see organizational behavior in new ways,
to restructure the role of leadership, and to envision new ways to organize, co-
ordinate, and motivate workflows. This is possible because complexity changes
the way we understand organizations: it alters our core paradigmatic focus.

9.3 Core Paradigmatic Focus

Complexity theory alters the basic logics that underlie perceptions of real-
ity and in doing so it challenges the way we perceive organizational struc-
tures. The current paradigm of organization bears imprimatur of Newtonian
and Humean arguments that science is defined by functional relationships
among variables. Although this logical empiricist perspective was discredited
by philosophers by 1977 (Suppe [70]), it is still evident in social research
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Currently dominant Complexity theory
paradigm of perspective of

organizational behaviour organizational behaviour

Core paradigmatic Top-down, convergent Bottom-up, convergent
focus on leadership on interactive dynamics

The function of Organizations enable Organizations enable
organization humans to efficiently humans to effectively

produce useful outcomes create knowledge that can
on a large scale produce useful outcomes

on a large scale
Structural Bureaucracy or Bottom-up, complex

requirements commitment based unity organizations
Causation (a) Linear, process theory Nonlinear, recursive

theory
(b) Epistemology based on Epistemology based on

variables mechanisms and variables
(c) Temporal flow worldview Interaction worldview

Causal implication (a) Outcomes are planned Outcomes are emergent
surprises

(b) Leaders are causal Leadership is an outcome
stimulants

Motivation Motivation by central Motivation by interactive
structures (CEO’s, dynamics

bureaucratic rules etc)
Vision Unity of vision Heterogeneous and

indeterminate visions
Definition of Leaders are individuals Leadership is energy
leadership who create organiza- that emerges across the

tional energy through organization under given
charisma, intelligence, enabling conditions

interpersonal considera-
tion, inspiration etc.

Table 9.1. Old versus new paradigms of organizational behavior.

(Maxwell [51]) and in everyday behaviors — individuals intrinsically assume
that events in their lives can be logically explained.

If this logic of simple causes is accepted as given, then prediction and con-
trol are likewise uncontestable. Knowledge of causal structures allows one to
predictably control future events by adjusting current input variables. Accord-
ingly, even complex events should be controllable by rather simple coordinat-
ing and planning structures. This is evident in assumptions about leadership.
Meindl [54] argued that people glorify leaders as causal agents and that they
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invoke them as causal explanations across situations. That is, leadership is
perceived as simple causal structures that can accurately and effectively plan
and control organizational futures. The core paradigmatic focus derived from
this is an assumption of top-down control and the controlling efficacy of lead-
ership.

Complexity theory is premised on diametrically different assumptions.
Outcomes derive from recursive interactions among numerous events (vari-
ables) and mechanisms (defined as · · · not a variable but an account of the
makeup, behaviour and interrelationship of · · · [causal] processes, Pawson and
Tilley [61], pp 67-68). Complexity theory does not envision causality in terms
of stable, persistent relationships among variables, nor does it see outcome
as a sequence of consecutive events (the logic that underlies natural selec-
tion). Rather it describes causality as an emergent, often nonlinear function
of complex, neural-like interactions. Marion and Uhl-Bien [49] have labeled
this, recursion theory.

When agents interact within organizations, they adapt their structures
and behaviors to accommodate one another. When a recursively interact-
ing network of agents is properly tuned (moderately coupled; Kauffman [37],
Kauffman [38]), agents and ideas combine and recombine unpredictably and
at times collapse together such that new structures or knowledge emerge from
the dynamic process. Such recursive dynamics deny prediction and at times
defy explanation; for this reason, complexity theorists seek to describe the
mechanisms by which change and emergence occurs rather than seeking to
predict outcomes. By understanding these mechanisms, social complexity the-
orists can devise strategies to enable complex behaviors that optimizing the
capacity of organizations for innovation and knowledge production.

Recursive causality bears some similarity to process logic. Process logic
argues that events follow events in a causal chain, and that the change from
one event to the next is caused by random occurrences. Natural selection,
for example, is based on process logic. Recursive causality differs in that its
dynamics are not conceived as temporal-linear (one event leading to another).
All events occur within the flow of time, of course, but complexity theory
focuses on interactive, rather than on sequential, causality. Further, patterns
of behavior in both process and recursive systems are non-replicable, but the
dynamics in recursive system are also nonlinear (process systems are regular
and progressive) — the scope of emergent events are not always proportionate
to their inputs (to use a uninventive example, nonlinear emergence occurs
when someone calmly says “fire” in a crowded room and produces explosive
panic).

One important implication of the recursive logic for organizations is that
futures are difficult to predict and plan, as in traditional models of organiza-
tional control; rather, they occur as emergent surprises. Popper [63] argued
that outcomes are products of numerous variables; traditional planners sim-
ply choose from the set of possible predictors of a future outcome but can
never identify all causal agents for that given outcome. Complexity theory
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argues that future outcomes are emergent products of nonlinear, highly com-
plex interactions among variables and mechanisms, and that prediction of
anything but the immediate future or the future of highly stable systems is
likely unreliable. Complex organizations, then, do not engage in planning in
the traditional sense, rather they engage in non-determinate visioning and
mission-setting in order to foster emergent innovations.

The core paradigmatic focus of a complex perspective, then, envisions
recursive, interactive dynamics as a key driving force in an organization. In-
teractive dynamics can occur at any given hierarchical level (and across lev-
els); they are informal, unplanned and uncoordinated by positional authority.
This perspective de-emphasizes the centrality of authority and emphasizes
instead the core importance of effective network dynamics. It shifts the tradi-
tional perspective of organizations from top-down or centralized coordination
to informal interaction among organizational agents at all hierarchical levels.
Leadership’s role becomes less to plan and coordinate and more to foster con-
ditions that enable emergence and embedded coordination and motivation.
This perspective does not deny authority, rather it adds a focus on informal
networked interactions within organizations. Complexity represents, then, a
radical shift from 20th century modes of thinking.

9.4 The Functions of Organization

The paradigmatic differences between traditional and complexity perspectives
of organization parallel collateral and equally significant changes in the eco-
nomic systems of industrialized nations. Indeed, the paradigm shifts repre-
sented by complexity theory are driven by these economic changes. These
changes affects the very definition of organizational function.

Until the last couple of decades of the 20th century, the role of organi-
zations in Western societies was rather clearly one of enabling humans to
efficiently manufacture salable products on a large scale. Tangible goods were
the essential organizational product of that era — goods such as textiles,
TVs, and appliances (Boisot [12]). In that era, a core paradigmatic focus on
top-down management functioned well, for commodity production is typically
standardized and predictable.

The last decades of the 20th century witnessed dramatic economic changes,
however (Drucker [25], Drucker [26], M.A.Hitt et al. [45], Hitt et al. [31]).
Globalization intensified competition and made it far less necessary to pro-
duce commodities near major market outlets. Trade imbalances and consumer
pressures for cheaper goods favored imports from 3rd world economies. Conse-
quently, commodities production shifted from the major industrialized coun-
tries of the world to nations where labor was cheaper.

Concurrently, knowledge of electronics, nanotechnology, genetic engineer-
ing, communications, and pharmaceuticals (etc.) grew (and continues to grow)
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at exponential rates and created new demands from consumers. This move-
ment has been labeled the knowledge economy by numerous organizational
theorists, including Boisot [12], Burton-Jones [17], Drucker [26], Hitt et al.
[31], Nonaka [57], and Nonaka and Nishiguchi [58], Cusumano [21]. A knowl-
edge economy is one for which the principal resource is knowledge. Unlike
commodity-based organizations, activities in knowledge organizations are un-
predictable and non-standardized. The challenge in such organizations is to
structure in ways that maximize individual and organizational learning rather
than to structure for efficient production. Knowledge businesses have to re-
think structural relationships among people and among organizations, work
flows, and even the locus of work (knowledge organizations can benefit from
a geographically dispersed work force).

Consequently, the purpose of current knowledge organizations is defined as
one of enabling humans and networks of humans to effectively create knowl-
edge that can produce useful outcomes. Knowledge and the applications of
knowledge are the primary outcome of these organizations.

9.5 Organizational Control

One important implication of the shift from a commodity-based to knowledge
based economy involves the nature of organizational control. Bureaucracy has
been the dominant organizational control structure of the 20th century. Max
Weber (1947) proposed an ideal bureaucratic model coordinated by imper-
sonal rules, meritocracy, specialization, and role specification (see also Udy
1959). Bureaucracy enabled the coordination of large numbers of people, com-
plex operations, and large scale planning; it fueled the significant industrial
growth of the last century. Weber was concerned, however, that bureaucracy
would enslave society in a rigid, dehumanizing structure. In his book, Protes-
tant Ethic and the Spirit of Capitalism (Weber [75]) he wrote that once hu-
manity embarked on the path of bureaucracy it would be imprisoned “perhaps
until the last ton of fossilized coal is burnt” (181-182). He could envision no al-
ternative to bureaucracy’s rigid hierarchical structures for enabling the wealth
and productivity that derives from the ability to organize on large scales.

In the late 20th century it became evident that organizations might be co-
ordinated by internal (commitment- or trust-based management) rather than
external (bureaucratic rules) restraints. “This new set of governance strategies
. . . is directed at access to and leverage of intangible resources like employee
commitment, tacit knowledge and learning behaviours” (Bijlsma-Frankema
and Koopman [10], Zaccaro and Klimoski [77]: 204). Smircich and G.Morgan
[69] refer to this as management of meaning, defined as “ ‘sense-making’ on
behalf of others and develop[ing] a social consensus around the resulting mean-
ing” (Bryman [15]). It is this social consensus, rather than rules, that coor-
dinate in this organizational strategy. Weber was incorrect then, and there
appear to be alternatives to the “iron cage” of bureaucracy.
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Complexity theory suggests yet another control mechanism, one in which
coordination is built into network dynamics rather than implemented by man-
agers via bureaucratic rules or by co-opting meaning. This represents a dra-
matic departure from the traditional assumption (in both bureaucracy and
management of meaning) that coordination is the responsibility of leaders
within a context of top-down authority. Rather, coordination is embedded into
the structure and activities of the complex organization. Such coordination
strategies enable maximum flexibility and the capacity to respond effectively
to highly volatile environments — a strategy that is ideal in knowledge-based
economies.

Coordination derives from several generalized sources in complex organi-
zations. First it derives from a key characteristic of such systems: moderately
coupled interdependency. Interdependency exists when one agent’s fitness is
influenced by the fitness-seeking actions of another agent (see Uhl-Bien et al.
[73]) for discussion of fitness). When the actions of one agent conflict with the
fitness preferences of another, a conflicting constraint exists. Such constraints
pressure the agents to act to resolve the issues involved.

Networks of agents are characterized by networks of conflicting constraints,
thus the problems of constraints are more complex than those experienced by
a pair of agents. Notably, the constraint-accommodating actions of an actor
affect constraints in other loci of the network. If a network is tightly coupled,
changes by one agent affects a large number of other agents and the result-
ing network of constraints will be too complex to be resolved. Such systems
tend to freeze, for change is too destructive (Kauffman [37]). If the network
is loosely coupled, then the network of constraints is too weak to stimulate
change in the system. A moderately coupled system is sufficiently tight to
stimulate network elaboration but sufficiently loose to enable reasonable res-
olution of the pattern of constraints (Kauffman [37]). Returning to the issue
of coordination, the network of constraints in a moderately coupled system
impose sufficient pressure on agents to coordinate their actions but not so
much pressure that creativity is constrained.

Interdependency and coordination are further enabled by enabling rules,
or rules that define action boundaries without limiting creativity. They differ
from more traditional bureaucratic rules in that bureaucracy tends to limit
behavior to carefully rationalized procedures. Enabling rules, by contrast, ex-
pand more than restrict behavioral opportunities. Microsoft, for example, per-
forms its highly complex tasks with independent work groups responsible for
programming separate elements of a given software program. Such loosely
coupled structuring enables innovation and rapid response to new technolo-
gies, but presents significant problems of coordination. Microsoft overcomes
this with a key enabling rule that creates interdependency and shifts the
structure from loose to moderately coupled: At regular intervals, each pro-
gramming group must compile its code and run it against every other group’s
code. If a group’s code does not function properly, then that group stays
at their desks until the problem is fixed (Cusumano [21]). Such rules enable
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cross-group coordination, create cascading adjustments to the overall project
(problems/solutions by one group may create problems/solutions for others),
and expands the scope of responsibility for each work group — key attributes
of a complex network.

Coordination derives from vision and mission. Vision is a projection of the
future; mission is “product, or solution, oriented to be executed within certain
defined parameters” (Mumford et al. [56]). Inappropriate vision and mission
can inhibit innovation in complex organizations, thus these definitions must
be understood in the context of complexity theory. Complex vision envisions
an indeterminate future, or a future that is unconstrained by current beliefs
or understanding. Indeterminate visions rally action and create perceptual
boundaries without limiting the future. Such visions typically anticipate fu-
ture activities or behaviors rather than projecting predetermined outcomes:
For example, a vision that anticipates future creativity (an activity) is inde-
terminate because it does not anticipate a definable outcome; a vision that
projects the future state of an existing technology is a determinate vision.
The former enables innovation (which by definition cannot be preordained)
and creative knowledge growth while the latter simple unfolds what is already
known. (Uhl-Bien et al. [73])

Mumford’s definition of mission is likewise limiting. They argue, correctly,
that mission encourages innovation but they offer contradictory definitions
that limit that ability. Mission, they propose, contributes to creativity and in-
novation in four ways. Missions have clear objectives, they provide a structure
for addressing problems, they provide a framework for idea development that
does not unduly restrict the autonomy and potential unique contributions of
team members, and they provide a framework for sense-making (Mumford et
al. [56]). In complexity theory, the strictures regarding visional limitations of
the future apply equally to mission, thus Mumford’s requirement for clear ob-
jectives is problematic. Objectives seek to pre-define innovative outcomes and
as such are inconsistent with the fact that innovation is an event that diverges
from current understanding (as Popper [63], stated, we cannot anticipate to-
day what we shall know only tomorrow). Complex objectives are sensitive to
such constraint in the same manner that complexity theory is sensitive about
the nature of vision.

9.5.1 Top-Down Versus Bottom-Up Coordination

The discussion thus far has not addressed the unequal distribution of com-
plexity that was alluded to in the opening paragraphs of this paper. Unequal
distribution translates into varying coordination strategies across an organiza-
tion and across time. In its fullest reality, coordination in knowledge-oriented
organizations is complicated — there is no simple, single way to understand it.
Like everything else about complex organizations, coordination structures are
dynamic, meshed networks of formal and informal hierarchies, formal and in-
formal rules, and personal influence relationships. Coordination can emanate
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from numerous sources, and top leadership is only one source of coordination
(and may not be the most important source).

I propose, however, that patterns of coordination, from wherever it em-
anates, are heavily influenced by three interrelated forces: technological, man-
agerial, and interactive. Technology refers to what needs to be done; it is the
core production imperative of the system. The systems we describe here pro-
duce knowledge; other systems produce more tangible commodities. Profits
are subsumed within technology since the two are closely linked. Without
them, the organization does not typically survive.

The managerial function is to be understood from two perspectives: its
responsibilities and its personalities. Its responsibilities are broadly to fos-
ter effective functioning by employees and to manage routine tasks (what
J.A.Kelso [35], calls — referencing the brain — motor functions). Routine
tasks include such things as budgeting and purchasing; fostering effectiveness
involves maximizing the capacity of employees in their performance of techno-
logical functions (this is the traditional focus of leadership studies). Secondly,
the managerial function is to be understood in terms of personalities and in-
dividual preferences, particularly at upper echelons. Much has been written
about power preferences (Jermier [36], Kinchloe and McLaren [39], Oakes et
al. [59]) and legitimacy preferences (DiMaggio and Powell [22], Dirsmith and
MacIver [23], Scott [66], Selznick [68], Westphal et al. [76]) of leaders, for
example; such preferences shape structures and behaviors of organizations.

The interactive dimension of organization is the unique contribution of
complexity theory. Interaction occurs at all hierarchical levels and refers to the
bottom-up, unpredictable activities of agents within and without the organi-
zation. It is related to what Philip Selznick [67] called irrational forces, George
Homans [32], the informal group, and Charles Perrow [62], the unstable envi-
ronment. Interactive dynamics influence all social-based functions of an orga-
nization; they are a source of attitudes, movements, knowledge and creativity.
Complexity describes how these dynamics generate negentropic energy, hence
emergent structure and innovation. Interactive dynamics self-produce their
own coordinating protocols (e.g., Homan’s informal group rules) and require
no external intervention to do so. Interactive dynamics have absorbed orga-
nizational practitioners and scholars alike for over a century, and much effort
has been expended attempting to subdue this “creature.” A complexity theory
of organization seeks ways to take advantage of the dynamicism and creativity
of this force rather than fighting it.

Each of these forces — technology, managerial, and interactive — influence
the nature of coordination in any given organization. Importantly, however,
the forces are intermeshed: Each is shaped to some degree by the other two.
For example, legitimacy preferences of management shape the organizational
structure within which production occurs and from which interactive dynam-
ics emerge, but both production and interaction likewise limit the scope of
managerial discretion regarding legitimacy (see, for example, Westphal et al.
[76]).
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Any one of the forces can exert itself over the others; management, for
example, can seek to dominate interaction (indeed this was the “golden ring”
of leadership theory in the twentieth century), or interaction can dominate
management (as in mob behavior). However, complexity theory suggests that
organizational effectiveness is optimized when the three functions are appro-
priately harmonized, and that the nature of effective balance changes over
time. Management forces function best when they work with interactive dy-
namics in ways consistent with the demands of technology, and the nature
of this balance influences the particular admixture of coordinating structures
(top-down versus bottom-up versus technology driven). For example, Dell
Computer R© was driven by market considerations (technology) to take prof-
its in 2005; consequently it de-emphasized bottom-up creativity (interactive
dynamics) and emphasized efficiency (top-down controls). Dell may very well
find that, after a few years, it will need to swing the balance back in favor of
interaction dynamic and consequent innovative behaviors.

The interactive force in this organizational triptych produces optimal in-
novation and creativity. The central question, then, for knowledge organiza-
tions (or the knowledge components of organizations) that desire such traits
is, simply, how is it accomplished and how is coordination achieved with-
out compromising creativity? In the previous section, we presented behaviors
and actions that enable innovation and knowledge growth (interaction, inter-
dependency, enabling rules, indeterminate vision, etc.). The answer to these
questions then is straight forward: leaders foster these characteristics. The
following paragraphs explain by examining the role of leadership in enabling
and coordinating complex organizations.

9.5.2 The Role of Leadership in Coordinating Complex
Organizations

To address the role of leadership in fostering effective application of interactive
forces, we first ask: Why do complex social systems even need top-down lead-
ership? Ant colonies (the mascot of the American school of complexity) are
amazingly complex without board rooms and long-range plans. Birds manage
to flock without Gantt charts. Among humans, mass movements can emerge
without benefit of planning committees. Complex systems have the capacity
to coordinate themselves without input from a coordinating authority.

There are several possible answers. First, the activities of firms are far
more complex than are the activities of ants and birds, and such complexity
may be dependent on intelligent interventions, Lichtenstein. and McKelvey
[43]. Second, organizational behaviors often depend on not just adaptability,
but creative adaptability, and leadership may help enable this. Third, hu-
mans are free-will agents; their work behaviors are not controlled by genetic
dispositions, thus humans require the organizing and coordinating actions of
managers to accomplish the sort of motivation that ants and birds accom-
plish instinctively. Thus complexity in human systems is more complex that
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is that for instinctual systems, and that added complexity may contribute to
an enhanced capacity for creativity and productivity.

So leadership is important in human endeavors. The predilection of leaders,
however, is to impose their wills and to coordinate according to their personal
mental schema — to subdue complexity. For the last 100 years (starting with
Frederick Taylor), our textbooks have taught that direction and leadership are
synonymous. Complexity science redirects this perspective, and asks instead:
How can leaders coordinate complex organizations in a manner that does not
impede interactive dynamics?

At the most basic level, leaders of complexity work with followers to build
organizations that permit emergence of complex dynamics and internal co-
ordinating structures. They structure the organization to encourage interac-
tion, and they structure relationships and rules to foster interdependency.
The illustration at Microsoft has been discussed. Some organizations have
structured workspaces without office to encourage interaction, or have imple-
mented a virtual workspace to encourage interaction that is not bound by
geography. Leaders allocate budgets to encourage entrepreneurialship within
the firm. They find ways to permit organizational dynamics to solve coordi-
nation problems (such as scheduling, task allocation, and organizing) rather
than micromanaging their solution, see Bonabeau and Meyer [13].

Leaders of complexity act as advocates and symbols that define the func-
tions and perceptual boundaries of a movement; Mahatma Gandhi, for ex-
ample, defined the boundaries of the Indian movement against colonialism
relative to peaceful resistance. They coordinate by serving as rallying focal
points. They spark growth and innovation. They are agents that bond groups
and enable interactive and interdependent dynamics. Stuart Kauffman [37]
refers to such functions as “catalysts;” he proposes that catalysts are created
by a movement and are not themselves creators of movements.

Leaders of complexity coordinate by performing what J.A.Kelso [35] and
Uhl-Bien et al. [73] refer to metaphorically as the motor functions of an or-
ganization. Just as the brain functions to keep the heart and lungs operating,
leaders (in their managerial roles) serve to control underlying organizational
functions (budgeting and accounting, purchasing, hiring, etc.) required to keep
an organization functioning.

Positional leaders are the agents by which organizational strategy —
the balance between technological, managerial, and interactive forces — is
changed. Thus, leaders may signal a need to shift organizational fitness strate-
gies if they perceive current strategies are moving out of sync with the envi-
ronment. They may, for example, perceive a need to shift into an efficiency,
profit-taking mode thus consolidating the advances of a previous, knowledge-
producing (complexity) mode (what C.Thomas et al. [20], and Uhl-Bien et
al. [73], call oscillation). Boal and Hooijberg [11] argue that this requires that
leaders develop wisdom, or sound judgment about when change is needed.

Finally, drawing from the European perspective of complexity, top-down
leaders manipulate certain variables — what Haken [29] calls control parame-
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ters — in order to force organizations into a complex state (Prigogine [64]’s,
far-from-equilibrium). Complex states possess such levels of pent up energy
that phase transition, or new order, is inevitable. Thus leaders from the Eu-
ropean perspective are agents, progenitors, in fostering complexity.

9.6 Emergence

Emergence is a function of the nature of recursive causation in complex sys-
tems (recursive logic was introduced earlier as a core paradigmatic feature of
complexity). According to the recursion perspective, events emerge from com-
plex interactive dynamics involving neural-like networks of adaptive agents.
That is, emergent events are products of unpredictable combinations and re-
combinations among interdependent agents. Networked, interdependent inter-
actions pressure agents to adapt to shifting constraint landscapes (see earlier
discussion of conflicting constraints) by elaborating their structures (Kauff-
man [37]). Emergence occurs when sets of agents, pressured and coordinated
by constraints and visions and rules, begin to “resonate in sync” with one
another. Emergence is the appearance of mob behavior after a local sports
team defeats a rival, or the “implosion” of various technologies in 1975 from
which the microcomputer emerged (Anderson [1], Marion [47]). Emergence is
unpredictable and nonlinearly related to its input causes. The logic of recur-
sion focuses on the mechanisms of emergence rather than relationships among
variables, thus research in complexity examine such things as the changing
nature of complex systems, Parunak et al. [60], or the effect of perturbations
on a complex network, Carley and Hill [19].

The European perspective of emergence is a bit different. As noted earlier
and only briefly revisited here, tension pushes a system away from equilibrium;
at a point that Prigogine [64] has called far-from-equilibrium, the tension is
dissipated by phase transition, or emergence.

There is a more subtle, and important difference between the American
and European schools, however. From the American perspective, emergences
is largely a function of internal dynamics and no external work is required to
make it happen (Darwin’s environmental selection is an example of external
work — selection by an environment — performed on internal dynamics —
mutations — to produce new structure). The European perspective proposes
that external agents create tension in a system via control parameters; thus
this perspective requires some degree of work to produce emergent events.
Applied to organizations, the European perspective is an argument for direct
input by formal authority while the American perspective calls for more in-
direct input. That is, the American school perspective proposes that leaders
create conditions in which emergence can occur (interdependency, rules, etc);
the European perspective proposes that leaders exert work to create tension
and thus enable emergence.
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I propose a blended model in which leaders both create tension and create
enabling conditions. Both hierarchical authority and interactive dynamics are
realities of social organization, and to limit social action to one or the other
would be to deny the full capacity of human organizations for creativity and
productivity. Human networks can indeed produce order for free, but they
have the advantage of intelligent actions by formal leaders. The trick, as stated
in several ways in this paper, is to make the two dynamics, interaction and
hierarchy, work together to create useful complex dynamics.

9.7 Motivation

Coordination, productivity, and motivation are three major challenges for
businesses. From the complexity perspective, all three assume a vastly differ-
ent complexion than one normally finds in the leadership literature. This is
attributable primarily to the interactive nature of complexity. In traditional
perspectives, the top-down leader is responsible for these functions; from the
complexity perspective, they are built in to the interactive structure.

Motivation is a function of some of the same dynamics that contribute to
coordination. Motivation, for example, is a function of networks of interde-
pendent relationships in which individuals are responsible to each other for
productivity. That is, complex systems are structured such that agents pres-
sure one another to produce. Performance pressure is enhanced by enabling
rules that require interdependent actions (e.g., Microsoft’s rule that program-
mers must run their code together periodically and correct any problems;
Cusumano [21].

Motivation is enhanced by adaptive tension, or pressure to act (Haken [29],
McKelvey [52]). Tension, discussed earlier as a role of leaders of complexity,
pushes an organization to a far-from-equilibrium state where phase transitions
occur to release pressures. One of the more famous examples of adaptive
tension was perpetuated by Jack Welch, who told his employees at GE that
they had to be number one or number two in their respective fields or be
canceled, Tichy and Sherman [71]. Adaptive tension in complex organizations
specifies an indeterminate rather than determinate future state so that phase
transitions can produce creative outcomes.

Individuals or groups can be motivated by allocating resources to follow
entrepreneurial behavior rather than just allocating resources to fund given
functions (Bonabeau and Meyer [13]). Any given organization must fund core
functions, of course; complexity theory suggests that extra resources be allo-
cated to functions/departments which demonstrate exceptional activity. The
principle is simple; the organization supports behaviors that exhibit motivated
initiative.

There is a bit of a trap in this strategy that must be finessed, however.
Arthur [2], see also Marion [47], argues that success begets further success:
Growth is product of increasing returns, and growth shuts out competition
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(contrary to free market philosophy). Dominating ideas offer stability, effec-
tiveness, efficiency, and profits, thus growth dynamics should be encouraged
by any given organization. At the same time, complex organizations must also
foster competitive ideas, and a policy of allocating resources only to success-
ful programs inhibits development of new ideas. If funding follows exceptional
activity rather than merely following success, this problem is ameliorated.
That is, complex organizations support entrepreneurial behaviors in addition
to supporting successful strategies.

Motivation is fostered by transformational leadership strategies (Avolio
and Bass [3], Avolio and Bass [4]. Bass and Avolio [7], J.A.Conger [34], Hunt
[33]). Transformational leadership theory proposes that the leader looks for
“potential motives in followers, seeks to satisfy higher needs, and engages the
full person of the follower” (Burns [16]: 4), thus transforming followers into
self-motivated “leaders” and creating a culture of organizational effectiveness
(Bass [6]). The goal is to transform the worker’s sense of meaning to one that
is productive for the organization (Bryman [15]) — to lead followers in such
a way that they willingly embrace the goals of the organization. Transforma-
tional leadership is “predicated upon the inner dynamics of a freely embraced
change of heart in the realm of core values and motivation” (Bass and Stei-
dlmeier [8]: 192). Transformational leaders accomplish this with charisma, in-
dividualized consideration, inspiration, and intellectual stimulation, Bass and
Avolio [7].

Complexity theory adds an important caveat, however: Complexity lead-
ership accomplishes transformation with heterogeneous, rather than unitary,
vision. Transformational leadership focuses on centralized visions of the fu-
ture. Bass [6], a central figure in the transformational leadership movement,
argued that “The transforming leader provides followers with a cause around
which they can rally” (p. 467). Avolio et al. [5] add that “one of the authentic
leader’s [a recent mutation of transformational leadership] core challenges is
to identify followers’ strengths · · · while linking them to a common purpose
or mission” (p. 806). Berson and Avolio (2004) are even more explicit:

“A core responsibility for organizational leaders is to direct followers to-
wards achieving organizational purposes by articulating the organization’s
mission, vision, strategy, and goals, Zaccaro and Klimoski [77]. Leaders at all
levels are responsible for the dissemination of strategic organizational goals, as
well as for convincing their constituents to effectively implement those goals.
Canella and Monroe [18] indicated that transformational leaders form rela-
tionships with followers that may make it easier for them to disseminate and
implement strategic goals” (p. 626).

Complexity theory seeks to enable and enhance creativity, and the cen-
tralized visioning that is at the core of transformational leadership inhibits
this important function. Core visions limit the expression of creativity to the
capacity of the leaders that generate the vision. As McKelvey, paraphrasing
Yaneer Bar Yam, argued when a central individual (or vision) creates direc-
tion for an organization, that organization can be no more creative, no more
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intelligent, than that one individual/vision is capable of being (McKelvey et
al. [53]).

Complex organizations instead embrace heterogeneous vision. Heteroge-
neous vision refers to diverse visions and aspirations of multiple agents.
Heterogeneous visions interact interdependently across a neural network of
sometime conflicting, sometime congruous visions. Such interactions pressure
agents to elaborate their visions and to form vision alliances. Networks of
interacting visions adapt and change as organizational knowledge and envi-
ronmental contexts change and develop. Unlike centralized, leader-determined
visions, networked, heterogeneous visions are dynamic, organically growing,
thus such networks can adjust quickly to hyper-turbulent environments. Im-
portantly, these dynamics enable and produce knowledge and creativity much
more robustly than do centralized, top-down structures.

9.8 Definition of Leadership

All this begs the question, “What is leadership?” The definitive or final de-
finition of leadership doesn’t exist, for definitions are dependent on one’s
perspective of what leaders do and how organizations function — that is,
it is dependent on one’s paradigm of organization. Bryman [15] identifies
two general categories of leadership definitions: The first defines leadership
in terms of influencing workers to achieve organizational goals (management
of influence); the second defines leadership relative to focusing worker sense
of meaning (e.g., transformational leadership). Both influence and meaning
models tend to orient toward top-down influence over interpersonal relation-
ships, and involve creating a “will” or “energy’ to perform in productive ways.
Consequently, traditional leadership definitions can be summarized as the
creation of organizational energy (productive activity) through charisma, in-
telligence, interpersonal consideration, inspiration, force, authority, etc. The
process of creating such energy is a top-down process that is vested heavily
in hierarchical authorities.

The complexity paradigm suggests a dramatically different definitional
category that can be labeled, management of emergence. Positional leader-
ship in complex organizations focuses more on creating conditions that enable
emergence of distributed leadership than it does on directing worker behav-
iors (Uhl-Bien et al. [73]). Positional leaders accomplish this by maneuvering
structures, organizational patterns, enabling rules, tension, and motivation in
order to foster interactive sources of energy. By fostering energy, a second
level of leadership can emerge, one that is dispersed across authority levels.
“Energy” is defined as inter-influence behaviors that contribute to or foster
knowledge and creativity. For example, when two individuals interact over
divergent ideas and create new understanding or knowledge, then an instance
of distributed, or interactive, leadership occurs. These “energic bits” interact
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with other “energic bits” within complex networks of interdependent interac-
tion to create emergent organizational knowledge and innovation.

Leadership, then, occurs at two levels in complex organizations: at an en-
abling level conducted largely by agents in positional roles, and as a behavior
that emerges among individuals and groups across the organization. Conse-
quently, complexity leadership is defined as (a) actions that foster conditions
which enable complex dynamics, and (b) the energy-expanding activities that
emerge across the organization under given enabling conditions.

9.9 Complexity versus Top-Down?

Complexity would seem to pose an alternative to formal structured organi-
zation. Indeed it is tempting to conceptualize elements of social dynamics
as top-down versus bottom-up opposites — formal structure versus infor-
mal complexity in organizations, Western authority structures versus East-
ern Taoism, MS Window’s closed structure versus Linux’s open structure,
standing armies versus guerilla warfare. But such dichotomies over-simplify
reality. Both dynamics — top-down and bottom-up — coexist because both
are necessities. They are interdependent, often embedded within one another
(executive groups are simultaneously authority-oriented and interactive), and
inter-supportive (e.g., top-down structures in organizations support complex-
ity by managing routine tasks and organizing spaces and work processes to
enable interactive dynamics).

The relative dominance of top-down and bottom-up dynamics in organiza-
tions is dependent on technological and managerial forces. Managerial forces
include personal preferences of authorities (managers who are driven to be in
control will tend toward top-down). Technological forces are related to what
needs to be accomplished. Generally, knowledge oriented processes demand a
more bottom-up structure while commodity-based processes require a more
top-down structure.

More general questions of social complexity (Windows versus Linux,
democracy versus totalitarianism, structured militaries versus guerilla forces)
are evaluated in a similar manner. The nature of a given phenomenon is heav-
ily dependent on contextual conditions — the beliefs and dispositions of the
people involved, the available resources, and the nature of tasks to be per-
formed. The strongest strategy is a context-appropriate mix of complexity
and top-down coordination. Based on this, we can tentatively address “ver-
sus” questions. Will democracy be able to defeat terrorism? The answer will
depend on which side is the more robust (adaptive, complex) and has the
top-down capacity to enable and support that robust dynamic. Will Win-
dows or Linux dominate the future of computing, or will democracy defeat
totalitarianism? Again the same answer applies.

Complexity helps explain the processes by which a system optimizes its
strategic fitness, but the very nature of dynamic systems precludes predictions
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about its future. One can say, however, that the more robust a system (char-
acterized by both complexity and top-down coordination), the more likely it
will succeed. As Ross Ashby put it in the late 1950s. it takes variety to defeat
variety.

9.10 Conclusions

The core differences between traditional perspectives of organization and a
complexity perspective can be summarized in terms of perspective. That is,
both traditional and complexity theorists are looking at the same entity (the
organization) but seeing different things. This is the essence of a paradigm
shift: seeing phenomena from a dramatic new angle.

Complexity theorists metaphorically turn the organization over and ob-
serve dynamics occurring below the radar of perspectives that define orga-
nizations in terms of CEOs, strategic planning, and power. Thus traditional
theorists perceive unstructured social elements that need to be structured by
top-down, intelligent leadership; complexity theorists perceive the value of
those unstructured social elements for producing innovation and knowledge.
Traditional theorists devise strategies for upper echelon authorities (Ham-
brick and Mason [30]); complexity theorists devise strategies to capitalize on
interactive dynamics. Traditional theorists seek to plan the future; complexity
theorists seek unplanned, creative futures.

Organizations are neural networks that can produce knowledge and inno-
vations if effectively led and organized. Complexity offers tools for managing
the globalized, hyper-turbulent economy of the 21st century. It offers viable
alternatives to bureaucracies. It offers new ways of understanding leadership.
Complexity is not the do-all of organizational science and theorists in the
field must carefully avoid the implication that this, at last, is the unified field
theory of social dynamics. This science does, however, expand understanding
of organizational behavior in a rather significant way.
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Summary. In this paper we employ the topological-multifunctional mathematical
language and techniques of non-injective illposedness developed in [30] to formulate
a notion of ChaNoXity — Chaos, Nonlinearity, Complexity — in describing the
specifically nonlinear dynamical evolutionary processes of Nature. Non-bijective ill-
posedness is the natural mode of expression for chanoxity that aims to focus on the
nonlinear interactions generating dynamical evolution of real irreversible processes.
The basic dynamics is considered to take place in a matter-negmatter (regulat-
ing matter, defined below) kitchen space X × X of Nature that is inaccessible to
both the matter (X) and negmatter (X) components. These component spaces are
distinguished by opposing evolutionary directional arrows and satisfy the defining
property

(∀A ⊆ X, ∃A ⊆ X) s.t. (A ∪ A = ∅).
Dynamical equilibrium is considered to be represented by such competitively collab-
orating homeostatic states of the matter-negmatter constituents of Nature.

The reductionist approach to science today remains largely the dominant
model. It fosters the detailed study of limited domains in individual

subdisciplines within the vast tree of science. However, over the past 30
years or so, an alternative conceptual picture has emerged for the study of

large areas of science which have been found to share many common
conceptual features, regardless of the subdiscipline, be it physics, chemistry

or biology. Self-organization and complexity are the watchwords for this new
way of thinking about the collective behaviour of many basic but interacting
units. In colloquial terms, we are talking about systems in which ’the whole

is greater that the sum of parts’.

Complexity is the study of the behaviour of large collection of such simple,
interacting units, endowed with the potential to evolve with time. The

complex phenomena that emerge from the dynamical behaviour of these
interacting units are referred to as self-organizing. More technically,

self-organization is the spontaneous emergence of non-equilibrium structural
reorganizations on a macroscopic level, due to the collective interactions
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between a large number of (usually simple) microscopic objects. Such
structural organizations may be of a spatial, temporal or spatio-temporal

nature, and is thus an emergent property.

For self-organization to arise, a system needs to exhibit two properties: it
must be both dissipative and nonlinear. Self-organization and complexity are
essential scientific concepts for understanding integrated systems whether in
physics, biology or engineering · · · with a much more ’holistic’, yet equally

rigorous, scientific perspective compared with the reductionist methods, and
so provide new insights into many of the more intellectually challenging

concepts, including the large-scale structure of the Universe, the origin and
evolution of life on Earth (and more widely in the cosmos), consciousness,

intelligence and language.

There is, therefore, a general and conceptual framework for the description
of self-organizing phenomena, of a theoretical and essentially mathematical
nature. This more or less boils down to the theory of nonlinear dissipative

dynamical systems.

Coveney [8]

10.1 Introduction

A dissipative structure is an open, out-of-equilibrium, unstable system that
maintains its form and structure by interacting with its environment through
the exchange of energy, matter, and entropy, thereby inducing spontaneous
evolutionary convergence to a complex, and possibly chaotic, equilibrated
state. These systems maintain or increase their organization through exergy
destruction in a locally reduced entropy state by increasing the entropy of
the “global” environment of which they are a part. This paper applies the
mathematical language and techniques of non-bijective, and in particular non-
injective, ill-posedness and multifunctions introduced and developed in [30] to
formulate an integrated approach to dissipative systems involving chaos, non-
linearity and complexity (ChaNoXity), where a complex system is understood
to imply

◮ an assembly of many interdependent parts
◮ interacting with each other through competitive nonlinear collaboration
◮ leading to self -organized, emergent behaviour.1

1 Competitive collaboration — as opposed to reductionism — in the context of this
characterization is to be understood as follows: The interdependent parts retain
their individual identities, with each contributing to the whole in its own charac-
teristic fashion within a framework of dynamically emerging global properties of
the whole. A comparison with reductionism as summarized in Fig. 10.10c, shows
that although the properties of the whole are generated by the parts, the indi-
vidual units acting independently on their own cannot account for the emergent
global behaviour of the total.
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We will show how each of these defining characteristics of complexity can be
described and structured within the mathematical framework of our multi-
functional graphical convergence of a net of functions (fα). In this programme,
convergence in topological spaces continues to be our principal tool, and the
particular topologies of significance that emerge are the topology of saturated
sets and the exclusion topology. We will demonstrate that a complex sys-
tem can be described as an association of independent expert groups, each
entrusted with a specific specialized task by a top-level coordinating com-
mand, that consolidates and regulates the inputs received from its different
constituent units each working independently of the others within the global
framework of the coordinating authority, by harmonizing and combining them
into an emerging whole; thus the complexity of a system, broadly speaking, is
the amount of information needed to describe it. In this task, and depending
on the evolving complexity of the dynamics, the coordinating unit delegates
its authority to subordinate units that report back to it the data collected at
its own level of authority.

Recall that
(i) a multifunction — which constitutes one of the foundational notions of

our work — and the non-injective function are related by

f is a non-injective function ⇐⇒ f− is a multifunction (10.1.1)

f is a multifunction ⇐⇒ f− is a non-injective function.

and
(ii) the neighbourhood of a point x ∈ (X,U) — which is a generalization

of the familiar notion of distances of metric spaces — is a nonempty subset
N of X containing an open set U ∈ U ; thus N ⊆ X is a neighbourhood of x
iff x ∈ U ⊆ N for some open set U of X. The collection of all neighbourhoods
of x

Nx
def
= {N ⊆ X : x ∈ U ⊆ N for some U ∈ U} (10.1.2)

is the neighbourhood system at x, and the subcollection U of U used in this
expression constitutes a neighbourhood (local) base or basic neighbourhood
system, at x. The properties

(N1) x belongs to every member N of Nx,
(N2) The intersection of any two neighbourhoods of x is another neigh-

bourhood of x: N,M ∈ Nx ⇒ N ∩M ∈ Nx,
(N3) Every superset of any neighbourhood of x is a neighbourhood of x:

(M ∈ Nx) ∧ (M ⊆ N) ⇒ N ∈ Nx

characterize Nx completely and imply that a subset G ⊆ (X,U) is open iff
it is a neighbourhood of each of its points. Accordingly if Nx is an arbitrary
collection of subsets of X associated with each x ∈ X satisfying (N1)− (N3),
then the special class of neighbourhoods G

U = {G ∈ Nx : x ∈ B ⊆ G for some B ∈ Nx and each x ∈ G} (10.1.3)
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defines a unique topology on X containing a basic neighbourhood B at each
of its points x for which the neighbourhood system is the prescribed collection
Nx. Among the three properties (N1) − (N3), the first two now re-expressed
as

(NB1) x belongs to each member B of Bx.
(NB2) The intersection of any two members of Bx contains another mem-

ber of Bx: B1, B2 ∈ Bx ⇒ (∃B ∈ Bx : B ⊆ B1 ∩B2).

are fundamental in the sense that the resulting subcollection Bx of Nx gener-
ates the full system by appealing to (N3). This basic neighbourhood system,
or local base, at x in (X,U) satisfies

Bx
def
= {B ∈ Nx : x ∈ B ⊆ N for each N ∈ Nx} (10.1.4)

which reciprocally determines the full neighbourhood system

Nx = {N ⊆ X : x ∈ B ⊆ N for some B ∈ Bx} (10.1.5)

as all the supersets of these basic elements.
The topology of saturated sets is defined in terms of equivalence classes

[x]∼ = {y ∈ X : y ∼ x ∈ X} generated by a relation ∼ on a set X; the
neighbourhood system Nx of x in this topology consists of all supersets of
the equivalence class [x]∼ ∈ X/ ∼. In the x-exclusion topology of all sub-
sets of X that exclude x (plus X, of course), the neighbourhood system of
x is just {X}. While the first topology provides, as in [30], the motive force
for an evolutionary direction in time, the second will define a complementary
negative space X of (associated with, generated by) X, with an oppositely
directed evolutionary arrow. With dynamic equilibrium representing a state
of homeostasis2 between the associated opposing motives of evolution, equi-
librium will be taken to mark the end of a directional evolutionary process
represented by convergence of the associated sequence to an adherence set.
2 Homeostasis (Greek, homoio-: same, similar; stasis: a condition of balance among

various forces, literally means “resistance to change”) is the property of an open
system to maintain its structure and functions by means of a multiplicity of
dynamical equilibria rigorously controlled by interdependent regulation mecha-
nisms. Homeostatic systems by opposing changes to maintain internal balance —
with failure to do so eventually leading to its death and destruction — represent
the action of negative feedbacks in sustaining a constant state of equilibrium by
adjusting its physiological processes.

Examples: (a) Homeostasis is the fundamental defining character of a healthy
living organism that allows it to function more efficiently by maintaining its in-
ternal environment within acceptable limits in competitive collaboration with its
environment: the internal processes are regulated according to need. With respect
to a parameter, an organism may maintain it at a constant level regardless of the
environment, while others can allow the environment to determine its parameter
through behavioral adaptations. It is the second type that is relevant for home-
ostasy. (b) The gravitational collapse of a cloud of interstellar matter raises its
temperature until the nuclear fuel at the center ignites halting the collapse. The
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Let f : X → Y be a function and f− : Y →→ X its multi-inverse: hence
ff−f = f and f−ff− = f− although f−f �= 1X and ff− �= 1Y necessarily.
Some useful identities for subsets A ⊆ X and B ⊆ Y are shown in Table
10.1, where the complement of a subset A ⊆ X is denoted by Ac = {x : (x ∈
X −A)∧ (x �∈ A)}. Let the f-saturation of A and the f-component of B on the
image of f

Sf (A) = f−f(A)

Cf (B) = ff−(B) = B
⋂
f(X)

define generalizations of injective and surjective mappings in the sense that
any f behaves one-one and onto on its saturated and component sets respec-
tively; in particular f is injective iff Sf (A) = A for all subsets A ⊆ X and
surjective iff B = Cf (B) for all B ⊆ Y . It is possible therefore to replace each
of the relevant assertions of Table 10.1 with the more direct injectivity and
surjectivity conditions on f . Indeed

f(x) = y =⇒ f(f−f(x)) = y = ff−(y)

=⇒ f(Sf (x)) = Cf (y) (10.1.6a)

x = f−(y) =⇒ f−f(x) = [x] = f−(ff−(y))

=⇒ Sf (x) = f−(Cf (y)) (10.1.6b)

demonstrate the bijectivity of f : Sf (x) → Cf (y); hence in the bijective inverse
notation the corresponding functional equation takes the form

f(Sf (A)) = Cf (B) ⇐⇒ Sf (A) = f−1(Cf (B)). (10.1.7)

This significant generalization of bijectivity of functions is noteworthy because
our notion of chaos and complexity is based on ill-posedness of non-bijective
functional equations, and one of the principal objectives of this work is to
demonstrate that the natural law of entropy increase is caused by the urge of
the system f(x) = y to impose an effective state of uniformity throughout X
by the generation of saturated and component open sets.

All statements of the first column of the table for saturated sets A =
Sf (A) apply to the quotient map q; observe that q(Ac) = (q(A))c. Moreover
combining the respective entries of both the columns, it is easy to verify the
following results for the saturation map Sf on saturated sets A = Sf (A).

(a) Sf (∪Ai) = ∪Sf (Ai): The union of saturated sets is saturated.

consequent thermal pressure gradient of expansion inhibits the dominant grav-
itational force of compression resulting in the birth of a star that is a state of
dynamical equilibrium between these opposing forces.

Homeostasis, as the ability or tendency of an organism or cell to maintain
internal equilibrium by adjusting its physiological processes, will be used in this
work to denote a state of dynamical equilibrium among various forces acting on
the system.
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f : X → Y f− : Y →→ X

1 A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2) B1 ⊆ B2 ⇒ f−(B1) ⊆ f−(B2)

⇐ iff A = Sf (A) ⇐ iff B = Cf (B)

f(A) ⊆ B ⇔ A ⊆ f−(B) f(A) ⊆ B ⇔ A ⊆ f−(B)

2 B ⊆ f(A) ⇒ f−(B) ⊆ A B ⊆ f(A) ⇐ f−(B) ⊆ A

iff A = Sf (A) iff B = Cf (B)

f−(∅) = ∅
3 A = ∅ ⇔ f(A) = ∅ f−(B) = ∅ ⇒ B = ∅

iff B = Cf (B)

4 f(A1) ∩ f(A2) = ∅ ⇒ f−(B1) ∩ f−(B2) = ∅ ⇐
A1 ∩A2 = ∅ ⇐ iff A = Sf (A) B1 ∩B2 = ∅ ⇒ iff B = Cf (B)

5 f(∪αAα) = ∪αf(Aα) f−(∪αBα) = ∪αf
−(Bα)

6 f(∩αAα) ⊆ ∩αf(Aα), “=” iff A = Sf (A) f−(∩αBα) = ∩αf
−(Bα)

7 f(Ac) = (f(A))c ∩ f(X) iff A = Sf (A) f−(Bc) = ((f−(B))c

Table 10.1. The role of saturated and component sets in a function and its inverse;
here A = Sf (A) and B = Cf (B) are to be understood to hold for all subsets A ⊆ X
and B ⊆ Y , with the conditions ensuring that f is in fact injective and surjective
respectively. Unlike f , f− preserves the basic set operations in the sense of 5, 6, and
7. This makes f− rather than f the ideal instrument for describing topological and
measure theoretic properties like continuity and measurability of functions.

(b) Sf (∩Ai) = ∩Sf (Ai): The intersection of saturated sets is saturated.
(c) X − Sf (A) = Sf (X − A): The complement of a saturated set is satu-

rated.
(d) A1 ⊆ A2 ⇒ Sf (A1) ⊆ Sf (A2)

(e) Sf (∩Ai) = ∅ ⇒ ∩Ai = ∅.
While properties (a) and (b) lead to the topology of saturated sets, the

third makes it a complemented topology when the (closed) complement of
an open set is also an open set. In this topology there are no boundaries
between sets which are isolated in as far as a sequence eventually in one of
them converging to points in the other is concerned.

As the guiding incentive for this work is an understanding of the precise
role of irreversibility and nonlinearity in the dynamical evolution of (irre-
versible) real processes, we will propose an index of nonlinear irreversibility
in the kitchen space X × X of Nature, wherein all the evolutionary dynam-
ics are postulated to take place. The physical world X is only a projection
of this multifaceted kitchen that is distinguished in having a complementary
“negative” component X interacting with X to generate the dynamical reality
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perceived in the later. This nonlinearity index, together with the dynamical
synthesis of opposites between opposing directional arrows associated with
X and its complementing negworld X, suggests a description of time’s ar-
row that is specifically nonlinear with chaos and complexity being the prime
manifestations of strongly nonlinear systems.

The entropy produced within a system due to irreversibilities within it [15]
are generated by nonlinear dynamical interactions between the system and its
negworld, and the objective of this paper is to clearly define this interaction
and focus on its relevance in the dynamical evolution of Nature.

10.2 ChaNoXity: Chaos, Nonlinearity, Complexity

10.2.1 Entropy, Irreversibility, and Nonlinearity

Here we provide a summary of the “modern” approach to entropy — which is
a measure of the molecular disorder of the system, generated as it does work:
entropy relates the multiplicity associated with a state so that if one state
can be achieved in more ways than another then it is more probable with a
larger entropy — due to De Donder [15], incorporating explicitly irreversibility
into the formalism of the Second Law of Thermodynamics3 thereby making it
unnecessary to consider ideal, non-physical, reversible processes for computing
(changes in) entropy. This follows from the original Clausius inequality

dS ≥ dQ

T

written as
dS = dS + dS, (10.2.1)

where dS is the change in the entropy of the system due to heat exchanged
by it with its exterior and dS, the “uncompensated heat” of Clausius, repre-
sents the entropy generated within the system from real irreversible processes
occurring in it. Although dS = dQ/T can be either positive or negative, dS
must always be positive due to the irreversibilities produced in the system,
implying that although entropy can either increase or decrease through en-
ergy transport across its boundary, the system can only generate and never

3 The Second Law of Thermodynamics for non-equilibrium processes essentially
requires the exergy (the maximum useful work that can be obtained from a sys-
tem at a given state in a specified environment, Eq. 10.2.2) of isolated systems
to be continuously degraded by diabatic irreversible processes that drive systems
towards equilibrium by generating entropy, eventually leading to a dead equilib-
rium state of maximum entropy. Statistically, the equilibrium state is interpreted
to represent the most probable state. For a closed system, entropy gives a quan-
titative measure of the amount of thermal energy not available to do work, that
is of the amount of unavailable energy.
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destroy entropy. In an isolated system since the energy exchange is zero, the
entropy will continue to increase due to effective irreversibilities, and reach the
maximum possible value leading to a steady state of dynamical equilibrium
in which all (irreversible) processes must cease. When the system exchanges
entropy with its surroundings, it is driven to an out-of-equilibrium state and
entropy producing irreversibilities begin to operate leading to a more probable
disordered state. The entropy flowing out of an adiabatic system must, by Eq.
(10.2.1), be larger than that flowing into it with the difference being equal
to the amount generated by the irreversibilities. The basic point, as will be
elaborated in the following, is that dissipative systems in communion with its
exterior utilize the exergy (or thermodynamic availability) to organize emerg-
ing structures within itself: for a system to be in a non-equilibrium steady
state, dS ≤ 0; hence dS must be negative of magnitude greater than or equal
to dS. The exergy

E = (U − Ueq) + P0(V − Veq) − T0(S − Seq) −
J∑

j=1

µj,0(Nj −Nj,eq) (10.2.2)

of a system is a measure of its deviation from thermodynamic equilibrium with
the environment, and represents the maximum capacity of energy to perform
useful work as the system proceeds to equilibrium, with irreversibilities in-
creasing its entropy at the expense of exergy; here eq marks the equilibrium
state, and 0 represents the environment with which the system interacts.

In postulating the existence of an entropy function S(U, V,N) of the exten-
sive parameters U , V , and {N}J

j=1 of the internal energy, volume, and mole
numbers of the chemical constituents comprising a composite compound sys-
tem that is defined for all equilibrium states, we follow Callen [4] in postulating
that in the absence of internal constraints the extensive parameters assume
such values that maximize S over all the constrained equilibrium states. The
entropy of the composite system is additive over the constituent subsystems,
and is continuous, differentiable, and increases monotonically with respect to
the energy U . This last property implies that S(U, V,N) can be inverted in
U(S, V,N); hence

dU(S, V, {Nj}) =
∂U(S, V, {Nj})

∂S
dS +

∂U(S, V, {Nj})
∂V

dV

+

J∑

j=1

∂U(S, V, {Nj})
∂Nj

dNj (10.2.3)

defines the intensive parameters

∂U

∂S

def
= T (S, V, {Nj}J

j=1), V, {Nj}held const (10.2.4)

∂U

∂V

def
= −P (S, V, {Nj}J

j=1), S, {Nj}held const (10.2.5)
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∂U

∂Nj

def
= µj(S, V, {Nj}J

j=1), S, V held const (10.2.6)

of absolute temperature T , pressure P , and chemical potential µj of the jth

component, from the macroscopic extensive ones. Inversion of (10.2.3) gives
the differential Gibbs entropy definition

dS(U, V, {Nj}) =
1

T (U, V, {Nj})
dU +

P (U, V, {Nj})
T (U, V, {Nj})

dV

−
J∑

j=1

µj(U, V, {Nj})
T (U, V, {Nj})

dNj (10.2.7)

that provides an equivalent correspondence of the partial derivatives

(∂S/∂U)V,Nj
=

1

T (U, V, {Nj})
(10.2.8)

(∂S/∂V )U,Nj
=
P (U, V, {Nj})

T
(10.2.9)

(∂S/∂Nj)U,V = −
∑J

j=1 µ(U, V, {Nj})
T

(10.2.10)

with the intensive variables of the system.
In the spirit of the Pffafian differential form, dependence of the intensive

variables of the First Law

dU(S, V, {Nj}) = dQ(S, V, {Nj}) + dW (S, V, {Nj}) + dM(S, V, {Nj})
= dQ(S, V, {Nj}) − P (S, V, {Nj}) dV

+

J∑

j=1

µj(S, V, {Nj}) dNj (10.2.11)

on the respective extensive macroscopic variables U , V , or Nj serves to de-
couple the (possibly nonlinear) bonds between them; this is necessary and
sufficient for the resultant thermodynamics to be classified as quasi-static or
reversible. These ideal states as pointed out in [4] are simply an ordered class
of equilibrium states, neutral with respect to time-reversal and without any
specific directional property, distinguished from natural physical processes
of ordered temporal successions of equilibrium and non-equilibrium states: a
quasi-static reversible process is a directionless collection of elements of an
ordered set.4 From the definition (10.2.4) of the absolute temperature T it
follows that under quasi-static conditions,

4 The most comprehensive view of irreversibility follows from the notion of a time-
(a)symmetric theory that requires the (non)existence of a backward process Pr :=
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dQ
def
= T (S) dS (10.2.12)

reduces the heat transfer dQ to formally behave work-like, permitting (10.2.11)
to be expressed in the combined first and second law form

dU(S, V, {Nj}) = T (S) dS − P (V ) dV +
J∑

j=1

µ(Nj) dNj (10.2.13a)

dS(U, V, {Nj}) =
1

T (U)
dU +

P (V )

T (U)
dV −

J∑

j=1

µ(Nj)

T (U)
dNj (10.2.13b)

which are just the integrable quasi-static versions of Eqs. (10.2.3) and (10.2.7).
Note that the total energy input and the corresponding entropy transfer in
this quasi-static case reduces to a simple sum of the constituent parts of the
change. For non quasi-static real processes, this linear superposition of the
solution into its individual components is not justified as the resulting Pfaffian
equation solves as the arbitrary U(S, V, {Nj}) = const. For any natural non-
cyclic real process therefore, the identification

dQ(S, V, {Nj}) def
= T (S, V, {Nj}) dS (10.2.14)

reduces (10.2.3) to the first law form (10.2.11) for real processes that no longer
decomposes into individual, non-interacting component parts like its quasi-
static counterpart (10.2.13a). Equation (10.2.14) is graphically expressed [15]
in the spirit of (10.2.1) as

dS =
dQ(S, V, {Nj})
T (S, V, {Nj})

=
dQ(S, V, {Nj})
T (S, V, {Nj})

+
dQ(S, V, {Nj})
T (S, V, {Nj})

= dS + dS, (10.2.15)

where the total entropy exchange is expressed as a sum of two parts: the first

{r(−t) : −tf ≤ t ≤ −ti} for every permissible forward process P := {s(t) :
ti ≤ t ≤ tf} of the theory; here r = Rs with R2 = 1, is the time-reversal of
state s. Although in contrast with mechanics thermodynamics has no equations
of motion, the second law endows it with a time-asymmetric character and a
thermodynamic process is irreversible iff its reverse Pr is not allowed by the theory,
iff time-symmetry is broken in the sense that an irreversible process cannot be
reversed without introducing some change in the surroundings, typically by work
transforming to heat. Reversible processes are useful idealizations used to measure
how well we are doing with real irreversible processes. Entropy change in the
universe is a direct quantification of irreversibility indicating how far from ideal
the system actually is: irreversibility is directly related to the lost opportunity of
converting heat to work.
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dS =
dQ
T

≷ 0 (10.2.16)

may be positive, zero or negative depending on the specific nature of energy
transfer dQ with the (infinite) exterior reservoir, but the second

dS =
dQ

T
≥ 0 (10.2.17)

representing the entropy produced by irreversible nonlinear processes within
the system is always positive. Equation (10.2.13b) for a composite body C =
A ∪ B of two parts A and B, each interacting with its own infinite reservoir
under the constraint U = UA + UB , V = VA + VB and N = NA +NB , yields
the Gibbs expression

dSC(U, V,N) =

[
1

TA
dUA +

1

TB
dUB

]
+

[
pA

TA
dVA +

pB

TB
dVB

]

−
[
µA

TA
dNA +

µB

TB
dNB

]
(10.2.18)

for the entropy exchanged by C in reaching a state of static equilibrium with its
infinite environment; here T , P and µ are the parameters of the reservoirs that
completely determine the internal state of C. This exchange of energy with
the surroundings perturbs the system from its state of equilibrium and sets up
internal irreversible nonlinear processes between the two subsystems, driving
C towards a new state of dynamic equilibrium that can be represented ([12],
[15]) in terms of flows of extensive quantities set up by forces generated by the
intensive variables. Thus for a composite dynamically interacting compound
system C consisting of two chambers A and B of volumes VA and VB filled with
two nonidentical gases at distinct temperatures, pressures, and mole numbers,
the entropy generated by nonlinear irreversible processes within the system
on removal of the partition between them, can be expressed in Gibbs form as

dSC(U, V,N) =

[
1

TA
− 1

TB

]
dUA +

[
pA

TA
− pB

TB

]
dVA −

[
µA

TA
− µB

TB

]
dNA

U = UA + UB , V = VA + VB, and N = NA +NB remain constants.
(10.2.19)

Each term on the right — a product of an intensive thermodynamic force
and the corresponding extensive thermodynamic flow — contributing to the
uncompensated heat [15] generated within the system from the nonlinear ir-
reversible interactions between its subsystems, is responsible for the increase
in entropy accompanying all natural processes leading to the eventual degra-
dation of energy in the universe to a state of inert uniformity.

The interaction of two finite subsystems is to be compared with the sta-
tic interaction between a finite system and an infinite reservoir. Contrasted
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with the later, for which the time evolution is unidirectional with the system
unreservedly acquiring the properties of the reservoir which undergoes no per-
ceptible changes resulting in the static equilibrium from passive interaction of
the system with its reservoir, the system-system interaction is fundamentally
different as it evolves bidirectionally such that the properties of the composite
are not of either of the systems, but an average of the individual properties
that defines an eventual state of dynamic interactive equilibrium. This distinc-
tion between passive and dynamical equilibria resulting respectively from the
uni- and bi-directional interactions is clearly revealed in Eqs. (10.2.18) and
(10.2.19), with bi-directionality of the later being displayed by the difference
form of the generalized forces. Accordingly, subsystems A and B have two di-
rectional arrows imposed on them: the first due to the evolution of the system
opposed by a reverse arrow arising from its interactive interaction with the
other, see Fig. 10.4. Evolution requires all macroscopic extensive variables —
and hence all the related microscopic intensive parameters — to be functions
of time so that equilibrium, in the case of (10.2.19) for example, demands

dSC

dt
= 0 =⇒

(
dUA

dt
= 0

)∧(dVA

dt
= 0

)∧(dNA

dt
= 0

)

⇐= (TA(t) = TB(t))
∧

(pA(t) = pB(t))
∧

(µA(t) = µB(t)).
(10.2.20)

While we return to this topic subsequently using the tools of directed sets
and convergence in topological spaces, for the present it suffices to note that
for an emerging, self-organizing, complex evolving system far from stable equi-
librium, the reductionist linear proportionality between cause and effect5 that
decouples the entropy change into two independent parts, one with the exte-
rior and the other the consequent internal generation as given by (10.2.15), is
open to question as these constitute a system of interdependent evolutionary
interlinked processes, depending on each other for their sustenance and con-
tribution to the whole. Thus, “life” forms in which dS, arising from the energy
exchanged as food and other sustaining modes with the exterior, depends on
the capacity dS of the life to utilize these resources, which in turn is regulated
by dS. These interdependent, non-reductionist, contributions of constituent
parts to the whole is a direct consequence of nonlinearity that effectively im-
plies f(αx1 + βx2) �= αf(x1) + βf(x2) for the related processes. The other
“non-life” example requires the change to be determined by such internal pa-
rameters as mass, specific heat and chemical concentration of the constituents
parts. Thus, for example, in the adiabatic mixing of a hot and cold body A
and B the equilibrium temperature, given in terms of the respective mole

5 Which, we recall, allows breaking up of the system into its constituent parts,
studying their micro-dynamics and putting them back together in a linear sum to
generate the macro-dynamics, thereby presuming that the macroscopic behaviour
of a system of a large number of interacting parts is directly proportional to the
character of its microscopic constituents.
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numbers N , specific heat c and temperature T , by

NAcA(TA − T ) = NBcB(T − TB) (10.2.21)

sets up a state of dynamical equilibrium in which the bi-directional evolu-
tionary arrow prevents A from annihilating B with the equilibrium condition
T = TA, P = PA, µ = µA. Putting the heat balance equation in the form

dQA + (−dQB) = 0, dQ = N cdT

suggests that the heat transfer out of a body, considered as a negative real
number, be treated as the additive inverse to the positive transfers into the
system. This sets up a one-to-one correspondence between two opposing di-
rectional real process that evolves to a state of dynamic equilibrium.

The basic feature of this evolutionary thermodynamics — based entirely
on (linear) differential calculus — is that it reduces the dynamics of Eqs.
(10.2.3) and (10.2.7) to a separation of the governing macroscopic extensive
variables, thereby raising the question of the validity of such decoupling of
the motive forces of evolution in strongly nonlinear, self-organizing, complex
dynamical systems of nature6. Such a separation of variables tacitly implies, as
in the example considered above, that the total energy exchange taking place

6 The following extracts from the remarkably explicit lecture MIT-CTP-3112 by
Michel [2], delivered possibly in 2000/2001, are worth recalling . Chaos is still not
part of the American university’s physics curriculum; most students get physics
degrees without ever hearing about it. The most popular textbook in classical
mechanics does not include chaos. Why is that? The answer is simple. Physicists
did not have the time to learn chaos, because they were fascinated by something
else. That something else was 20th century physics of relativity, quantum mechan-
ics, and their myriad of consequences. Chaos was not only unfamiliar to them; it
was slightly distasteful!

In offering an explanation for this, Baranger argues that in discovering calcu-
lus, Newton and Leibnitz provided the scientific world with the most powerful
new tool since the discovery of numbers themselves. The idea of calculus is sim-
plicity itself. Smoothness (of functions) is the key to the whole thing. There are
functions that are not smooth · · · . The discovery of calculus led to that of analysis
and after many decades of unbroken success with analysis, theorists became im-
bued with the notion that all problems would eventually yield to it, given enough
effort and enough computing power. If you go to the bottom of this belief you
find the following. Everything can be reduced to little pieces, therefore everything
can be known and understood, if we analyze it to a fine enough scale. The enor-
mous success of calculus is in large part responsible for the decidedly reductionist
attitude of most twentieth century science, the belief in absolute control arising
from detailed knowledge.

Nonetheless, chaos is the anti-calculus revolution, it is the rediscovery that cal-
culus does not have infinite power. Chaos is the collection of those mathematical
truths that have nothing to do with calculus. Chaos theory solves a wide variety
of scientific and engineering problems which do not respond to calculus.
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when the gases are allowed to mix completely is separable into independent
parts arising from changes in temperature, volume, and diffusion mixing of
the gases, with none of them having any effect on the others. Observing that
the defining property of a complex system responsible for its “complexity” is
the interdependence of its interacting parts leading to non-reductionism, this
contrary implication of independence of the extensive parameters conflicts
with the foundational tenets of chaos and complexity.

Nonetheless, it should be clear from the above considerations that a non-
isolated, “non-equilibrium” system can maintain a steady state of low entropy
not only by discarding its excess entropy to the surroundings, but more impor-
tantly by utilizing [15] a part of this generation by the nonlinearities within
itself to enhance its own state of organization consistent with the irreversibil-
ities. Thus when the heated earth at a high level of non-equilibrium insta-
bility radiates heat to the cooler atmosphere through evaporation, the earth-
atmosphere system is not scorched to the earth’s temperature but instead
stabilizes itself by “attracting, as it were, a stream of negative entropy upon
itself” [29], through condensation of the water vapour back to the earth that
essentially opposes this attempt to move the earth-atmosphere system away
from its stable equilibrium by acting a gradient dissipator of the temperature
difference. As the temperature difference increases, so does the opposition
making it more and more difficult for the system to be away from equilib-
rium. The Second Law of Thermodynamics for non-equilibrium systems —
recall footnote 3 — can accordingly be reformulated [27] to require that as
the system is forced away from thermodynamic equilibrium it utilizes every
possible avenue in “sucking orderliness from its environment” [29], to counter
the applied gradients, with its ability to oppose continued displacement in-
creasing with the gradient itself. For such systems the Second Law becomes a
law of continuity for the entropy transferred in and out of the system.

The objective of this paper is to propose an explicitly nonlinear, topological
formulation of dynamical evolution from an integrated chanoxity perspective
that focuses on nonlinearly generated self-organization, adaption, and emer-
gence of systems far from thermodynamic equilibrium. In this perspective, the
following observations of Bertuglia and Vaio [3] are worth noting.

Linear approximations become increasingly unacceptable the further away
we get from a condition of stable equilibrium. The world of classical science
has shown a great deal of interest in linear differential equations for a very
simple reason: apart from some exceptions, these are the only equations of
an order above the first that can be solved analytically. The simplicity of

linearization and the success that it has at times enjoyed have imposed the
perspective from which scientists observed reality, encouraging scientific

investigation to concentrate on linearity in its description of dynamic
processes. On one hand this led to the idea that the elements that can be
treated with techniques of linear mathematics prevail over nonlinear ones,
and on the other hand it ended up giving rise to the idea that linearity is
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intrinsically “elegant” because it is expressed in simple, concise formulae, and
that a linear model is aesthetically more “attractive” than a nonlinear one.

The practice of considering linearity as elegant encouraged a sort of
self-promotion and gave rise to a real scientific prejudice: mainly linear

aspects were studied. The success that was at times undeniably achieved in
this ambit increasingly convinced scholars that linearization was the right

way forward for other phenomena that adapted badly to linearization.

However, an arbitrary forced aesthetic sense led them to think (and at times
still leads us to think) that finding an equation acknowledged as elegant was,

in a certain sense, a guarantee that nature itself behaved in a way that
adapted well to an abstract vision of such mathematics.

Linear systems cannot generate dynamics that is sensitive to initial con-
ditions with non-repeating orbits that remain confined in a bounded region
of space. This defining character of chaos can be generated only by nonlin-
ear interactions leading to increasing unpredictability of the system’s future
with increasing time: nonlinearity produces unexpected outcomes, linearity
does not. Newtonian classical mechanics is reductionist and the solution of
the equations of motion are uniquely determined by the initial conditions for
all times.

10.2.2 Maximal Noninjectivity is Chaos

Chaos was defined in [30] as representing maximal non-injective ill-posedness
in the temporal evolution of a dynamical system and was based on the purely
set theoretic arguments of Zorn’s Lemma and Hausdorff Maximal Chain Theo-
rem. It was, however, necessary to link this with topologies because evolution-
ary directions are naturally represented by adherence and convergence of the
associated nets and filters, which require topologies for describing their even-
tual and frequenting behaviour. For this we found the topology of saturated
sets generated by the increasingly non-injective evolving maps to provide the
motivation for maximally non-injective, degenerate ill-posedness leading to the
concept of the ininality of topologies generated by a function f : X → Y that
is simultaneously image and preimage continuous. In this case, the topologies
on the range R(f) and domain D(f) of f are locked with respect to each other
as far as further temporal evolution of f is concerned by having the respective
topologies defined as the f-images in Y of f−-saturated open sets of X. Thus
Eqs. (10.1.6a, b), and (10.1.7) taken with the definitions7

7 If (fα : X → (Yα,Vα))α∈D is a family of functions into topological spaces
(Yα,Vα), then the topology generated by the subbasis {f−

α (Vα) : Vα ∈ Vα}α∈D

is the initial topology of X induced by the family (fα)α∈D. Reciprocally, if
(fα : (Xα,Uα) → Y )α∈D is a family of functions from topological spaces (Xα,Uα),
then the collection {G ⊆ Y : f−

α (G) ∈ Uα}α∈D is the final topology of Y of the
family (fα)α∈D. A topology that is both initial and final is ininal.
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IT{e;V} def
= {U ⊆ X : U = e−(V ), V ∈ V} (10.2.22a)

and
FT{U ; q} def

= {V ⊆ Y : q−(V ) = U, U ∈ U} (10.2.22b)

of initial and final topologies — that denote the coarsest (smallest) and finest
(largest) topologies in X and Y respectively making f continuous — implies
for open sets V ∈ V of Y and G ⊆ U ∈ U of X satisfying U = Sq(G) so that
q acts only on saturated open sets,

f(Sf (A)) = Cf (B)

{
IT

=⇒ (Se(U) = U) (e(U) = Ce(V ))
FT
=⇒ (q(Sq(G) = V ) (V = Cq(V ));

(10.2.23)

see also column 2, row 1 of Table 10.1. As these equations show, preimage and
image continuous functions need not be open functions: a preimage continuous
function is open iff e(U) is an open set in Y and an image continuous function
is open iff the q-saturation of every open set of X is also an open set. The
generation of new topologies on the domain and range of a function — which
will generally be quite different from the original topologies the spaces might
have possessed — by the evolving dynamics of increasingly nonlinear maps is
a basic property of the evolutionary process that constitutes the motive for
such dynamical changes. Putting implications (10.2.23) together yields

U, V ∈ IFT{U ; f ;V} ⇐⇒ (U = f−(V)) (f(U) = V) (10.2.24a)

that effectively renders both e and q open functions, and reduces to

U, V ∈ HOM{U ; f ;V} ⇐⇒ (U = f−1(V)) (f(U) = V) (10.2.24b)

for a bijection satisfying both Sf (A) = A, ∀A ⊆ X and Cf (B) = B, ∀B ⊆ Y ;
observe that the only difference between Eqs. (10.2.24a) and (10.2.24b) is in
the bijectivity of f .

There are two defining components, temporal and spatial, in any natural
evolutionary processes. However, these are equivalent in the sense that both
can be represented as pre-ordered sets with the additional directional property
of a directed set (D,)) which satisfies

(DS1) α ∈ D ⇒ α ) α () is reflexive)
(DS2) α, β, γ ∈ D such that (α ) β∧β ) γ) implies α ) γ () is transitive)
(DS3) For all α, β ∈ D, there exists a γ ∈ D such that α ) γ and β ) γ

with respect to the direction ). While the first two properties are obvious
and constitutes the preordering of D, the third replaces antisymmetry of an
order with the condition that every pair of elements of D, whether ordered
or not, always has a successor. This directional property of D, that imparts
to the static pre-order a sequential arrow by allowing it to choose a forward
path between possible alternatives when non-comparable elements bifurcate
at the arrow, will be used to model evolutionary processes in space and time.
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Besides the obvious examples N, R, Q, or Z of totally ordered sets, more exotic
instances of directed sets imparting directions to neighbourhood systems in
X tailored to the specific needs of convergence theory are summarized in
Table 10.2, where β ∈ D is the directional index. Although the neighbourhood

Directed set D Direction ) induced by D

DN = {N : N ∈ Nx} M ) N ⇔ N ⊆M

DNt = {(N, t) : (N ∈ Nx)(t ∈ N)} (M, s) ) (N, t) ⇔ N ⊆M

DNβ = {(N, β) : (N ∈ Nx)(xβ ∈ N)} (M,α) ≤ (N, β) ⇔ (α ) β) ∧ (N ⊆M)

Table 10.2. Natural directions of decreasing subsets in (X,U) induced by some
useful directed sets of convergence theory. Significant examples of directed sets that
are only partially ordered are (P(X),⊆), (P(X),⊇); (F(X),⊇); (Nx,⊆), (Nx,⊇)
for a set X, We take Nx, suitably redefined if necessary, to be always a system of
nested subsets of X.

system DN at a point x ∈ X with the reverse-inclusion direction ) is the
basic example of natural direction of the neighbourhood system Nx of x, the
directed sets DNt and DNβ are more useful in convergence theory because
unlike the first, these do not require a simultaneous application of the Axiom
of Choice to every N ∈ Nx.

Chaos as manifest in the limiting adhering attractors is a direct conse-
quence of the increasing nonlinearity of the map under increasing iterations
and with the right conditions, appears to be the natural outcome of the charac-
teristic difference between a function f and its multi-inverse f−. Equivalence
classes of fixed points stable and unstable, as generated by the saturation op-
erator Sf = f−f , determine the ultimate behaviour of an evolving dynamical
system, and since the eventual (as also frequent) nature of a filter or net is
dictated by topology on the set, chaoticity on a set X leads to a reformula-
tion of the open sets of X to equivalence classes generated by the evolving
map f . In the limit of infinite iterational evolution in time resulting in the
multifunction Φ, the generated open sets constitute a basis for a topology on
D(f) and the basis for the topology of R(f) are the corresponding Φ-images
of these equivalent classes. It follows that the motivation behind evolution
leading to chaos is the drive toward a state of the dynamical system that
supports ininality of the limit multi Φ8. In this case therefore, the open sets of

8 For the logistic map fλ(x) = λx(1 − x) with chaos setting in at λ = λ∗ =
3.5699456, this drive in ininality implies an evolution toward values of the spatial
parameter λ ≥ λ∗; this is taken to be a spatial parameter as it determines the
degree of surjectivity of fλ. Together with the temporal evolution in increasing
noninjectivity for any λ, this comprises the full evolutionary dynamics of the
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Fig. 10.1. Generation of a multifunctional inverse x = f−(y) of the functional
equation f(x) = y for f : X → X; here G : Y → XB is a generalized inverse of
f because fGf = f and GfG = G that follows from the commutativity of the
diagrams. g and h are the injective and surjective restrictions of f ; these will be
topologically denoted by their generic notations e and q respectively.

the range R(f) ⊆ X are the multi images that graphical convergence gener-
ates at each of these inverse-stable fixed points. As readily verified from Fig.
10.1, X has two topologies imposed on it by the dynamics of f : the first of
equivalence classes generated by the limit multi Φ in the domain of f and the
second as Φ-images of these classes in the range of f . Hence while subdia-
grams X− (XB,FT{U ; q})− (f(X),U2) and (XB,U1)− (f(X), IT{e;U})−X
apply to the final and initial topologies of XB and f(X) respectively, their
superposition X−(XB,FT{U ; q})−(f(X), IT{e;U})−X under the additional
requirement of a homeomorphic fB leads to the conditions U1 = IT{g;U} and
U2 = FT{U ;h} that XB and f(X) must possess. For this to be possible,

FT{U ; q} = IT{g;U}
IT{e;U} = FT{U ;h}

requires the image continuous q and the preimage continuous e to be also be
open functions which translates to the ininality of f on (X,U), and hence for
the topology of X to be simultaneously the direct and inverse images of itself
under f ; compare Eq. (10.2.24a). Since the map f and the topology U of X
are already provided, this is interpreted to mean that the increasing nonlinear

logistic map. These two distinct dynamical mechanisms of increasing surjectivity
and decreasing injectivity are not independent, however. Thus λ — which may
be taken to represent the energy exchanges of all possible types that the system
can have with the surroundings — determines the nature of the internal forward-
backward stasis that leads to the eventual equilibrium of the system with its
environment.
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ill-posedness of the time-iterates of f is driven by ininality of the maximally
“degenerate” ill-posed limit relation Φ on X2. In this case Φ acts as a non-
bijective open and continuous relation that forces the sequence of evolving
functions (fn) on X to eventually behave, by (10.1.7), homeomorphically on
the saturated open sets of equivalence classes and their fn-images in X. A
homeomorphism, by establishing an equivalence between spaces (X,U) and
(Y,V) — algebraically through bijectivity and topologically by setting up a
one-to-one correspondence between the respective open sets — renders the
spaces as “essentially the same”, with the non-bijective ininal function acting
as an effective bijection f : Sf (A) → Cf (B) for all subsets A and B between X
and Y . For a function defined on a space X, this means that, under ininality,
the domain and range spaces are “effectively the same” thereby precluding
any further interaction between them, which corresponds to a condition of
equilibrium entropic death. We define the resulting ininal topology on X to
be the chaotic topology on X associated with f . Neighbourhoods of points in
this topology cannot be arbitrarily small as they consist of all members of the
equivalence class to which any element belongs; hence a sequence converging
to any of these elements necessarily converges to all, and the eventual objective
of chaotic dynamics is to generate a topology in X (irrespective of the original
U) with respect to which elements of the space are grouped together in large
equivalence classes such that if a net converges simultaneously to points x �=
y ∈ X then x ∼ y: x is of course equivalent to itself while x, y, z are equivalent
to each other iff they are simultaneously in every open set where the net
may eventually be in. This signature of chaos eradicates existing separation
properties of the space: it makes X uniformly homogeneous and flat, devoid
of any interaction inducing inducement among its parts, signifying thereby
“death”.

The generation of a new topology on X by the dynamics of f on X is a
consequence of the topology of pointwise biconvergence T defined on the set
of relations Multi((X,U), (Y,V)), [30]. This generalization of the topology of
pointwise convergence defines neighbourhoods of f in Multi((X,U), (Y,V)) to
consist of those functions in (Multi((X,U), (Y,V)), T ) whose images at any
point x ∈ X lie not only close enough to f(x) ∈ Y (this gives the usual
pointwise convergence) but additionally whose inverse images at y = f(x)
contain points arbitrarily close to x. Thus the graph of f apart from being
sufficiently close to f(x) at x in V ∈ V, but must also be constrained such that
f−(y) has at least one branch in the open set U ∈ U about x. This requires all
members of a neighbourhood Nf of f to “cling to” f as the number of points
on the graph of f increases with the result that unlike for simple pointwise
convergence, no gaps in the graph of the limit relation is possible not only on
the domain of f but on its range too.

For a given integer I ≥ 1, the open sets of (Multi(X,Y ), T ) are

B((xi), (Vi); (yi), (Ui)) = {g ∈ Map(X,Y ) : (g(xi) ∈ Vi)∧
(g−(yi)

⋂
Ui �= ∅) , i = 1, 2, · · · , I}, (10.2.25)
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where (xi)
I
i=1 ∈ X, (yi)

I
i=1 ∈ Y , (Ui)

I
i=1 ∈ U , (Vi)

I
i=1 ∈ V are chosen arbitrar-

ily with reference to (xi, f(xi)). A local base at f , for (xi, yi) ∈ Graph(f), is
the set of functions of (10.2.25) with yi = f(xi), and the collection of all local
bases Bα = B((xi)

Iα

i=1, (Vi)
Iα

i=1; (yi)
Iα

i=1, (Ui)
Iα

i=1), for every choice of α ∈ D, is
a base TB of (Multi(X,Y ), T ); note that in this topology (Map(X,Y ), T ) is
a subspace of (Multi(X,Y ), T ).

The basic technical tool needed for describing the adhering limit relation
in (Multi(X,Y ), T ) is a generalization of the topological concept of neigh-
bourhoods to the algebraic concept of a filter which is a collection of subsets
of X satisfying

(F1) The empty set ∅ does not belong to F ,
(F2) The intersection of any two members of a filter is another member of

the filter: F1, F2 ∈ F ⇒ F1 ∩ F2 ∈ F ,
(F3) Every superset of a member of a filter belongs to the filter: (F ∈

F) ∧ (F ⊆ G) ⇒ G ∈ F ; in particular X ∈ F ,

and is generated by a subfamily (Bα)α∈D = FB ⊆ F of itself, known as the
filter-base, characterized by

(FB1) There are no empty sets in the collection FB: (∀α ∈ D)(Bα �= ∅)
(FB2) The intersection of any two members of FB contains another mem-

ber of FB: Bα, Bβ ∈ FB ⇒ (∃B ∈ FB : B ⊆ Bα ∩Bβ).

Hence any family of subsets of X that does not contain the empty set and
is closed under finite intersections is a base for a unique filter on X, and the
filter-base

FB def
= {B ∈ F : B ⊆ F for each F ∈ F} (10.2.26)

determines the filter

F = {F ⊆ X : B ⊆ F for some B ∈ FB} (10.2.27)

as all its supersets. Since filters are purely algebraic without any topolog-
ical content, to use it as a tool of convergence, a comparison of (F1)-(F3)
and (FB1)-(FB2) with (N1)-(N3) and (NB1)-(NB2) of Sec. 10.1 show that
the neighbourhood system Nx at x is the neighbourhood filter at x and any
local base at x is a filter-base for Nx and generally for any subset A of X,
{N ⊆ X : A ⊆ Int(N)} is a filter on X at A. All subsets of X containing a
point p ∈ X is the principal filter FP(p) on X at p, and the collection of all
supersets of a nonempty subset A of X is the principal filter FP(A) at A. The
singleton sets {{x}} and {A} are particularly simple examples of filter-bases
that generate the principal filters at {x} and A; other useful examples that
we require subsequently are the set of all residuals

Res(D) = {Rα : Rα = {β ∈ D : α ) β}}
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of a directed set D, and the neighbourhood systems Bx and Nx. By adjoining
the empty set to the principal filters yields the p-inclusion and A-inclusion
topologies on X respectively9.

The utility of filters in describing convergence in topological spaces is be-
cause a filter F on X can always be associated with the net χF : DFx → X
defined by

χF (F, x)
def
= x (10.2.28)

where DFx = {(F, x) : (F ∈ F)(x ∈ F )} is the directed set with direction
(F, x) ) (G, y) ⇒ (G ⊆ F ); reciprocally a net χ : D → X corresponds to the
filter-base

FBχ
def
= {χ(Rα) : Res(D) → X for all α ∈ D}, (10.2.29)

with the corresponding filter Fχ being obtained by taking all supersets of
the elements of FBχ. Filters and their bases are extremely powerful tools for
maximal, non-injective, degenerate ill-posedness in the context of the algebraic
Hausdorff Maximal Principle and Zorn’s Lemma, that is now summarized
below10.

Let f be a noninjective function in Multi(X) and I(f) be the number of
injective branches of f and let

F = {f ∈ Multi(X) : f is a noninjective function on X} ∈ P(Multi(X))

be the collection of all noninjective functions on X satisfying the properties

(a) For every α ∈ D, F has the extension property

(For any fα ∈ F )(∃fβ ∈ F ) : I(fα) ≤ I(fβ).

Define a partial order ) on Multi(X) as

I(fα) ≤ I(fβ) ⇐⇒ fα ) fβ , (10.2.30)

with I(f) := 1 for the smallest f . This is actually a preorder on Multi(X) in
which all function with the same number of injective branches are equivalent

9 A filter is almost a topology: both are closed under finite intersections and ar-
bitrary unions, and both contain the base set X. It is only the empty set that
must always be in the topology but never in a filter; adding it to a filter makes
it a special type of topology that might be termed a filtered topology. Whereas
any arbitrary family of sets can generate a topology as its subbase through finite
intersections followed by arbitrary unions, the family must satisfy the finite inter-
section property before qualifying as a filter subbase; hence, every filter subbase
is a topological subbase but not conversely.

10 Hausdorff Maximal Principle (HMP): Every partially ordered set has a max-
imal chain.

A partially ordered set X is said to be inductive if every chain of X has an
upper bound in X.
Zorn’s Lemma: Every inductive set has at least one maximal element.
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to each other. Note that Multi(X) has two orders imposed on it: the first )
between its elements f , and the second the usual ⊆ that orders subsets of
these functional elements.

(b) Let

X = {C ∈ P(F ) : C is a chain in (Multi(X),))} ∈ P2(Multi(X)) (10.2.31)

be a collection of chains in Multi(X) with respect to the order (10.2.30) where

Cν = {fα ∈ Multi(X) : fα ) fν} ∈ P(Multi(X)), ν ∈ D, (10.2.32)

are the chains of non-injective functions where fα ∈ F is to be identified
with the iterates f i, the number of injective branches I(f) depending on i.
The chains are to be built from the smallest C0 = D the domain of f , by
application of a choice function gc that generates the immediate successor

Cj := g(Ci) = Ci

⋃
gc(G(Ci) − Ci) ∈ X

of Ci by picking one from the many

G(Ci) = {f ∈ F − Ci : {f}
⋃
Ci ∈ X}

that Ci may possibly possess. Application of g to C0 n-times generates the
chain Cn = {D, f(D), · · · , fn(D)}, and the smallest common chain

C = {Cj ∈ P(Multi(X)) : Ci ⊆ Ck for i ≤ k} ⊆ X (10.2.33)

= {D, {D, f(D)}, {D, f(D), f2(D)}, · · · } D := C0

of all the possible g-towered chains {Ci}i=0,1,2,··· of Multi(X) constitutes a
principal filter of totally ordered subsets of (Multi(X),⊆) at C0. Notice that
while X ∈ P2(Multi(X)) is a set of sets, C ∈ P(Multi(X)) is relatively simpler
as a set of elements of f ∈ Multi(X), which at the base level of the tree of
interdependent structures of Multi(X), is canonically the simplest.

To continue further with the application of Hausdorff Maximal Principle
to the partially ordered set (X ,)) of sets, it is necessary to postulate that

(i) There exists a smallest element C0 in X with no predecessor,
(ii) Every element C of X has an immediate successor g(C) in X ; hence

there is no element of X lying strictly between C and g(C), and
(iii) X is an inductive set so that every chain C of (X ,)) has a supremum

supX (C) = ∪C∈CC in X .

Any subset T of X satisfying these properties is known as a tower ; X is of
course a tower by definition. The intersection of all possible towers of X is the
towered chain C of X , Eq. (10.2.33). Criterion (iii) is especially crucial as it
effectively disqualifies (F,)) as a likely candidate for HMP: the supremum of
the chains of increasingly non-injective functions need not be a function, but
is more likely to be a multifunction. Hence X in the conditions above is the
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Fig. 10.2. Application of Zorn’s Lemma to a partially ordered set F of non-injective
functions f in Multi(X). C = {D, {D, f(D)}, {D, f(D), f2(D)}, · · · } is a chain of
towered chains of functions in Multi(X) with C0 = D, the domain of f . Notice that
to obtain a maximal Φ at the base level Multi(X), it is necessary to go two levels
higher: X ∈ P2(Multi(X)) → C ∈ P(Multi(X)) → Φ ∈ Multi(X) is a three-tiered
structure with the two-tiered HMP feeding to the third of Zorn’s Lemma.

space of relations, and it is necessary to consider C of (10.2.32) as a subset
of this Multi(X) rather than of F . The careful reader cannot fail to note
that the requirement of inductivity of X effectively leads to an “extension”
of Map(X) to Multi(X) where the supremum of the chain of non-injective
functions can possibly lie. However since this is purely in an algebraic setting
without topologies on the sets, the supremum constitutes only a static cap on
the family of equilibrium ordered states: the chains being only ordered and
not directed are devoid of any dynamical evolutionary property.

(c) The Hausdorff Maximal Principle applied to (X ,⊆) now yields

sup
C

(C) = C+ = {fα, fβ , fγ , · · · }

= {D, f(D), f2(D), · · · } = g(C+) ∈ C (10.2.34)

as the supremum of C in C, defined as a fixed-point of the tower generator g,
without any immediate successor. Identification of this fixed-point supremum
as one of the many possible maximal elements of (X ,⊆) completes the appli-
cation of Hausdorff Principle, yielding C+ as the required maximal chain of
(X ,⊆).

The technique of HMP is of interest because it presents a graphic step-wise
algorithmic rule leading to an equivalent filter description and the algebraic
notion of a chained tower. Not possessing any of the topological directional
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properties associated with a net or sequence, the tower comprises an ideal
mathematical vocabulary for an ordered succession of equilibrium states of a
quasi-static, reversible, process. The directional attributes of convergence and
adherence must be externally imposed on towered filters like C by introducing
the neighbourhood system: a filter F converges to x ∈ (X,U) iff Nx ⊆ F .

(d) Returning to the partially ordered set (Multi(X),)), Zorn’s Lemma
applied to the maximal chained element C+ of the inductive set X finally
yields the required maximal element Φ ∈ Multi(X) as an upper bound of the
maximal chain (C+,)). Because this limit need not in general be a function,
the supremum does not belong to the towered chain having it as a fixed point,
and may be considered as a contribution of the inverse functional relations
(f−α ) in the following sense. From Eq. (10.1.1), the net of increasingly non-
injective functions of Eq. (10.2.30) implies a corresponding net of decreasingly
multivalued functions ordered inversely by the relation fα ) fβ ⇔ f−β ) f−α .
Thus the inverse relations which are as much an integral part of graphical con-
vergence as are the direct relations, have a smallest element belonging to the
multifunctional class. Clearly, this smallest element as the required supremum
of the increasingly non-injective tower of functions defined by (10.2.30), serves
to complete the significance of the tower by capping it with a “boundary” ele-
ment that can be taken to bridge the classes of functional and non-functional
relations on X.

Having been assured of the existence of a largest element Φ ∈ Multi(X),
we now proceed to construct it topologically. Let (χi := f i(A))i∈N for a subset
A ⊆ X that we may take to be the domain of f , correspond to the ordered
sequence (10.2.30). Using the notation of (10.2.29), let the sequences χ(Ri) =
∪j≥if

j(A) for each i ∈ N generate the decreasingly nested filter-base

FBχ =




⋃

j≥i

f j(A)





i∈N

=




⋃

j≥i

f j(x)





i∈N

, ∀x ∈ A, (10.2.35)

corresponding to the sequence of functional iterates (f j)j≥i∈N. The existence
of a maximal chain with a maximal element guaranteed by the Hausdorff
Maximal Principle and Zorn’s Lemma respectively implies a nonempty core
of FBχ. We now identify this filterbase with the neighbourhood base at Φ and
thereby define

Φ(A)
def
= adh( FBχ)

=
⋂

i≥0

Cl(Ai), Ai = {f i(A), f i+1(A), · · · } (10.2.36)

as the attractor of A, where the closure is with respect to the topology of point-
wise bi-convergence induced by the neighbourhood filter base FBχ. Clearly the
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attractor as defined here is the graphical limit of the sequence of functions
(f i)i∈N with respect to the directed sets of Table 10.2. This attractor repre-
sents, in the product space X ×X, the converged limit of the bi-directional
evolutionary dynamics occurring in the kitchen X×X that induces the image
Φ(A) in X. The exclusion space X is not directly observable, being composed
of complementary negelements x that correspond in an unique, one-to-one
fashion to the corresponding defining observables x ∈ X, just as the negative
reals — which are not physically directly observable either — are attached in
a one-to-one fashion with their corresponding defining positive counterparts
by

r + (−r) = 0, r ∈ R+. (10.2.37)

The exclusion space (X,U) introduced next is necessary for the understanding
of bi-directional evolutionary process responsible for a synthesis of opposites
of two sub-systems competitively collaborating with each other. The basic
example of an exclusion space is the negative reals with a forward arrow of
the decreasing negatives resulting from an exclusion topology U− generated
by the topology U+ of the observable positive reals R+. This generalization
of the additive inverse of the real number system to sets follows.

The Negative Exclusion Space of a Topological Space

Postulate NEG-1. The Negative X of a set X.11 Let X be a set and
suppose that for every x ∈ X there exists a negative element x ∈ X with the
property that

X
def
= {x : {x}⋃ {x} = ∅} (10.2.38a)

defines the negative, or exclusion, set of X. This means that for every subset A
of X there is a complementary neg(ative)set A ⊆ X associated with (generated
by) it such that

A
⋃

G
def
= A−G, G←→ G, (10.2.38b)

implies A∪A = ∅. Hence a neg-set and its generating set act as relative disci-
pliners of each other in restoring a measure of order in the evolving confusion,
disquiet and tension, with the intuition of the set-negset pair “undoing”, “con-
trolling”, or “stabilizing” each other. The complementing neg-element is an
unitive inverse of its generating element, with ∅ the corresponding identity
and G the physical manifestation of G. Thus for r > s ∈ R+, the physical
manifestation of any −s ∈ R+(≡ R−) is the smaller element (r − s) ∈ R+.

As compared with the directed set (P(X),⊆) that induces the natural di-
rection of decreasing subsets of Table 10.2, the direction of increasing supersets
induced by (P(X),⊇) — which understandably finds no ready application in
convergence theory — proves useful in generating a co-topology U− on (X,U+)
as follows. Let (x0, x1, x2, · · · ) be a sequence in X converging to x∗ ∈ X with

11 These quantities will be denoted by fraktur letters.
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reference to any of the reverse-inclusion directions of decreasing neighbour-
hoods of Table 10.212, and consider the backward arrow induced at x∗ by the
directed set (P(X),⊇) of increasing supersets at x∗. As the reverse sequence
(x∗, · · · , xi+1, xi, xi−1, · · · ) does not converge to x0 unless it is eventually in
every neighbourhood of this initial point, we employ the closed-open subsets

Ni −Nj =

{
(Ni −Nj)

⋂
Ni, (open)

(Ni −Nj)
⋂

(X −Nj) (closed)
(10.2.39)

(j > i) in the inclusion topology U+ of X with xi ∈ Ni −Ni+1, Ni ∈ Nx∗
, to

define an additional exclusion topology U− on (X,U+) as follows. First recall
that whereas the x-inclusion topology U+ of X comprises, together with ∅,
all subsets of X that include x with the neighbourhood system Nx being
just these non-empty subsets of X, the x-exclusion topology is, along with X,
all the subsets P(X − {x}) that exclude x. The A ⊆ X exclusion topology
{P(X−A), X} therefore consists of all subsets ofX that do not intersect A and
the (X−A)-exclusion topology {P(A), X} comprises, withX, only the subsets
of A. Since Nx = {X} and Ny �=x = {{y}} are the neighbourhood systems at
x and any y �= x in the x-exclusion topology, it follows that while every net
must converge to the defining point of its own topology, only the eventually
constant net {y, y, y, · · · } converges to any y �= x13. The exclusion topology
of x therefore has the remarkable property of compelling every other element
of X to either submit to the dictum of x by being in its sphere of influence,
or else to effectively isolate any other member of X from establishing its own
sphere of influence. All directions with respect to x are consequently rendered
equivalent; hence the directions of {1/n}∞n=1 and {n}∞n=1 are equivalent in R+

as they converge to 0 in its exclusion topology, and this basic property of the
exclusion topology induces an opposing direction in X.

It is now possible to postulate with respect to the directed set DNi =
{(Ni, i) : (Ni ∈ Nx∗

)(xi ∈ Ni)} of Table 10.2 and a sequence (xi)i≥0 in
(X,U+) converging to x∗ = ∩ i≥0Cl(Ni) ∈ X, that

Postulate NEG-2. The x0-exclusion topology U− of (X,U+). There ex-
ists an increasing sequence of negelements (xi)i≥0 of X that converges to x∗ in
the x∗-inclusion topology U of X generated by the X-images of the neighbour-
hood system Nx∗

of (X,U+). Since the only manifestation of neg-sets in the
observable world is their regulating property, the X-increasing sequence (xi)i≥0

converges to x∗ in (X,U) if and only if the sequence (x0, x1, x2, · · · ) converges
to x∗ in (X,U+). Affinely translated to X, this means that the x∗-inclusion

12 We henceforth adopt the convention that the arrow induced by the inclusion
topology of the real world is the forward arrow of the system, and the exclusion
neg-matter manifests in this real world as its backward arrow. The forward arrow
therefore corresponds to the increasing direction of an appropriate pre-ordering
of the real physical world.

13 I thank Joseph T. H. Lo for his clarifications on the subtleties of the exclusion
topology, Private Communication, May 2004.
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arrow in (X,U) transforms to an x0-exclusion arrow in (X,U+) generating an
additional topology U− in X that opposes the arrow converging to x∗. This
direction of increasing supersets of {x∗} excluding x0 associated with U− of
Table 10.3, is to be compared with the natural direction of decreasing subsets
containing x∗ in (X,U+), Table 10.2. We take the reference natural direc-
tion in X ∪ X to be that of X pulling the inclusion sequence (x0, x1, x2, · · · )
to x∗; hence the decreasing subset direction in X of the inclusion sequence
(x0, x1, x2, · · · , x∗) appears in X as an exclusion sequence converging to x0 be-
cause any sequence in an exclusion space must necessarily converge to the
defining element in its own topology. In this perspective, the left side of Eq.
(10.2.38b), read in the more familiar form a+(−b) = a− b with a, b ∈ R+ and
−b := b ∈ R+, represents “+” evolution in the base kitchen of Nature, which
is then served in its bi-directional physical-world manifestation on the dining-
table of the right side supporting retraction along the “−” direction. At the
risk of an apparent “abuse of language”, (X,U) will be termed the exclusion
space of (X,U+).

Directed set D Direction ) induced by D

DN = {N : N ∈ Nx} M ) N ⇔ M ⊆ N

DNt = {(N, t) : (N ∈ Nx)(t ∈ N)} (M, s) ) (N, t) ⇔ M ⊆ N

DNβ = {(N, β) : (N ∈ Nx)(xβ ∈ N)} (M, α) ≤ (N, β) ⇔ (α ) β) ∧ (M ⊆ N)

Table 10.3. Natural directions of increasing supersets in (X, U) is to be compared
with Table 10.2 of the natural reverse directions in (X,U). The direction of coevents
in X is opposite to that of X in the sense that the temporal sequence of images of
events in X opposes that in X and the order of occurrence of events induced by the
coworld appear to be reversed to the physical observer stationed in X.

Although the backward sequence (xj)j=··· ,i+1,i,i−1,··· in (X,U+) does not
converge, the effect of (xi)i≥0 of X on X is to regulate the evolution of the
forward arrow (xi)i≥0 to an effective state of stasis of dynamical equilibrium,
that becomes self-evident on considering for X and X the sets of positive and
negative reals, and for x∗, x∗ a positive number r and its negative inverse im-
age −r. The existence of a negelement x↔ x in X for every x ∈ X requires all
forward arrows in X to have a matching forward arrow in X that actually ap-
pears backward when viewed from X. It is this opposing complimentary effect
of the apparently backward-X sequences on X — responsible by (10.2.38b)
for moderating the normal uni-directional evolution in X — that is useful in
establishing a stasis of dynamical balance between the opposing forces gener-
ated in the composite of a compound system with its environment. Obviously,
the evolutionary process ceases when the opposing influences in X due to it-
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(X,U+) (X,U−)

T0
(∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y} (∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y}
= ∅) ∨ (∃M ∈ Ny : M ∩ {x} = ∅) �= ∅) ∨ (∃M ∈ Ny : M ∩ {x} �= ∅)

T1
(∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y} (∀x �= y ∈ X) (∃N ∈ Nx : N ∩ {y}
= ∅) ∧ (∃M ∈ Ny : M ∩ {x} = ∅) �= ∅) ∧ (∃M ∈ Ny : M ∩ {x} �= ∅)

T2
(∀x �= y ∈ X) (∃N ∈ Nx ∧M ∈ Ny) (∀x �= y ∈ X) (∃N ∈ Nx ∧M ∈ Ny)

: (M ∩N = ∅) : (M ∩N �= ∅)

Table 10.4. Comparison of the separation properties of (X,U+) and its inhibitor
(X,U−).

self and that of its moderator X balance out marking a state of dynamic
equilibrium.

It should be noted that the moderating image X of X needs to be en-
dowed with inverse inhibiting properties if Eq. (10.2.38b) is to be meaningful
which leads to the separation properties of the conjugate spaces (X,U+) and
(X,U) as shown in Table 10.4. Significantly, the exclusion space is topologi-
cally distinguished in having its sequences converge with respect to the only
neighbourhood X of the limit point, a property that leads as already pointed
out earlier to the existence of a multiplicity of equivalent limits in large neigh-
bourhoods of x0 to which the backward sequences in X converges, even when
(X,U) is Hausdorff. In the context of iterational evolution of functions that
concerns us here, that the function-multifunction asymmetry of (10.1.1) in-
troduced by the non-injectivity of the iterates is directly responsible for the
difference in the separation properties of U+ and U−, which in turn prohibits
the system from annihilating B mentioned earlier and forces it to adopt the
forward-backward stasis of opposites. Recalling that non-injectivity of one-
dimensional maps translate to pairs of injective branches with positive and
negative slopes, we argue with reference to Fig. 10.3 that whereas branches
with positive slope represent matter, those with negative slope correspond to
reg(ulating)-matter by Eq. (10.2.38b) and the disjoint union of these compo-
nents represents the compound system of forward-backward opposites. Taking
TA > TB, pA > pB and µA > µB , the dynamical evolution represented by
the shaded boxes would, in the absence of the backward arrow induced by the
exclusion space, eventually spread uniformly over the full domain, and equi-
librium would be characterized completely by TA, pA, µA, at the exclusion of
B. Denoting matter by 1 and (the effect of) negmatter by 0, the progressively
refined partition of D(t) induced by the evolving map is indicated in (ii), (iii)
and (iv).

As an example, we return to Eqs. (10.2.18) and (10.2.19) for the entropy
change due to exchange of resources and its non-linear, irreversible, internal
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Fig. 10.3. Matter-negmatter synthesis of an evolving system C = A∪B under the
tent interaction. A and B are represented by the solid and dashed lines as injective
branches with positive and negative slopes respectively.

generation respectively. The external exchange with the environment leads to
a change in the internal state of the system which is then utilized in performing
irreversible useful work relative to the environment, conveniently displayed in
terms of the neutral-neutral convergence mode of a net of Fig. 10.4 adapted
from Fig. 22 of [30], which illustrates the irreversible internal generation of
entropy in a universe C = A∪B, where A and B are two disjoint components
of a system prepared at different initial conditions shown in the figure, with B
the physical manifestation of a compatible space B endowed with an exclusion
topology and a direction opposing that of A. In the real interval [0, 1], notable
examples of A and B are f(x) and f(1−x) with B the physical manifestation
of A. This allows us to make the

Definition 10.1 (Interaction Between Two Spaces). A space (A,U) will
be said to interact with a disjoint space (B,V) if there exists a function f on
the compound disjoint sum (C = A ∪B,W) where

W = {W := U
⋃
V : (U ∈ U)

∧
(V ∈ V)}

= {W ⊆ C : (W
⋂
A is open inA)

∧
(W
⋂
B is open inB)},
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which evolves graphically to a well defined limit in the topology of pointwise
biconvergence on (C,W). The function f will be said to be a bidirectional
interaction between the subsystems A and B of C.14

Fig. 10.4. Schematic representation of irreversible entropy generation in C = A∪B
with respect to the universe X∪Y . We will identify the solid arrows in C from the hot
body to the cold with inverse limit, neg-entropic self-organization, and the dashed
arrows from the cold to hot as direct limit, second law entropic emergence, see Fig.
10.5b.

While A and B by themselves need not display any notable features (see
Fig. 10.10c), the evolution of A in the disjoint compound (C,W), motivated
by the inducement of an ininal topology on C, is effectively opposed by the
influence of the exclusion topology of B, with the equivalence classes generated
in C being responsible for the multi-inverses of the evolving f characterizing
the nonlinear state of C following the internal preparation of the system.
This irreversible process, indicated in Fig. 10.4 by the nets of full arrows
from (A,U) to (B,V) representing transfer of energy, volume, or mass driven

14 If A and B are not disjoint, then this construction of the compound sum may
not work because A and B will generally induce distinct topologies on C; in
this case W is obtained as follows. Endow the disjoint copies A1 := A × {1}
and B2 := B × {2} of A and B with topologies U1 = {U × {1} : U ∈ U}
and V2 = {V × {2} : V ∈ V}, which are homeomorphic with their originals
with a �→ (a, 1) and b �→ (b, 2) being the respective homeomorphisms. Then
C = A1 ∪ B2 is the disjoint union (sum) of A1 and B2 with the topology W =
{W ⊆ C : W = (U × {1}) ∪ (V × {2}) : (U ∈ U) ∧ (V ∈ V)} that induces the
subspaces (A1,U1) and (B2,V2).
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by an appropriate evolutionary directed set of a thermodynamic force (for
instance due to a temperature gradient TA > TB inducing the energy transfer),
provides the forward impetus for directional transport motivated by ininality.
The dashed open arrows show the reverse evolution in C due to its inhibitor
C. The dash-dot arrows stand for the uni-directional transfer of energy from a
reservoir that continues till the respective parts of C acquire the characteristics
of their reservoirs.

Since physical evolution powered by changes in the internal intensive pa-
rameters is represented by convergence of appropriate sequences and nets, it
is postulated in keeping with the role of ininality, that equilibrium in uni-
directional temporal evolutions like X → A ⊆ X or Y → B ⊆ Y sets up A
and B as subspaces of X and Y respectively. For bi-directional processes like
A ↔ B, the open headed dashed arrows of Fig. 10.4 from B to A represent
the backward influence of (B,V) on (C,W). The assumptions

◮ Both the subsets A and B of the compound C are perfect in the sense
that A = Der(A) and B = Der(B) so that there are no isolated points in A
and B with all points of each of the sets accessible by sequences eventually in
them, and

◮ BdyB(A) = B and BdyA(B) = A which enables all points of A and B
to be directly accessed as limits by sequences in B and A,

imply that any exchange of resource from the environment E = X ∪ Y to
system C will be evenly dispersed throughout by the irreversible, internal
evolution of the system, once C attains equilibrium with E and is allowed to
evolve unperturbed thereafter. This global homogenizing principle of detailed
balance, applicable to evolutionary processes at the micro-level provides a ra-
tionale for equilibration in nature that requires every forward arrow to be bal-
anced by a backward, leading to the global equilibrium of thermodynamics. If
these influences exactly balance each other resulting in a complete restoration
of all the intermediate stages, then the resulting reversible process is actually
quasi-static with no effective changes; hence nontrivial dynamical equilibrium
cannot be generated by reversible processes.

For unimodal maps like the logistic fλ = λx(1 − x) that are defined with
respect to the forward-backward, positive-negative slope characteristic, which
for a particular λ can be taken to represent the subspace C ⊆ E at equilib-
rium with its environment E, evolutionary changes in the effective available
resources λ induce changes in the internal intensive thermodynamic para-
meters that follow uni-directional exchanges of C with E. This perturbs the
equilibrium between components A and B resulting in further evolutionary it-
erational interaction between them. The iterational evolution of fλ is relatively
moderated by the reverse effect of the evolution of f−λ which suppresses the
continual increase of noninjectivity of fλ that would otherwise lead to a state
of maximum noninjective ill-posedness for this λ: note the negative branches
of f appear positive to its inverse, and conversely. Measurable global dynamic
equilibrium represents a balance between the opposing induced local forces
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that are determined by, and which in turn determine, the degree of resource
exchange λ. The eventual ininality at λ = 4 represents continual resource uti-
lization from E that is dissipated for the globalizing uniformity of Figs. 10.3
and 10.10a(iii). In the range 3 < λ ≤ λ∗ = 3.5699456, the input is gainfully
employed to generate the complex structures that are needed to sustain the
process at that level of λ.

Recalling footnote 8, we now summarize the principal features of the non-
linear evolutionary dynamics following interaction of a compound system C
with its surroundings.

◮ If the state of dynamic equilibrium of a composite system C = A ∪ B
with its surroundings, as represented by the logistic map is disturbed by an
interaction between them, forces are set up between the components A and
B so as to absorb the effect of this disturbance.

◮ Consumption of the effects of the exchange is motivated by a simulta-
neous, non-reductionist drive towards increasing surjectivity and decreasing
injectivity of (fλ)λ and its evolved iterated images, that eventually leads to
a state of maximal non-injective degeneracy on the domain of f . Owing to
the function-multifunction asymmetry of f , such a condition would signify
static equilibrium and an end to all further evolutionary processes, a state of
dissipative annihilation, burn-out and ininality.

◮ Since such eventual self-destruction cannot be the stated objective of
Nature, this unrelenting thrust toward collapse is opposed by the negworld
exclusion effects we have described earlier, generating a reversed sequential
direction effectively inhibiting the drive towards self-destruction induced by
the simultaneous increase of λ and the increased noninjectivity under itera-
tions. The resulting state of dynamic equilibrium is the observed equilibrium
of Nature. Like all others, nature’s kitchen C ×C where the actual dynamical
evolution occurs is beyond direct observation; only its disciplining effect in
C × C is perceived by the observer stationed in D(f) = C.

As an example, consider an isolated system of two parts each locally in
equilibrium with its environment as in (10.2.19) that can now be re-written
as

SC(t) = SC(0) +

[
NAcA ln

(
T

TA(t)

)
+NBcB ln

(
T

TB(t)

)]

−R

[
NA ln

(
PA

pA(t)

)
+NB ln

(
PB

pB(t)

)]
, (10.2.40)

where we note with reference to Fig. 10.4 that TA = T1, TB = T2 are the
temperatures of subsystems A and B, VA + VB = V is the total volume of C,
pA, pB are the pressures of A and B, PA,B := NA,BRTA,B/V are their partial
pressures with P = PA +PB the total pressure exerted by the gases in V , and
T is the equilibrium temperature of (10.2.21).

Then
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(i) If the parts containing nonidentical ideal gases at different temperatures
are brought in contact with each other, the equilibrium state of stasis resulting
from the flows of heat and cold (= negheat) between the bodies lead to the
equality of temperature, TA = T = TB , and the vanishing of the first part of
(10.2.40).

(ii) If the gas in the first half expands into the second then equilibrium
is reached when the gas outflow is exactly balanced by the vacuum inflow
into it if the second is evacuated, or if it is filled with a nonidentical gas then
equalization of pressure of the chambers by outflow of the gases from their
respective halves into the other, results in the vanishing of the second term
of (10.2.40). In either case, competitive collaboration of the two opposites
with unequal resources, rather than annihilation of the weaker by the more
resourceful, leads to the state of mutual equilibrium.

In all these instances, the two disjoint opposing parts act in competitive
non-reductionist collaboration to generate a moderated and inhibited stasis
of the union: this is its only manifestation of the complementary neg-world
on its observable physical partner. Thus cold, vacuum and a nonidentical
substance are the negations of heat and matter — just as −r ∈ R+ is the
negation of r ∈ R+. These negations as elements of the negworld are no more
observable than −5, for example, is to us in our physical world: we cannot
collect −5 objects around us or measure the distance between two places
to be −100 kilometers; more generally, the set of complex numbers can be
considered to constitute the coreals, without which there would have been
no zero, no starting initial point in any ordered set, and no “equilibrium”
either. Nature, propelled by its unidirectional increasing entropic disorder,
without the containing Schrodinger and de Broglie λ = h/p waves, would
have probably crashed out of existence long ago!

In summary, then, for an interaction f : C → C and the bijective map
f : C → C corresponding to (10.2.38b), the hierarchal order

Dynamics of ff : C → C in nature’s kitchen (C,W) × (C,W)

−→ Evolution of f on (C,W)2

−→ Experimental observation in D(f) = C

accompanied by

◮ Increasing iterates of f , driven by ininality of topology generated on C,
constitutes the activating sense of the dynamics, that as we see subsequently,
corresponds to the backward, entropy increasing, destabilizing direction of the
evolutionary process. The function-multifunction asymmetry between f and
f− generates and sustains this unidirectional ininality, and

◮ Decreasing iterates of f corresponds to the forward, entropy decreasing,
stabilizing direction in the evolving, competitive collaboration of interactions
generated by f and f−,

defines the state of equilibrated stasis schematized in Fig. 10.4. From the dis-
cussion in connection with Fig. 10.1 that ininality is an effective expression of
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a non-bijective homeomorphism when the sequence of evolutions (fn) become
progressively more bijective on the saturated open sets of equivalence classes
and their respective images, Eq. (10.1.7), it can be argued that the incentive
towards the resulting effective simplicity of invertibility on the definite classes
of sets associated with (fn) is responsible for evolutionary dynamics on C.

This account of “providing a mechanical (i.e., dynamical) explanation of
why classical systems behave thermodynamically” [5] is to be compared with
[10], see also [31]. The distinctive feature of the present approach is in its use
of difference equations rather than the microscopic Hamilton differential equa-
tions that yield the Liouville equation of macroscopic mechanical systems. As
so forcefully inquired by Baranger [2], can the emerging evolutionary prop-
erties of strongly nonlinear, emergent, self-organizing systems be described
by linear (Hamiltonian) differential equations? By employing functional in-
teractions as solutions to difference equations by the technique of graphical
convergence of their iterates, we explicitly invoke the immediate past in deter-
mining its future and are thereby able to circumvent the issues of time reversal
invariance and Poincare recurrence that are inherently associated with the mi-
croscopic dynamics of Hamilton’s differential equations. This also enables us
to avoid direct reference to statistical and probabilistic arguments except in
so far as are inherently implied by the Axiom of Choice.

While our preference for unimodal, single-humped, logistic-like difference
equations is based on the understanding that only an appropriate juxtaposi-
tion of the opposing directional effects — like that of x − a and b − x in the
interval a ≤ x ≤ b — can lead to meaningful emergence and self-organization,
it is also well known [17, 20] that time evolution of a discrete model and its
continuous counterpart can be so different as to have no apparent correlation
with each other. Thus the logistic differential equation

ẋ = g(x) := (λ− 1)x

(
1 − λ

λ− 1
x

)
(10.2.41a)

having the same equilibrium fixed points x = 0, x∗ = (λ−1)/λ as the discrete
version, has the harmless “trivial” solution

x(t) =
x0 x∗e

(λ−1)t

x∗ + x0(e(λ−1)t − 1)
t→∞−→ x∗. (10.2.41b)

Compared with the structurally rich multifunctional graphical convergence
leading to chaos and entropic drive of the discrete form, the tranquil differen-
tial variety can only produce a simple monotonic convergence to the basic fixed
point x∗ which is responsible for the complex dynamics of the former; in fact,
linear systems can only admit stable or exponentially growing oscillatory or
non-oscillatory solutions. This apparently surprising, though not unexpected,
result arises from the fundamental difference in the bifurcation characteristics
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of these equations: the availability of additional spatial dimensions allows the
dynamical system a greater latitude in its evolution so that the complex hier-
archal structure generated by iteration of one-dimensional maps are absent in
flows under Hopf bifurcations. In fact, for Eq. (10.2.41a), 0 is unstable and
x∗ stable for all values of λ > 1 because g′(x) = (λ − 1) − 2λx is positive at
x = 0 and negative for x = x∗. In contrast with the bifurcation dominated
rich and varied dynamics of maps, bifurcation-less evolution of vector fields
on the real line — capable only of monotonically converging to fixed points or
diverging to infinity without any oscillations or other dynamically interesting
features — precludes any qualitative change in the evolution of solutions like
(10.2.41b).

The alert reader would not have failed to notice that our use of the quali-
fiers “discipliner”, “inhibitor”, “stasis” signifying a condition of balance among
various forces of the forward-backward opposites, can only provisional as the
existence of a set of negatives for every positive as postulated in (10.2.38b)
does not necessarily imply that their natural directions interact to generate a
smaller positive. This crucial dynamical manifestation of matter-negmatter is
provided by the second law of thermodynamics which is formalized through
the concept of inverse and direct limits that incorporates directional arrows
in their definitions.

Direct Limit, Inverse Limit, Irreversibility

Otherwise put, every “it” — every particle, every field of force, even
space-time continuum itself — derives its function, its meaning, its very

existence, from answers to yes-no questions, binary choices, bits. “It from
bit” symbolizes the idea that every item of the physical world has at bottom

— at a very deep bottom, in most instances — an immaterial source and
explanation, that which we call reality arises in the last analysis from the

posing of yes-no questions; in short, that all things physical are
information-theoretic in origin and this is a participatory universe.

J. A. Wheeler (1990)

These limits also known as colimit and limit respectively, with the confusing
terminology arising possibly from the fact that the “natural” direction in con-
vergence theory is a reverse direction where the counting index increases with
decreasing size of the defining open sets, is summarized in Fig 10.5a.

Direct limit. The direct (or inductive) limit is a general method of taking
limits of a “directed families of objects”. Let (D,)) be a directed partially
ordered set, {Xκ}κ∈D a family of spaces, and ηαβ : Xα → Xβ a family of
continuous connecting maps oriented along (D,)) satisfying the properties

ηαα(x) = x, for all x ∈ Xα (10.2.42a)

ηαγ = ηβγ ◦ ηαβ , for all α ) β ) γ. (10.2.42b)
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Direct Limit

Xα

Xβ

πβ

Inverse LimitXβ

g

πα

ζβ

Y↔ηβ

Xα

ηα

ξα

ξβ

ζα α � β ∈ D

X←→Xηαβ h πβα

Fig. 10.5a. Direct and inverse limits of commutative diagrams. ηα, πα are projec-
tions and ηαβ , πβα are connecting maps.

Then the pair (Xα, ηαβ) is called a direct (or inductive) system over D. The
image of a xα ∈ Xα under any connecting map is called the successor of xα,
and a direct system (Xα, ηαβ) yields a direct limit space →X as follows. Let
X = ⊎κXκ be the disjoint union of {Xκ} and let xα ∈ Xα. The class of
elements

[xα] = {xβ ∈ Xβ : ∃ γ - α, β such that ηαγ(xα) = ηβγ(xβ)} (10.2.43)

with a common successor in the union constitutes an equivalence class of xα:
while reflexivity and symmetry are obvious enough, transitivity of ∼D follows
from

[xα ∼D xβ ]
∧

[xβ ∼D xγ ] =⇒ ∃ δ, ǫ - α, β, γ s.t. [ηαδ(xα) = ηβδ(xβ)]
∧

[ηβǫ(xβ) = ηγǫ(xγ)]

=⇒ ∃ ζ - δ, ǫ s.t. ηαζ(xα) = ηγζ(xγ) = ηβζ(xβ),

with two elements in the disjoint union being equivalent iff they are “eventually
equal” in the direct system. Then the quotient space

→X
def
=
⊎

κ

Xκ/ ∼D (10.2.44a)

of the disjoint union of {Xκ} modulo ∼D is known as the direct, or induc-
tive, limit of the system (Xα, ηαβ). The pair (→X, ηα) must be universal in
the sense that if there exists any other such pair (Y↔, ζα) there is a unique
morphism g : →X → Y↔ with the respective sub-diagrams commuting for all
α ) β ∈ D. If

p :
⊎

κ

Xκ → →X

is the projection, then its restriction
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ηκ : Xκ → →X

maps each element to its equivalence class, see Fig. 10.5a; hence

→X =
⋃

κ

ηκ(Xκ) (10.2.44b)

implies that →X is not empty whenever at least one Xα is not empty and the
algebraic operations on →X are defined via these maps in an obvious manner.
Clearly, ηα = ηβηαβ .

If the directed family is a family of disjoint sets (Xα)α, with each Xα the
domain of an injective branch of f that partitions D(f), then the direct limit
→X of (Xα) is isomorphic to the basic set XB of Fig. 10.1, where ηαβ(xα) is
the element of [xα]f in Xβ .

Inverse Limit. The inverse (or projective) limit is a construction that
allows the “glueing together” of several related objects, the precise nature of
the glueing being specified by morphisms between the objects. Let (D,)) be
a directed partially ordered set, {Xα}α∈D a family of spaces, and πβα : Xβ →
Xα a family of continuous connecting maps oriented against (D,)) satisfying
the properties

παα(x) = x, for all x ∈ Xα (10.2.45a)

πγα = πβα ◦ πγβ , for all α ) β ) γ. (10.2.45b)

Then the pair (Xα, πβα) is called an inverse, or projective, system over D.
The image of a xβ ∈ Xβ under any connecting map is the predecessor of xβ

and the inverse, or projective, limit

X←
def
= {x ∈

∏

κ

Xκ : pα(x) = πβα ◦ pβ(x) for all α ) β ∈ D}, (10.2.45c)

of (Xα, πβα), where

pα :
∏

κ

Xκ → Xα

is the projection of the product onto its components, is a subspace of
∏
Xκ

with the property that a point x = (xκ) ∈ ∏Xκ is in X← iff its coordinates
satisfy xα = πβα(xβ) for all α ) β ∈ D. Every element of X← has a unique
representation in each Xκ, but an element of Xκ may correspond to many
points of the limit. As for direct limits, the pair (X←, π

α) must be universal
such that the existence of any other such pair (Y↔, ξ

α) implies the existence
of a unique morphism h : Y↔ → X← with the respective sub-diagrams com-
muting for all α ) β ∈ D. The sets (πα)−1(U), U ⊆ Xα open, is a topological
basis of X←, and all pairs of points of X← obeying xα = πβα(xβ) for α ) β
is identical iff their images coincide for every α. The restrictions

πα : X← → Xα
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of pα is the continuous canonical morphism of X← into Xα with two points
of X← being identical iff their images coincide for every α.

Straightforward examples of these limits are

(a) Let {Xk}k∈Z+
be an increasing family of subsets of a set X, and let

ηmn : Xm → Xn be the inclusion map for m ≤ n. The direct limit of this
system is

→X =
∞⋃

k=1

Xk (10.2.46)

with the inclusion functions mapping from each Xk into this union. Generally,
if D is any directed partially ordered set with a greatest element ω, then the
direct limit of any corresponding direct system is isomorphic to Xω and the
canonical morphism ηω : Xω → →X is an isomorphism.

A BC

imn
· · ·· · ·

X0

"Hot" X1

Xm

Xn

Xn

Xm
X1

Backward-direct system: Emergence, contraction, disorder

ξn

Forward-inverse system: Self-organization, expansion, order

inm

ηn

X← =
⋂

Xi

→X =
⋃

Xi

"Cold"

X0

A: "hot" disorder; C: synthetic cohabitation of A and B; B: "cold" order

Fig. 10.5b. Direct-inverse limits for a family of nested subsets of a set X, with the
direction of “order” O and “disorder” D — to be understood as implying smaller and
larger multiplicities of the state — shown opposite so that all maps of the systems are
now in the same direction. In the absence of a direct component, the inverse on its
own would cause bottom-up, self-organized “cold death” to X←; if the inverse system
were absent, emergent, “heat death” from the lone effect of the direct system would
follow in →X, with each acting essentially as a gradient dissipator of the other. The
nested decreasing subsets denote stability inspired expansion and self-organization
as the system’s response of utilizing “every possible avenue in sucking orderliness
from its environment” to counter attempts to move it away from thermodynamic
equilibrium, while the increasing supersets signify instability driven contraction and
emergence. Compare Fig. 10.10a.
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(b) Let {Xk}k∈Z+
be a decreasing family of subsets of X, and let πnm :

Xn → Xm be the inclusion map for m ≤ n. Since the inverse limit consists
of only those points of the cartesian product whose “eventual” coordinate can
be assigned independently,

X← ≃
∞⋂

k=1

Xk (10.2.47)

might be empty even though Xk �= ∅ for each k, with πkk = 1 being the
identity map. What this result means is that the limit X← must have all its
components from the intersection only. Thus the inverse limit of X1 = [0, 1],
X2 = [0, 0.6] and X3 = [0, 0.2] is of the form X← = {(x1, x2, x3) : x1 ∈
X3, x2 ∈ X3, x3 ∈ X3} with the first and second coordinates considered to
be elements of X1 and X2 respectively, by the inclusion map.

The consequence of these limit constructs in providing a dynamical basis
to Postulates NEG-1 and NEG-2 of the exclusion space is contained in the
following arguments. For a given resource λ, the inverse and direct limits X←

and →X, in competitive collaboration with each other, can be taken to repre-
sent respectively the anabolic synthesis of expansion, order, entropy-decrease
and catabolic analysis of contraction, disorder, entropy-increase of the corre-
sponding systems15 leading to the dynamically equilibrated state X↔: recall
that everything else remaining the same, “hot” objects have higher entropy
than “cold” ones, and when two bodies of different resources are brought in
contact, entropy of the hot body decreases while that of the cold body in-
creases such that the entropy decrease in the former is more than compen-
sated by its increases in the later. This spontaneous flow of “heat” is associated
with an overall entropy increase that continues till the combined entropy is
a maximum. This is the essence of entropy production in the universe at the
expense of exergy of the more resourceful constituent that in simple terms
represents the opposition of a cold stable system to the urge of a hot unstable
component to stabilize at its expense. The second law represents a straight-
forward stipulation that a part of the useful energy of a closed system must
always be wasted as heat with the entropy being a quantitative measure of
the amount of thermal energy not available for doing work, of the tendency
for all matter and energy in the universe to evolve toward a dead state of
inert uniformity. In the absence of the direct limit component, however, the
inverse system would proceed to its logical destination of X← leading to its

15 Metabolism comprises the chemical processes taking place within a living cell or
organism involving consumption and breakdown of complex compounds neces-
sary for the maintenance of life, often accompanied by liberation of energy and
waste products. It is the major process of living systems affecting all its chemical
processes, consisting of a series of changes in an organism by means of which food
is manufactured and utilized, and waste materials are eliminated. Metabolism
is broadly subdivided into two opposing parts: anabolic synthesis of simple sub-
stances into complex materials is its constructive phase, and catabolic analysis of
complex substances into simpler ones is the destructive.
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minimum-entropy frozen “cold death”, which translated to practical terms re-
quires the whole system to acquire the unmoderated properties of the infinite
colder reservoir. Inverse limits, however, demand the existence of connecting
maps opposing O; this manifests itself through generation of the reverse di-
rection D of the direct limit which acting on its own would likewise lead to a
maximum-entropy roasted “heat death” condition of →X. In communion with
each other, X↔ shares properties of both the opposites with the equilibrium
representing some intermediate state Xm = Xn of Fig. 10.5b. Physically this
represents either (i) a hot body A∗ interacting with another body B to yield
the compound system A∗ (≡ X0)+B (≡ X0) which then evolves with time, or
(ii) an infinite reservoir A∗ that induces a temperature gradient in B; in this
case the heat source remains external to the system. This reading of the dual
limits, suggested by the directions of Fig. 10.5b representing converging se-
quences generated by points in the respective {Xα} and {Xα}, can be viewed
to be the basis of our postulate of an exclusion space leading to dynamical
homeostasis, with the direction of the inverse limit being effectively inhibited
by that of the direct limit. A second related interpretation is to consider, by
the definition of footnote 7, the family of spaces and the restrictions of the
associated projections to generate final and initial topologies on →X and X←

respectively. The dynamically equilibrated steady state

X↔ = Xm = Xn (10.2.48)

is therefore in an ininal state because all sub-diagrams of Fig. 10.5a must
commute and the connecting sequences converge to the respective limits iff
these carry the final and initial topologies of the direct and initial systems.
Note that the dynamic equilibrium of (10.2.48) is effectively a saddle-node
centre manifold, and is in fact the state eq of Eq. (10.2.2).

A thermodynamic analysis of the preceding heuristic rationale for the
existence of a X↔ will be given below that reduces the inverse-direct sys-
tem to a coupled engine-pump dual with the natural inverse-limit engine
E : Th → Tc generating, under proper condition of irreversibility, a direct-
limit pump P : Tc → Th such that X↔ is characterized by an equilibrium
temperature T ∈ [Tc, Th].

In applying these considerations to the iterative evolution of maps, we
take the domain of the interaction f to be a disjoint union C of a physical
space A and an exclusion space B, when f generates bi-directional forward-
backward arrows on C that are quite distinct from the catabolic-direct and
anabolic-inverse limits. Accordingly two sets of arrows, the forward-inverse
and backward-direct, are imposed on an evolving system and the character of
the system depends on which of the two plays the role of an activating partner
and which the restraining, representing a dynamical balance between the com-
petitive collaboration of forward, self-organization and backward emergence,
with new structures appearing only for the first few steps that is subsequently
self-organized into a composite whole. This interpretation of the restoring
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effects implies that with appropriate interactions f , even extreme irreversibil-
ities of non-injective ill-posedness can be effectively reversed with time, fully
or partially depending on the nature of f , through internally generated regu-
lating effects. Irreversibilities therefore need not be only wasteful: given ade-
quate interactive support these can actually be utilized to induce higher-level
order and discipline in the otherwise naturally occurring emerging entropic
disorder, through a regulated process of adaption and self-organization. We
employ this basic characteristic of the synthesis of matter and negative matter
in formulating the definitions of complexity and “life” below.

The Lorenz Equation

To fully appreciate these observations and arrive at an understanding of the
dynamics of difference equations vis-a-vis differential equations, we consider
the Lorenz-Rayleigh-Benard model of two-dimensional convection of a hori-
zontal layer of fluid heated from below involving three dynamical variables: x
proportional to the circulatory convection velocity of the fluid that produces
the flow pattern with positive x indicating clockwise circulation, y propor-
tional to the temperature difference between the ascending warm and de-
scending cold flows at a given height h, and z proportional to the nonlinear
deviation of the vertical temperature profile from equilibrium linearity. The
Lorenz equations

ẋ = σ(−x+ y) (10.2.49a)

ẏ = Rx− y − xz (10.2.49b)

ż = xy − bz, (10.2.49c)

with σ the Prandtl number (ratio of the kinematic viscosity of the fluid
to its thermal diffusivity), R = r/rc the relative Rayleigh number (where
r := gαd3 △ T/(κν) is the Rayleigh number — with g acceleration due to
gravity, α, κ, ν coefficients of volume expansion, thermal diffusivity, kinematic
viscosity, △T temperature difference between the upper and lower surfaces of
the fluid separated by a distance d — and rc := (a2 +π2)3/a2 = 27π4/4 is the
critical value that defines a = π/

√
2 to give the lowest r at which convection

starts), and b (ratio of the width to the height of the region in which con-
vection is occurring), represents a state of competing collaboration between
the downward stabilizing arrow of gravity and an upward buoyancy-driven in-
stability of viscous friction and conductive heat losses. The equilibrium fixed
point ẋ = 0 of supercritical pitchfork bifurcation

ẋ = 0 ⇐⇒ x3 − b(R− 1)x = 0

has the roots

C0 = (0, 0, 0), all R (10.2.50a)
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C± = (±
√
bρ, ±

√
bρ , ρ), R > 1, ρ = R− 1. (10.2.50b)

A linear stability analysis about C0 requires the characteristic polynomial
of the combined linearized equation

ẋ =




−σ σ 0

R −1 0

0 0 −b






x

y

z




to satisfy

f(λ) := (λ+ b)[λ2 + (1 + σ)λ− σ(R− 1)] = 0 (10.2.51)

with the real eigenvalues

λz = −b

λ± = −1 + σ

2
± 1

2

√
(1 + σ)2 + 4σ(R− 1) (10.2.52)

in which only λ± depends on the control parameter R. It can now be verified
that for all positive R, σ and b:

(a) R < 1: All the zeros λz, −(1+σ) ≤ λ− ≤ −1 (upper and lower bounds
occurring at R = 1 and R = 0), −σ ≤ λ+ ≤ 0 (bounds occurring at R = 0
and R = 1), are negative which means that C0 is a stable node.

(b) R = 1: λz, λ− = −(1+σ) are negative and λ+ = 0 with corresponding
eigenvectors uz = (0, 0, 1)T, u− = (−σ, 1, 0)T, and u+ = (1, 1, 0)T; hence C0

is marginally (neutrally) stable, leading to its pitchfork bifurcation. The three
real equilibria for R > 1 as given in (c) below merge to the single stable node
of R < 1 at R = 1.

(c) R > 1: λz and λ− are negative, λ+ is positive; hence C0 is an unstable
fixed point. The flows along the eigenvectors of λz and λ− are stable that
become unstable along the of λ+ direction. Hence C0 undergoes a saddle node
in three dimensions in this parameter range.

Linearization about the two other equilibrium points C± according to x .→
x∓√

bρ, y .→ y ∓√
bρ, and z .→ z − ρ leads to the eigenvalue equation

g(µ) :=

∣∣∣∣∣∣∣

σ + µ −σ 0

−1 1 + µ ±√
bρ

∓√
bρ ∓√

bρ b+ µ

∣∣∣∣∣∣∣
= µ3 + (1 + b+ σ)µ2 + b(σ +R)µ+ 2bσ(R− 1) = 0 (10.2.53)

Since all its coefficients are positive and g(0) > 0 when R > 1, there is always
a negative real root µz of Eq. (10.2.53). At R = 1, the three zeros of Eq.
(10.2.53) are µz = −b, µ− = −(1 + σ) and µ+ = 0, there are therefore two
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Fig. 10.6. Dynamics of the Lorenz equations. E and W are spanned by the respective
eigenvectors of {λz, λ−} and λ+ of Eq. (10.2.52). The local directions of the man-
ifolds in panel (E) are determined by the eigenvectors of C± = (±√

bρ,±√
bρ, ρ),

where ρ = R− 1 with R the relative Rayleigh number. Figure adapted from Argyris
et al. [1]
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stable (negative) roots and one marginally stable 0 root, in agreement with
Eq. (10.2.51). From µz +ℜ(µ−)+ℜ(µ+) = −(1+b+σ) < 0, it follows that the
two complex roots cross over from negative to positive real parts, for b = 8/3
and σ = 10, when

µz = −(1 + b+ σ) = −13.6667,

µ± = ±i
√

2σb(σ + 1)

σ − b− 1
= ±9.62453 i,

which leads, from g(µz) = 0, to the critical magnitude

Rc = σ

(
σ + b+ 3

σ − b− 1

)
=

470

19
≃ 24.7368

of R marking the birth of a subcritical Hopf bifurcation.
The behaviour of the characteristic polynomials f(λ) and g(µ) with vari-

ation of R in the range R < 13.926 is as follows, see Fig. 10.6. For R < 1, λ±
repel each other but for 1 ≤ R < 1.346 the µ± attract as the graph of g(µ)
moves up until at R = 1.34561718 the zeros merge, g(µ−) = g(µ+) = 0, and
complex roots appear maintaining ℜ(µ−) = ℜ(µ+) < 0 which marks the initi-
ation of convective rolls in the flow. At R = 13.926, homoclinic orbits starting
at the origin along the unstable manifolds return to it as stable manifolds,
the real parts thereafter increasing through 0 at R = Rc, with µz remaining
negative along the z-direction for all R > 1. Hence

(d) 1.00 ≤ R < 1.3456 := R0, panel (B). The character of the equilibria
C± change from nodes to spirals in the first appearance of oscillatory behav-
iour. This occurs when the graph of g(µ) becomes tangent to the µ-axis at its
turning point for ℜ(µ+) = ℜ(µ−) < 0. At R = R0, the molecular conduction
of this region becomes unstable yielding place to convection rolls of highly
structured coherent patterns. This increases the rate of heat transfer reducing
the temperature gradient of the system, and constitutes “the system’s response
to attempts to move it away from equilibrium”, [26].

(e) R0 ≤ R < 13.926 := R1, panel (C). The trajectory leaving C0 along
the local unstable manifold of λ+ spirals into the nearer of the two stable
manifolds C− and C+, tangent to the span of the respective eigenfunctions of
µ−, µ+. These spirals of unstable manifolds on looping around C− and C+

increase in size with increasing R, until at
(f) R = R1 they tend toward C− and C+ in wide arcs, eventually returning

as homoclinic orbits to C0 in the “infinite period limit” t → ±∞. While no
qualitative changes in the distribution of the zeros of Eq. (10.2.53) occur
at this value of R, the emergence of homoclinic orbits can be attributed to
the transformation of Eq. (10.2.53) to a monotonically increasing function
of µ for all R > R1. This is a significant event in the time evolution of the
Lorenz equations that eventually leads to chaos at R = Rc. This mechanism to
chaotic transition is common in systems modeled by differential equations and
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is not — unlike for maps — accompanied by any change in the character of
fixed points but is due to interaction of the trajectory with various instabilities.

(g) R1 ≤ R < Rc ≃ 24.7368, panel (D). As R increases beyond R1, the
monotonically increasing g(µ) results in the homoclinic orbits transforming to
increasing finite period unstable orbits that eventually coalesce to disappear
in a subcritical Hopf bifurcation at R = Rc. These increasingly oscillatory
solutions of the pre-chaotic range R1 < R < 24.06 travel back and forth
between C− and C+ many times before finally spiraling into one of them: as
R increases in this range, the generated unstable limit cycles repel Wu(0) so
that the branch leaving C0 in the octant of C− converges to C+ and that
generated in the octant of C+ ends up at C−, with the number of crossings
between C− and C+ increasing with R before eventually converging to one
of them. The unstable limit cycles associated with C−, C+ shrink in size as
R increases, passing over to a subcritical Hopf bifurcation at R = Rc. In the
range 24.06 < R < Rc although the equilibria C± remain stable, some of
the pre-chaotic orbits pass over into true chaos; hence in this region there is
a chaotic attractor beside the two spiral attractors. At R = Rc, the stable
spirals become unstable by absorbing the unstable spirals.

This dynamics of the Lorenz equation summarized in Fig. 10.6 allows us to
draw the following correspondences with the logistic interaction {fλ}λ∈[0,4].

◮ 0 ≤ R < 1.00 ⇔ 0 ≤ λ < 1, panel (A). Heat is transferred from the hot
bottom to the cold top by molecular thermal conduction. The tendency
of the warm, lighter fluid to rise is inhibited by viscous damping and loss
by conduction from the hot fluid to the surrounding cooler medium, and
the temperature varies linearly with the height of separation between the
plates. Recall that the only logistic fixed point x0 = 0 is stable in this
range, like the Lorenz C0. See Fig. 10.8a

◮ 1.00 ≤ R < 1.3456 ⇔ 1 ≤ λ < 2, panel (B). This λ-region of loss of stabil-
ity of x0 at λ = 1 and the simultaneous birth of a new stable fixed point
marks the onset of a radial R-interaction between the now unstable C0

and the new stable pair C±, Fig. 10.8a.
◮ 1.3456 ≤ R < 13.926 ⇔ 2 ≤ λ < 3, panel (C). Oscillations occur in the

stable evolution of the logistic map, Fig. 10.8a(iv), corresponding to the
appearance of the circular convective rolls in the Lorenz equations along
the second angular θ-direction consequent of the appearance of complex
roots of g(µ), Eq. (10.2.53).

◮ 13.926 ≤ R < 24.7368 ⇔ 3 ≤ λ < 1 +
√

6 = 3.4495, panel (D). This region
of the initiation of period doubling of the one-dimensional map relates to
the homoclinic orbit and the unstable limit cycles representing radial inter-
action between C0 and C± that activates the third angular ϕ-direction at
C0. Note that as in the logistic interaction, this R-region is distinguished
by the coexistence of the opposite directions due to the stable fixed points
C− and C+ corresponding to the stable 2-cycle of the map of Fig. 10.8b.
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The important point to note here is that unlike for period doubling of the lo-
gistic map, the supercritical pitchfork bifurcation in a multidimensional space
enables the unstable C0 to interact with the stable C± by opening up new
pathways along the angular coordinate directions. In the one dimensional lo-
gistic case where the luxury of the new directions acting as additional tun-
able parameters are unavailable, a tiered hierarchal communication system is
established between the unstable and stable points in order to utilize the ad-
ditional λ-resource available to carry the evolutionary dynamics forward. In
fact, compared to the sufficient conditions

f = 0,
∂f

∂x
= 0, (x, µ) = (0, 0) (10.2.54a)

and

∂f

∂µ
= 0,

∂2f

∂x2
= 0,

∂2f

∂x∂µ
�= 0,

∂3f

∂x3
�= 0 (10.2.54b)

for non-hyperbolicity and pitchfork bifurcation respectively of a one-parameter,
one-dimensional vector field ẋ = f(x, µ), a one-dimensional map x .→ f(x, µ)
with non-hyperbolic fixed points

f = 0,
∂f

∂x
= ±1, (x, µ) = (0, 0), (10.2.55a)

not only undergoes pitchfork bifurcation at ∂f/∂x = 1 for the same conditions
as given by Eq. (10.2.54b), but more importantly a period doubling bifurcation
appears whenever the non-hyperbolic slope ∂f/∂x = −1 emerges and the
second iterate of the map passes through a pitchfork

∂f2

∂x
= 1,

∂f2

∂µ
= 0,

∂2f2

∂x2
= 0,

∂2f2

∂x∂µ
�= 0,

∂3f2

∂x3
�= 0 (10.2.55b)

at (x, µ). More generally, any increase in λ is gainfully employed by the logistic
map through a series of period doublings such that a 2N cycle is generated
to effectively utilize the resource λ in N bifurcations, as can be verified from
Figs. 10.8b, c and 10.8d that show how the emerging structure develops in N
steps terminating with the period-doubling-pitchfork

∂f2N−1

∂x
= −1, (period-doubling) (10.2.56a)

∂f2N

∂x
= 1, (pitchfork) (10.2.56b)
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combination at 2N−1 stable-unstable fixed points marking the complete uti-
lization of λ, with the slopes of f2N

and f2N−1

simultaneously moving out of
the stable unit interval in opposite directions into the unstable region |x| > 1,
in the classic bidirectional competitive collaboration mode. In the absence of
this typical double bound of the stable region for differential equations, the
possible structures supported by these dynamical systems are comparatively
simpler. Specifically it does not possess the hierarchal towered form that is
the characteristic feature of two-component ill-posed maps such as the logistic
where Eqs. (10.2.56a,b ) actually determine the fixed-point x∗ and the corre-
sponding λ-value of the end of period 2N−1 and beginning of period 2N . It
is this distinction in the relationship between the stable and unstable points
that is responsible for the difference between arbitrary complex systems and
dissipative structures made below.

◮ Rc ≤ R⇔ λ1 < λ ≤ 4, panel (E). This R-ray symbolizing total chaos, is
characterized as in the logistic case, by the complete lack of stabilizing
effects, as the orbits generated by C− and C+ endlessly wander between
them. Unlike the one-dimensional map, however, the three dimensional
differential system does not display characteristic bifurcations beyond Rc,
taking advantage instead of the added dimensional latitude in generating
an entangled attractor with non-periodic orbits and sensitivity to initial
conditions.

Although it is possible, as has been argued above, to establish an overall
correspondence between the dynamics of discrete and continuous systems, a
careful consideration reveals some notable fundamentally distinctive charac-
teristics between the two that ultimately reflects on the higher number of
space dimensions — (r, θ, ϕ) in the Lorenz case — available to the differential
system16. This has the consequence that continuous time evolution governed
by differential equations is reductionally well-defined and unique — unlike in
the discrete case when ill-posedness and multifunctionality forms its defin-
ing character — with the system being severely restrained in its manifesta-
tion, not possessing a set of equivalent yet discernible possibilities to choose
from. In fact, the dynamics of differential equations cannot generate attrac-
tors composed of isolated points like the Cantor set, and it is our premise
that the kitchen of Nature functions in an one-dimensional iterative analogue,

16 Thus, for example, as in Eq. (10.2.41a,b), the equivalent Lorenz difference equa-
tion

xn+1 = xn(1 − σ) + σyn

yn+1 = Rxn − xnzn

zn+1 = zn(1 − b) + xnyn

would have a distinct and different dynamical evolution that is expected to
have little bearing or similarity with the solution of its differential counterpart
(10.2.49a−c).
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not merely to take advantage of the multiplicities inherent therein, but more
importantly to structure its dynamical evolution in a hierarchal canopy, so
essential for the evolution of an interactive, non-trivial, complex system. The
3-dimensional serving table of physical space only provides a convenient and
palatable presentation of nature’s produce in its uni-dimensional kitchen. A
closed system can gain overall order while increasing its entropy by some of
the system’s macroscopic degrees of freedom becoming more organized at the
expense of microscopic disorder. In many cases of biological self-assembly, for
instance metabolism, the increasing organization of large molecules is more
than compensated by the increasing disorder of smaller molecules, especially
water. At the level of whole organisms and longer time scales, though, biolog-
ical systems are open systems feeding on the environment and dumping waste
into it.

The special significance of one-dimensional dynamics relative to any other
finds an appealing substantiation from the following interpretation of the
Sharkovskii Theorem. Recall that the distinguished Sharkovskii ordering

3 ≻ 5 ≻ 7 ≻ · · · ≻ 2 · 3 ≻ 2 · 5 ≻ 2 · 7 ≻ · · · ≻ 2n · 3 ≻ 2n · 5 ≻ 2n · 7 ≻
· · · ≻ 2n ≻ · · · ≻ 22 ≻ 2 ≻ 1

of positive integers implies the Sharkovskii Theorem which states that if
f : [a, b] → R is a continuous function having a n-periodic point, and if n ≻ m,
then f also has a m-periodic point: observe the significance of the upper and
lower bounds of this ordering. Noting that the periodicity of an f -interaction
between two spaces essentially denotes the number of independent degrees
of freedom required to completely quantify the dynamics of f , it is inferred
that while a fixed point of “dimension” 1 embodies the basic informations of
all other periods, a period-3 embodies every other dimension within itself.
Hence it can be concluded that dynamics on 1-dimension, by being maxi-
mally restrained compared to any other, allows for the greatest emergence of
structures as mutifunctional graphical limits, while dimension 3 by being the
least restrained is ideally suited for an outward well-defined, and aesthetically
appealing, simultaneous expression of the multitude of eventualities that the
graphical limits entail.

The convection rotating cells of the Lorenz system that appear sponta-
neously in the liquid layer when heated from outside is an example of Pri-
gogine’s dissipative structure [15]. At first when the temperature of the bot-
tom plate Th is equal to that of the top Tc, the liquid will be in equilibrium
with its environment. Then as the temperature of the bottom is increased,
the fluid resists the applied temperature gradient ∆T = (Th − Tc) ∽ R by
setting up a backward arrow of inter-molecular conductive dissipation, and
the temperature increases linearly from top to bottom to establish thermal
equilibrium in the fluid. If the temperature of the bottom is increased fur-
ther, there will be a far from equilibrium temperature T0 corresponding to
R0 of Fig. 10.6 at which the system becomes unstable, the incoherent mole-
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cular conduction yields place to coherent convection, and the cells appear
increasing the rate of dissipation. The appearance of these ordered convec-
tive structures — a “striking example of emergent coherent organization in
response to an external energy input” [28] — dissipates more energy than
simple conduction, and convection becomes the dominant mode of heat trans-
fer as R increases further. The microscopic random movement of conduction
spontaneously becomes macroscopically ordered with a characteristic corre-
lation length generated by convection. The rotation of the cells is stable and
alternates between clockwise to counter-clockwise horizontally, and there is
spontaneous symmetry breaking.

According to Schneider and Kay [28], the basic role of dissipative struc-
tures, like the Lorenz convection cells, is to act as gradient dissipators by
“continually sucking orderliness from its environment” in hindering motion of
the system away from equilibrium due to the increasing temperature gradi-
ents. The dissipative structures increase the rate of heat transfer in the fluid
thereby utilizing this exergy in performing useful work in generating the struc-
tures. With increasing gradient, more work needs to be done to maintain the
increased dissipation in the far-from-equilibrium state, more exergy must be
destroyed in creating more entropy, the boundary layers become thinner, and
the original vertically uniform temperature profile is restored in the bulk of
the fluid. The structures developed in the Lorenz system thus organize the dis-
order of the backward convective cells by dissipation of an increasing amount
of exergy in the activating, forward “sucking-orderliness” direction of heating.

Thermodynamics of Bidirectionality: Optimized Adaptation in
Engine-Pump Duality

They know enough who know how to learn.

Henry Adams

This subsection is an investigation into the relationship of our steady state
X↔ to the entropy principle of non-equilibrium thermodynamics. In recent
papers Dewar [9] establishes the Maximum Entropy Principle for stationary
states of open, non-equilibrium systems by maximizing the path information
entropy S = −∑Γ pΓ ln pΓ with respect to pΓ subject to the imposed con-
straints. In this non-equilibrium situation, the maximum entropy principle
amounts to finding the most probable history realizable by the largest num-
ber of microscopic paths rather than microscopic states typical of Boltzmann-
Gibbs equilibrium statistical mechanics. This approach to non-equilibrium
MEP is supported by many investigations: the earth-atmosphere global fluid
system, for example, is believed to operate such that it generates maximum
potential energy and the steady state of convective fluid systems, like that
of the Lorenz model, have been suggested to represent a state of maximum
convective heat transfer, [23].
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E
Qh Q q

P
qc

T↔
TcTh

W = (1 − ι)(1 − Tc/Th)Qh

WP

Fig. 10.7. Reduction of the dynamics of opposites of Fig. 10.5b to an equivalent
engine-pump thermodynamic system. The fraction W = (1 − ι)WC of the available
maximum reversible work WC = ηC Qh := (1 − Tc/Th) Qh of a reversible engine
operating between [Tc, Th] is internally utilized to self-generate a heat pump P to
inhibit, by gradient dissipation, the entropy that would otherwise be produced in
the system. This permits decoupling natural irreversibility to a reversible engine-
pump dual that uses the fraction ι of the available exergy in running the pump.
The coefficient of performance q/W = q/(q − qc) = T↔/(T↔ − Tc) of P establishes
the reverse arrow of q := qc + W . The two parameters T↔ and ι are obtained as
described in the text.

An effective reduction of the inverse-direct model of Fig. 10.5b as a coupled
thermodynamic engine-pump system is illustrated in Fig. 10.7 in which heat
transfer between temperatures Th > Tc is reduced to a engine E-pump P com-
bination operating respectively between temperatures T < Th and Tc < T . We
assume that a complex adaptive system is distinguished by the full utilization
of the fraction W := (1 − ι)WC = (1 − ι)ηCQh = (1 − ι)(1 − Tc/Th)Qh of the
work output of an imaginary reversible engine running between temperatures
Th and Tc, to generate a pump P working in competitive collaboration with
a reversible engine E, where the irreversibility index

ι
def
=
WC −W

WC
∈ [0, 1] (10.2.57)

accounts for that part ιWC of available energy (exergy) that cannot be gain-
fully utilized but must be degraded in increasing the entropy of the universe.
The self-induced pump effectively decreases the temperature gradient Th −Tc

operating the engine to a value Th − T , Tc ≤ T < Th, thereby inducing a de-
gree of dynamic stability to the system.17 With q = qc +(1− ι)WC = qc +WP ,
the coefficient of performance ζP = q/WP = T/(T − Tc) of P yields

q = (1 − ι)Qh

(
T

Th

)(
Th − Tc

T − Tc

)
.

Let the irreversibility ι be computed on the basis of dynamic equilibrium18

17 More generally, W is to be understood to be indicative of the exergy of Eq.
(10.2.2).

18 Note that this is WE = WP = ιWC.
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Qh

(
Th − T

Th

)
:= WE(T ) = WP (T ) := q

(
T − Tc

T

)

of the engine-pump system; hence

ι =
T − Tc

Th − Tc
(10.2.58)

=
(Th − Tc) − (Th − T )

Th − Tc

where Th − Tc represents the original reversible work that is split up into the
non-entropic Th − T shaft output internally utilized to generate the pump
P , and a T − Tc manifestation of entropic work by P with the equilibrium
temperature T defining this recursive dynamics. The irreversibility ι can be
taken to have been adapted by the engine-pump system such that the induced
instability due to P balances the imposed stabilizing effort of E to the best
possible advantage of the system and its surroundings. This the system does
by adapting itself to a state that optimizes competitive collaboration for the
greatest efficiency consistent with this competitiveness. This distinguishing
feature of the non-equilibrium situation with corresponding equilibrium case
lies in the mobility of the defining temperature T : for the introverted self-
adaptive systems, the dynamics organizes to the prevailing situation by best
adjusting itself internally for maximum possible global advantage.

Define the equilibrium steady-state representing X↔ of optimized E-P
adaptability between E and P be given in terms of the adaptability function

αP (TP ) := ηEζP =

(
Th − TP

TP − Tc

)(
TP

Th

)

that represents an effective adaptive efficiency of the engine-pump system to
the environment (Tc, Th). Hence

TP =
1

2

[
(1 − αP )Th +

√
(1 − αP )2T 2

h + 4αPThTc

]
. (10.2.59a)

Alternatively if the system induces P to act as a refrigerator rather than a
pump then the defining equations, with ζR := qc/(q − qc) = Tc/(TR − Tc),
become

qc = (1 − ι)Qh

(
Tc

Th

)(
Th − Tc

TR − Tc

)
,

with the adaptability criterion

αR(TR) := ηEζR =

(
Th − TR

TR − Tc

)(
Tc

Th

)

leading to
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TR =
(1 + αR)ThTc

Tc + αRTh
. (10.2.59b)

For the reversible (ι = 0) ⇒ (T = Tc), α → ∞ case, with no en-
tropy production and no generation of P , the resulting inverse-system op-
erates uni-directionally as an ordering agent, while in the absence of E at
(ι = 1) ⇒ (T = Th), α = 0, the self-generation of P cannot, infact, occur.
An intermediate, non-zero, finite value of α is what the self-emergent system
seeks for its optimization that we take to be the maximum at α := 1−Tc/Th.
Hence

α = ηC =⇒





TP =
1

2

[
Tc +

√
T 2

c + 4Tc(Th − Tc)
]

TR =
(2Th − Tc)Tc

Th
,

(10.2.60)

leads to ιR = Tc/Th := 1 − α for the E-R system. The original temperature
gradient Th − Tc is shared by the E−P system in the true spirit of synthetic
cohabitation of opposites in the proportion E : Th − T , P : T − Tc thereby
optimizing its adaptability to the environment.

E-P E-R E-P E-R

T 426.5860 412.5000 qc 19.7791 28.1250

ι 0.7033 0.6250 S1 0.09375 0.09375

WC 28.1250 28.1250 S↔ 0.06593 0.05859

WE 8.3459 10.5469 η 0.1113 0.1406

Qc 66.6541 64.4531 η↔ 0.1113 0.1406

Q 55.6541 64.4531 ζ 8.9865 6.1111

q 28.1250 38.6719 ζ↔ 3.3699 2.6667

Table 10.5. Comparison of engine-pump and engine-refrigerator bi-directionality.
The equations used for E-R are (with corresponding ones for E-P ): α = 0.375,
WC = [1 − (Tc/Th)]Qh, WE = [1 − (T/Th)]Qh, Qc = Qh − (1 − ι)WC, Q = Qh −
WE , q = (1 − ι)(T/(T − Tc))WC, qc = (1 − ι)(Tc/(T − Tc))WC, S1 = WC/Tc,
S↔ = ιWC/Tc = (Qh/Th)[(T/Tc) − 1], η = (Qh − Qc)/Qh, η↔ = (Th − T )/Th,
ζ = Qc/(Qh − Qc), ζ↔ = qc/(qh − qc) = Tc/(Th − Tc). The role of the pump as
a “gradient dissipator” is to decrease the irreversibility (and chanoxity) index from
the metallic conduction value of 1 to (T − Tc)/(Th − Tc).

As an example, in the conduction of heat along a bar from Th = 480◦K
to Tc = 300◦K for Qc = Qh −W (= 0) = 75 kJ-min−1 involving an entropy
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increase of Sι=1 = −75/480 + 75/300 = 0.09375 kJ-(min-K)−1. If the bar is
replaced by a reversible ι = 0 engine between the same temperatures, then
WC = 28.125 kJ-min−1, Qc = Qh −W = (WC) = 46.875 kJ-min−1, and the
entropy change of Sι=0 = −75/480+46.875/300 = 0 precludes any emergence
in this reversible case. If, however, bi-directionality of X↔ is to be established
by an induced pump or refrigerator then the results, summarized in Table
10.5, shows that the actual entropy increases are 70% of the unmoderated
value S1 with an increase of the shaft work to (1 − ι)WC from 0.

This self-generation of bi-directional stability is to be compared and
contrasted with the entropy generation when a hot body is brought in
thermal contact with a cold body: As in the bi-directional case, the en-
tropy increase m1c1 ln(T/Th) + m2c2 ln(T/Tc) of the universe is maximum
at T = Th and minimum for T = Tc. Unlike in self-organizing com-
plexes however, the equilibrium system has a well-defined temperature T =
(m1c1Th +m2c2Tc)/(m1c1 +m2c2) that is not amenable to adjustment by the
system for its best possible advantage, with the resultant negative entropy
m1c1 ln(Tc/Th) implying that order must be imported from outside if such
a condition is to be physically realizable. Thus for m1/m2 = 30 kg/150 kg,
c1/c2 = 0.5 kJ/kg-◦K/2.5 kJ/kg-◦K, and Th/Tc = 480◦K/300◦K, whereas the
equilibrium temperatute of T = 306.92◦K generates 1.8477 kJ/K of entropy,
for a self-organizing system reversibility would impose T = 305.472◦K as the
solution of 0 = m1c1 ln(T/Th) + m2c2 ln(T/Tc), import 7.05 kJ/K of order
from the enlarged environment at T = Tc, and export 176.25 kJ/K of disorder
when T = Th.19

19 In a revealing analysis of What is Life? [29], the theoretical biologist Robert
Rosen contends [25] that it is precisely the duality between “how a given material
system changes its own behaviour in response to a force, and how that same
system can generate forces that change the behaviour of other systems” that
Schrodinger was addressing in the context of Mendelian genes and molecules and
“the mode of forcing of phenotypes (the actual physical properties of a molecule)
by genotypes (the genetic profile of the molecule)”. While the phenotype and
genotype are related, they are not necessarily identical with the environment
playing an important role in shaping the actual phenotype that results, Rosen
proceeds to argue that “We cannot hope for identical relations between inertial
and gravitational aspects of a system, such as are found in the very special realms
of particle mechanics. Yet, in a sense, this is precisely what Schroedinger essay
is about. Delbruck was seeking to literally reify a forcing (the Mandelian gene),
something ’gravitational ’, by clothing it in something with ’inertia’, by realizing it
as a molecule. Schrodinger, on the other hand understood that this was not nearly
enough, that we must be able to go the other way and determine the forcings
manifested by something characterized inertially: just as we realize a force by
a thing, we must also, perhaps more importantly, be able to realize a thing by
a force (emphasis added). It was in this later connection that Schrodinger put
forward the ’principle of order from order’ and the ’feeding of negative entropy’.
It was here that he was looking for the new physics”.
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In the Lorenz system, the potential energy of the top-heavy liquid cre-
ated by the imposed temperature gradient ∆T = Th − Tc, taking Tc to be
fixed, leads to conversion of the input heat energy to mechanical work of con-
vective viscous mixing that acts as a gradient dissipator. Taking Qh = 1,
Wr corresponds to R and ι = (R − Rg)/R to that fraction of R that is not
utilized in gravitational gradient dissipation through convection. In an arbi-
trary non-equilibrium steady state, the temperature induced upward potential
energy production must be balanced by the dissipations which includes an
atmospheric loss component also. In general for the non-equilibrium steady
state X↔, the increase in internal stability due to viscous dissipation leads
to a backward-forward synthesis, when the direct arrow of entropy increasing
emergence is moderated by the inverse arrow of order and self-organization.
This is when all irreversible motivations guiding the system must cease, and
the dead state of a “local non-equilibrium maximum entropy” — of magnitude
less than that of the completely irreversible “global” equilibrium conductive
state — consistent with the applied constraint of viscous damping, is reached.
Refer Fig. 10.5b.

The earth-atmosphere system offers another striking example of this non-
equilibrium local principle, in which the earth is considered as a two-region
body of the hot equator at Th and the cold poles at Tc, with radiative heat
input at the equator and thermal dissipation at the poles. A portion of the
corresponding Wr is utilized in establishing the P induces pole ↔ equator
atmospheric circulation resulting in internal stabilization, structuring, and
inhibitory gradient dissipation. The radiative polar heat loss constitutes the
entropy increasing direct arrow that is moderated by the that makes this
planet habitable.

As a final illustration, mention can be made to the interesting example of
frost heaving [22] as a unique model of a “reverse Lorenz system” where the
temperature gradient is along the direction of gravity. A regular Lorenz under
such conditions would be maximally irreversible, as an effective conductive
entity, without any internal generation of P -stabilization. In frost heaving,
however, ice and supercooled water are partitioned by a microporous material
permeable to the water, the pressure of the ice on the top of the membrane
being larger than that exerted by the water below: thus the temperature and
pressure of the water below are less than that of the ice above. If the water
is sufficiently supercooled however, it flows up against gravity due to P , into
the ice layer, freezes and in the process heaves the ice column up.

Thus according to Rosen, Schroedinger supreme contribution in posing his now
famous question elevated the object of his inquiry from a passive adjective to an
active noun by suggesting the necessity of a “new physics” for investigating how in
open, non-equilibrium systems, every forward-indirect arrow of phenotype inertia
engine E is necessarily coupled to a backward-direct impulse from some genotype
gravity pump P . For Schrodinger while a Mandelian gene was surely a molecule,
it was more important to investigate when the molecule becomes a gene.
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The non-equilibrium steady-state X↔, Equation (10.2.48), is therefore a
local maximum-entropy state that the dynamics of the non-linear system seeks
as its most gainful eventuality, given the constraint of conflicting and contra-
dictory demands of the universe it inhabits, with the constraints effectively
lowering the entropic sum S = −∑j pj ln pj . Accordingly while the entropy
of a partition of unconstrained elementary events in the rolling of a fair die
with {pj}6

j=1 = 1/6 is ln 6 = 1.7918, the entropy of a constrained partition
satisfying p1 + p3 + p5 = 0.6 and p2 + p4 + p6 = 0.4 in the appearance of
odd and even faces is 0.6 ln(0.2) + 0.4 ln(0.1333) = 1.7716. The applied con-
straints therefore reduce the number of faces of the die to an unconstrained
effective value of exp(1.7716) = 5.88, thereby reducing the disorder of the sys-
tem, which can be interpreted as a corresponding lowering of the temperature
gradient ∆T of the irreversible ι = 1 instance of W = 0. In the examples
above the respective constraints are the convection rolls, atmospheric con-
vection currents, and anti-gravity frost heaving. Without this component of
the energy input, emergent internal structuring in natural systems would be
absent. It may therefore be inferred that the two-component decomposition
(10.2.1) of entropy corresponds to the break-up we propose here.

10.2.3 An Index of Nonlinearity

At the moment there is no formalization of complexity that enables it to
overcome its current rather confused state and to achieve the objective of

first becoming a method and then a bonafide scientific theory. The
complexity approach that has recently appeared in modern scientific circles
is generally still limited to an empirical phase in which the concepts are not

abundantly clear and the methods and techniques are noticeable lacking.
This can lead to the abuse of the term “complexity” which is sometimes used

in various contexts, in senses that are very different from one another, to
describe situations in which the system does not even display complex

characteristics.

Formalizing complexity would enable a set of empirical observations, which
is what complexity is now, to be transformed into a real hypothetical-

deductive theory or into an empirical science. Therefore, at least for the
moment, there is no unified theory of complexity able to express the

structures and the processes that are common to the different phenomena
that can be grouped under the general heading of complexity. There are

several evident shortcomings in modern mathematics which make the
application of a complexity theory of little effect. Basically this can be put

down to the fact that mathematics is generally linear.

We are now faced with the following problem. We are not able to describe
chaotic phenomenology or even that type of organized chaos that is

complexity by means of adequate general laws; consequently we are not able
to formulate effective long-term predictions on the evolution of complex
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systems. The mathematics that is available to us does not enable us to do
this in an adequate manner, as the techniques of such mathematics were
essentially developed to describe linear phenomena in which there are no

mechanisms that unevenly amplify any initial uncertainty or perturbation.

Bertuglia and Vaio [3]

With ininality in the cartesian space C × C serving as the engine for the
increase of evolutionary entropic disorder, we now examine how a specifically
nonlinear index can be ascribed to chaos, nonlinearity and complexity to serve
as the benchmark for chanoxity. For this, we first recall two non-calculus
formulations of entropy that measure the complexity of dynamics of evolution
of a map f .

Let A = {Ai}I
i=1 be a disjoint partition of non-empty subsets of a set X;

thus
⋃

I
i=1Ai = X. The entropy

S(A) = −
I∑

i=1

µ(Ai) ln(µ(Ai)),

I∑

i=1

µ(Ai) = 1 (10.2.61)

of the partition A, where µ(Ai) is some normalized invariant measure of the
elements of the partition, quantifies the uncertainty of the outcome of an ex-
periment on the occurrence of any element Ai of the partition A. A refinement
B = {Bj}J≥I

j=1 of the partition A is another partition such that every Bj is a
subset of some Ai ∈ A, and the largest common refinement

A • B = {C : C = Ai

⋂
Bj for some Ai ∈ A, and Bj ∈ B}

of A and B is the partition whose elements are intersections of those of A and
B. The entropy of A • B is given by

S(A • B) = S(A) + S(B | A) (10.2.62)

= S(B) + S(A | B),

where the weighted average

S(B | A) =

I∑

i=1

P (Ai)S(B | Ai) (10.2.63a)

of the conditional entropy

S(B | Ai) = −
J∑

j=1

P (Bj | Ai) ln(P (Bj | Ai)) (10.2.63b)

of B given Ai ∈ A, is a measure of the uncertainty of B if at each trial it is
known which among the events Ai has occurred, and

P (Bj | Ai) =
P (Bj ∩Ai)

P (Ai)
(10.2.63c)
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yields the probability measure P (Bj ∩ Ai) from the conditional probability
P (Bj | Ai) of Bj given Ai, with P (A) the probability measure of event A.

The entropy (10.2.61) of the refinement An, rather than (10.2.62), that
has been used by Kolmogorov in the form

hKS(f ;µ) = sup
A0

(
lim

n→∞

1

n
S(An)

)
(10.2.64)

to represent the complexity of the map as measuring the time rate of creation
of information with evolution, yields ln 2 for the tent transformation. Another
measure — the topological entropy hT(f) := supA0

limn→∞(lnNn(A0)/n)
with Nn(A0) the number of divisions of the partition An derived from A0,
that reduces to

hT(f) = lim
n→∞

1

n
ln I(fn) (10.2.65)

in terms of the number of injective branches I(fn) of fn for partitions gen-
erated by piecewise monotone functions — also yields ln 2 for the entropy of
the tent map. For the logistic map,

I(fn) = I(fn−1) +
〈
{x : x = f−(n−1)(0.5)}

〉
(10.2.66)

is the number of injective branches arising from the solutions of

0 =
dfn(x)

dx
=
df(fn−1)

dfn−1

dfn−1(x)

dx

=
df(fn−1)

dfn−1

df(fn−2)

dfn−2
· · · df(f)

df

df(x)

dx

that yields
x = f−(· · · (f−(f−(0.5))) · · · )

where 〈{· · · }〉 is the cardinality of set {· · · }. Note that in the context of the
topological entropy, I(f) is only a tool for generating a partition on D(f) by
the iterates of f .

Example 10.1. (1) In a fair-die experiment, if A = {even, odd} and the refine-
ment B = {j}6

j=1 is the set of the six faces of the die, then for i = 1, 2

P (Bj | Ai) =





1

3
, j ∈ Ai

0, j /∈ Ai,

and S(B | A1) = ln 3 = S(B | A2) by (10.2.63b). Hence the conditional
entropy of B given A, using P (A1) = 0.5 = P (A2) and Eq. (10.2.63a), is
S(B | A) = ln 3. Hence
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S(A • B) = S(A) + S(B | A)

= ln 6.

If we have access only to partition B and not to A, then S(B) = ln 6 is the
amount of information gained about the partition B when we are told which
face showed up in a rolling of the die; if on the other hand the only partition
available is A, then S(A) = ln 2 measures the information gained about A on
the knowledge of the appearance of an even or odd face.

(2) The dynamical evolution of Fig. 10.3 provides an example of conditional
probability and conditional entropy. Here the refinements of basic partition
A0 = {matter, negmatter} = {A01, A00} generated by the inverses of the tent
map, are denoted as An = {t−n(A0i)}0,1 for n = 1, 2, · · · to yield the largest
common refinements

An = A0 • A1 • A2 • · · · • An, n ∈ N, (10.2.67)

where the refinements are denoted as indicated in the figure, and An = An.
Taking the measure of the elements of a partition to be its euclidean length,
gives

P (Anj | A0i) =





1

2n−1
, j ∈ A0i

0, j /∈ A0i,

S(An | A0i) = (n − 1) ln 2, i = 0, 1, (Equation 10.2.63b), S(An | A0) =
(n− 1) ln 2, and finally S(An •A0) = n ln 2. In case the initial partition A0 is
taken to be the whole of D(t), then (10.2.61) gives directly S(An) = n ln 2.

(3) Logistic map fλ(x) = λx(1 − x), [21]. For 0 ≤ λ < 3, Fig. 10.8a,
the dynamics can be subdivided into two broad categories. In the first, for
0 ≤ λ ≤ 2, I(fn

λ ) = 2 gives hT(fλ) = 0. This is illustrated in Fig. 10.8a (i),
(ii), and (iii) which show how the number of subsets generated on X by the
increasing iterates of the map tend from 2 to 1 in the first case and to the
set {{0} , (0, 1), {1}} for the other two. The figure demonstrates that while in
(a) the dynamics eventually collapses and dies out, the other two cases are
equally uneventful in the sense that the converged multifunctional limits —
of (0, [0, 1/2])∪ ((0, 1), 1/2)∪ (1, [0, 1/2])} in figure (iii), for example — are as
much passive and has no real “life”; this is quantified by the constancy of the
lap number and the corresponding topological entropy hT(f) = 0. Although
the partition induced on X = [0, 1] by the evolving map in (iv) is refined with
time, the stability of the fixed point x∗ = 0.6656 prevents the dynamics from
acquiring any meaningful evolutionary significance with its multifunctional
graphical limit being of the same type as in (ii) and (iii): as will be evident
in what follows, instability of fixed points is essential for the evolution of
meaningful complexity. λ(0) = 2 of (iii) — obtained by solving the equation
fλ(0.5) = 0.5 — is special because its super-stable fixed point x = 0.5 is the
only point in D(f) at which f is injective and therefore well-posed by this
criterion.
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Fig. 10.8a. Non-life dynamics of the first 10 iterates of the logistic map fλ =
λx(1 − x) generated by its only stable fixed point x∗ = (λ − 1)/λ.

For 3 ≤ λ ≤ 4, hT(fλ) = 0 whenever I(fλ) ≤ 2n which occurs, from Fig.
10.8b, for λ ≤ λ(1) = 1 +

√
5 = 3.23607; here λ(m) is the λ value at which a

super-stable 2m-cycle appears. The super-stable λ for which x = 0.5 is fixed
for fn, n = 2m, m = 0, 1, 2, · · · leads to a simplification of the dynamics of
the map, possessing as they do, the property of the stable horizontal parts of
the graphically converged multifunction being actually tangential to all the
turning points of every iterate of f . The immediate consequence of this is
that for a given 3 < λ < λ∗ = 3.5699456, the dynamics of f attains a state
of basic evolutionary stability after only the first {2m}m=0,1,··· time steps in
the sense that no new spatial structures emerge after this period, any further
temporal evolution being fully utilized in spatially self -organizing this basic
structure throughout the system by the generation of equivalence classes of
the initial 2m time steps. As seen in Fig. 10.8b, the unstable fixed point x∗ is
directly linked to its stable partners of f2 that report back to x∗. Compared
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Fig. 10.8b. Dynamics of stable 2-cycle of the logistic map, where each panel dis-
plays the first four iterates superposed on the graphically converged multifunction
represented by iterates 1001 and 1002. Panel (iv) in this and the following two fig-
ures, illustrates Eqs. (10.2.56a, b) in the birth of new period doubling cycles. The

di := f2i−1

λi
(0.5) − 0.5 in these figures define the universal Feigenbaum constant

−α := limi→∞ di/di+1 = 2.502907 · · · , while the super-cyclic parameters (λi)i gen-
erate the second constant δ := limi→∞(λi − λi−1)/(λi+1 − λi) = 4.669201 · · · of
period doubling.

to (i) however, where the relative simplicity of the instability of x∗ allows its
stable partners to behave monotonically as in Fig. 10.8a (ii), the instability of
10.8b (iii) is strong enough to induce the oscillatory mode of convergence of
10.8a (iv). Case (ii) of the super-stable cycle for λ(1) = 1+

√
5 — obtained by

solving the equation f2
λ(0.5) = 0.5 — reflecting well-posedness of f at x = 0.5

represents, as in Fig 10.8a (iii), a mean of the relative simplicity of (i) and the
complex instability of (iii) that grows with increasing λ.
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When λ > λ(1) as in Figs. 10.8b (iii) and 10.8c, the number of injective
branches lie in the range 2n ≤ I(fn

λ ) ≤ 2n and the difficulty in actually ob-
taining these numbers for large values of n is apparent from Eq. (10.2.66). The
unstable basic fixed point x∗ in Fig. 10.8c is now linked to its unstable part-
ners denoted by open circles arising from f2, who report back to the overall
controller x∗ the information they receive from their respective stable sub-
committees. Compared to the 2-cycle of Fig. 10.8b, the instability of principal
x∗ is now serious enough to require sharing of the responsibility by two other
instability governed partners who are further constrained to delegate author-
ity to the subcommittees mentioned above. Case (ii) of the super-stable cycle
for λ(2) = 3.49856 is obtained by solving f4

λ(0.5) = 0.5 denotes as before
the mean of the relative simplicity of (i) and the large instability of (iii). For
λ = 4, however I(fn

4 ) = 2n and the topological entropy reduces to the sim-
ple h(f4) = ln 2; hT(f) > 0 is sufficient condition for fλ to be chaotic. The
tent map behaves similarly and has an identical topological entropy, see Fig.
10.10a.

The difficulty in evaluating I(fn) for large values of n and the open ques-
tion of the utility of the number of injective branches of a map in actually
measuring the complex dynamics of nonlinear evolution, suggests the signif-
icance of the role of evolution of the graphs of the iterates of fλ in defining
the dynamics of natural processes. It is also implied that the dynamics can
be simulated through the partitions induced on D(f) by the evolving map as
described by graphical convergence of the functions in accordance with our
philosophy that the dynamics on C derives from the evolution of f in C2

as observed in D(f). The following subsection carries out this line of reason-
ing, to define a new index of chaos, nonlinearity and complexity, that is of
chanoxity.

ChaNoXity

The really interesting comparison (of Windows) is with Linux, a product of
comparable complexity developed by an independent, dispersed community
of programmers who communicate mainly over the internet. How can they

outperform a stupendously rich company that can afford to employ very
smart people and give them all the resources they need? Here is a possible

answer: Complexity.

Microsoft’s problem with Windows may be an indicator that operating
systems are getting beyond the capacity of any single organization to handle
them. Therein may lie the real significance of Open Source. Open Source is
not a software or a unique group of hackers. It is a way of building complex
things. Microsoft’s struggles with Vista suggests it may be the only way to

do operating systems in future.

John Naughton, Guardian Newspapers Limited, May 2006.
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Fig. 10.8c. Dynamics of stable 4-cycle of the logistic map, where each panel dis-
plays the first four iterates superposed on the graphically “converged” multifunction
represented by iterates 1001-1004.

The magnified view of the stable 8-cycle, Fig. 10.8d, graphically illustrates
evolutionary dynamics of the logistic interaction. The 23 unstable fixed points
marked by open circles interact among themselves as indicated in the figure
to generate the stable periodic cycle, providing thereby a vivid illustration of
competitive collaboration between matter-negmatter effects. The increasing
iterations of irreversible urge toward bijective simplicity of ininality consti-
tutes the activating backward-direct direction of increasing entropic disorder
that is effectively balanced by restraining forward-inverse exergy destruction
of expansion, increasing order, and self-organization that eventually leads to
the stable periodic orbit. The activating effect of the direct limit appears in
the figure as the negative slope associated with each unstable fixed points ex-
cept the first at x = 0 which must now be paired with its equivalent image at
x = 1. Display (iii) of the partially superimposed limit graphs 1001-1008 on
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the first 8 iterates — that remain invariant with further temporal evolution —
illustrate that while nothing new emerges after this initial period, further in-
creasing temporal evolution propagates the associated changes throughout the
system as self-generated equivalence classes guiding the system to a state of
local (that is spatial, for the given λ) periodic stasis. As compared to Fig.
10.3 for the tent interaction, this manifestation of coeffects in the logistic for
λ < λ∗ = 3.5699456 has a feature that deserves special mention: while in
the former the negative branch belongs to distinct fixed points of equivalence
classes, in the later matter-negmatter competitive-collaboration is associated
with each of the 2N generating branches possessing bi-directional character-
istics with the activating effect of negmatter actually initiating the genera-
tion of the equivalence class. In the observable physical world of D(f), this
has the interesting consequence that whereas the tent interaction generates
matter-negmatter intermingling of disjoint components to produce the homog-
enization of Fig. 10.3, for the logistic interaction the resulting behaviour is a
consequence of a deeper interplay of the opposing forces leading to a higher
level of complexity than can be achieved by the tent interaction.

This distinction reflects in the interaction pair (f, f) that can be repre-
sented as

x .−→ 2x .−→
{

2x, if 0 ≤ x < 0.5
2(1 − x), if 0.5 ≤ x ≤ 1

, x .−→ 2x .−→ 4x(1 − x),

(10.2.68)
which leads — despite that “researchers from many disciplines now grapple
with the term complexity, yet their views are often restricted to their own
specialties, their focus non-unifying; few can agree on either a qualitative or
quantitative use of the term” [6] — to the

Definition 10.2 (Complex System, Complexity). The couple ((X,U), f)
of a compound topological space (X,U) and an interaction f on it is a complex
system C if (see Fig. 10.9 and Eq. (10.2.72))

(CS1) The algebraic structure of D(f) is defined by a finite family
{Aj}n

j=0, n = 1, 2, · · · , N , of progressively refined hierarchal partitions of non-
empty subsets induced by the iterates of f , with increasing evolution building
on this foundation the overall configuration of the system.

This family interacts with each other through
(CS2) The topology of (D,U) such that the subbasis of U at any level of

refinement is the union of the open sets of its immediate coarser partition and
that generated by the partition under consideration where all open sets are
saturated sets of equivalence classes generated by the evolving iterates of the
interaction.

The complexity of a system is a measure of the interaction between the
different levels of partitions that are generated on D(f) under the induced
topology on X. Thus as a result of the constraint imposed by (CS1), under
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Fig. 10.8d. Magnified view of the stable 8-cycle graphically illustrates how the
evolutionary dynamics of the logistic interaction, under the synthetic influence of
its stable-unstable components, spontaneously produces for any given resource 3 ≤
λ < λ∗, a set of 2n uniquely stable configurations between which it periodically
oscillates. Thus in this case the “unpredictability” of nonlinear interactions manifests
as a “surprise” in the autonomous generation of a set of well-defined stable states,
which as we shall see defines the “complexity” of the system.

the logistic interaction complex structures can emerge only for 3 ≤ λ < λ∗
which in the case of the stable 2-cycle of Fig. 10.8b(ii), reduces to just the
first 2 time steps that is subsequently propagated throughout the system by
the increasing ill-posedness, thereby establishing the global structure as seen
in Fig. 10.9. With increasing λ the complexity of the dynamics increases as
revealed in the succeeding plots of 4- and 8-cycles: compared to the single
refinement for the 2-cycle, there are respectively 2 and 3 stages of refinements
in the 4- and 8-cycles and in general there will be N refining partitions of
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Fig. 10.9. The role of unstable fixed points in generating the partitions {Aj}n
j=0,

n = 1, 2, · · · , N required in the definition of complexity, where the {Aj} are ap-
propriately defined as the inverse images of fi,j :=

∣∣f i(0.5) − f j(0.5)
∣∣, refer Eq.

(10.2.72), and A0 = D(f). The open circles in (i) and (ii) represent the unstable
fixed points that have been omitted from (iii) for the sake of clarity. The converged
multifunctional graphical limits are also shown for the 2- and 4-cycles.

D(f) for the 2N -stable cycle. The equilibrated X↔, by Fig. 10.5b and the
subsequent discussion, corresponds to the {D, f(D), · · · , f2N

(D)} on D(f).
Below λ = 3, absence of instabilities allows no emergence of new features,
while above λ = λ∗ the absence of stabilizing effects prevent self-organization
from moderating the dynamics of the system.The motivating saturated open
sets of X on D(f) and R(f) are the projections of the boxes of the converged
multi-limits in Figs. 10.8b, c, d onto the x- and y−axes, with their boundary
being represented by the members of the equivalence class [x∗] of the unstable
fixed point x∗.

Complexity therefore, represents a state of dynamical balance between
a catabolic emergent, destabilizing, backward, bottom-up pump direction,
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opposed by an anabolic top-down, stabilizing forward engine arrow of self-
organization. This may be represented, with reference to Fig. 10.5a, b, as

forward-inverse arrow

Synthesis of E-expansion,
order, entropy decreasing top-

down self-organization C←





⊕





backward-direct arrow

Analysis of P-contraction,
disorder, entropy increasing
bottom-up emergence →C

⇐⇒
Synthetic cohabitation of opposites C = C↔,

(10.2.69)
with ⊕ denoting a non-reductionist sum of the components of a top-down
engine and a bottom-up pump as elaborated in Sec. 10.2.2. A complex sys-
tem behaves in an organized collective manner with properties that cannot be
identified with any of the individual parts but arise from the entire structure
acting as a whole: these systems cannot be dismantled into their components
without destroying itself. Analytic methods cannot simplify them because such
techniques do not account for characteristics that belong to no single compo-
nent but relate to the parts taken together with all their interactions. This
analytic base must be integrated into a synthetic whole with new perspectives
that the properties of the individual parts fail to add up to. A complex system
is therefore a

◮ dynamical, C-interactive, interdependent, hierarchal homeostasy of P-
emergent, disordering instability competitively collaborating with adaptive
E-self-organized, ordering stability generating thereby a non-reductionist
structure that is more than the sum of its constituent parts.

Emergence implies instability inspired (and therefore “destructive”, anti-stabil-
izing) generation of overall characteristics that do not reduce to a linear com-
position of the interacting parts: complexity is a result of the “failure of the
Newtonian paradigm to be a general schema through which to understand the
world”, [3], and in fact “if there were only Newton’s laws, there could never
have been any motion in the earth” [22].20 As noted earlier, complexity can
be distinguished into two subclasses depending on which of the two limits of
Eq. (10.2.69) serve as activating and which restraining and our classification
of “life” will be based on this distinction.

A complexity supporting interaction will be distinguished as C-interaction.
Examples of C- and non-C-interactions that will be particularly illuminating

20 Darwinian theory of natural selection is different from complexity generated emer-
gence and self-organization. Selection represents a competition between different
systems for the limited resources at their disposal: it signifies an externally di-
rected selection between competing states of equilibria that serves to maximize
the “fitness” of the system with respect to its environment. Complexity, on the
other hand, typifies an internally generated process of “continuous tension be-
tween competition and cooperation”.
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in our work are respectively the λ-logistic map and its “bifurcated” (λ/2)-tent
counterpart

λx(1 − x) .−→





λ

2
x, 0 ≤ x ≤ 0.5

λ

2
(1 − x), 0.5 ≤ x ≤ 1.

(10.2.70)

It will be convenient to denote a complex system C simply as (A,B), with the
interaction understood from the context. The distinguishing point of difference
between the dissipative structures D of multi-dimensional differential system
and evolutionary complex dynamics of a C-interaction is that the former need
not possess any of the hierarchal configuration of the later. This tiered struc-
ture of a complex system is an immediate consequence of the partitioning
refinements imposed by the interaction on the dynamics of the system with
emergence and self-organization being the natural outcome when these refine-
ments, working independently within the global framework of the interaction,
are assembled together in a unifying whole. Hence it is possible to make the
distinction

◮ a dissipative structure D is a special system of spatially multidimensional,
non-tiered, forward-backward synthesis of opposites that attains dynamic
equilibrium largely through self-organization without significant instability
inspired emergence

from a general complex system.

A Measure of ChaNoXity

The above considerations allow us to define, with reference to Fig. 10.5b, the
chanoxity index of the interaction to be the constant 0 ≤ χ ≤ 1 that satisfies

f(x) = x1−χ, x ∈ D(f). (10.2.71a)

Thus if 〈f(x)〉 and 〈x〉 are measures that permit (10.2.71a), then in

χ = 1 − ln 〈f(x)〉
ln 〈x〉 (10.2.71b)

we take
(a) 〈x〉 to be the number of basic unstable fixed points of f responsible

for emergence. Thus for 1 < λ ≤ 3 there is no basic unstable fixed point at
x = 0, followed by the familiar sequence of 〈x〉 = 2N points until at λ = λ∗ it
is infinite.

(b) for f(x) the estimate

〈f(x)〉 = 2f1 +

N∑

j=1

2j−1∑

i=1

fi,i+2j−1 , N = 1, 2, · · · , (10.2.72)
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λ N 〈f(0.5)〉 χN λ N 〈f(0.5)〉 χN

(1, 3] − 1.000000 0.000000 3.5699442 9 3.047727 0.821363

3.2360680 1 1.927051 0.053605 3.5699454 10 3.053571 0.838950

3.4985617 2 2.404128 0.367243 3.5699456 11 3.056931 0.853447

3.5546439 3 2.680955 0.525751 3.5699457 12 3.058842 0.865585

3.5666676 4 2.842128 0.623257 3.5699457 13 3.059855 0.875887

3.5692435 5 2.935294 0.689299 3.5699457 14 3.060524 0.884730

3.5697953 6 2.988959 0.736726 ↓ ↓ ↓ ↓?
3.5699135 7 3.019815 0.772220 λ∗ ∞ 3.?????? 1.000000

3.5699388 8 3.037543 0.799637

Table 10.6a. In the passage to full chaoticity, the system becomes increasingly
complex and nonlinear (remember: chaos is maximal nonlinearity) such that at the
critical value λ = λ∗ = 3.5699456, the system is fully chaotic and complex with
χ = 1. For 1 < λ ≤ 3 with no generated instability of which λ = 2 is representative,
χ = 1 − ln(1/2 + 1/2)/0 = 0. The expression for 〈f(x)〉 reduces to 2f1 + f12,
2f1 + f12 +(f13 + f24), 2f1 + f12 +(f13 + f24)+ (f15 + f26 + f37 + f48) for N = 1, 2, 3
respectively.

with fi = f i(0.5) and fi,j = |f i(0.5)−f j(0.5)|, to get the measure of chanoxity
as

χN = 1 − 1

N ln 2
ln


2f1 +

N∑

j=1

2j−1∑

i=1

fi,i+2j−1


 , (10.2.73)

that we call the dimensional chanoxity of fλ
21; notice how Eq. (10.2.72) ef-

fectively divides the range of f into partitions that progressively refine with
increasing N . In the calculations reported here, λ is taken to correspond to
the respective superstable periodic cycle, where we note from Figs. 10.8b, c
and d, that the corresponding super-stable dynamics faithfully reproduces the
features of emergence during the first N iterates, followed by self-organization
of the emerging structure for all times larger than N .

The numerical results of Table 10.6a suggest that

lim
N→∞

χN = 1

21 Recall that the fractal dimension of an object is formally defined very similarly:

D =
ln(# self-similar pieces into which the object can be decomposed)

ln(magnification factor that restores each piece to the original)
.
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at the critical λ = λ∗ = 3.5699456. Since χ = 0 gives the simplest linear
relation for f , a value of χ = 1 indicates the largest non-linearly emergent
complexity so that the logistic interaction is maximally complex at the tran-
sition to the fully chaotic region. It is only in this region 3 ≤ λ < λ∗ of
resources that a global synthesis of stability inspired self-organization and
instability driven emergence lead to the appearance of a complex structure.

λ
N

12 14 16 18 20 → ∞

3.5700
〈f(0.5)〉 5.057857 10.69732 31.38651 119.4162 468.8398

χN 0.805123 0.755773 0.689245 0.616675 0.556352
?→ 0.0000

3.6000
〈f(0.5)〉 275.7782 1125.908 4480.310 17996.46 72205.91

χN 0.324386 0.275938 0.241914 0.214699 0.193009
?→ 0.0000

3.7000
〈f(0.5)〉 885.4386 3683.121 14863.74 59511.41 236942.7

χN 0.184146 0.153806 0.133781 0.118840 0.107291
?→ 0.0000

3.8000
〈f(0.5)〉 1167.886 4597.633 18266.08 73197.48 293016.6

χN 0.150860 0.130952 0.115195 0.102249 0.091969
?→ 0.0000

3.9000
〈f(0.5)〉 1381.043 5595.363 22404.29 89472.39 358001.9

χN 0.130705 0.110713 0.096782 0.086158 0.077520
?→ 0.0000

3.9999
〈f(0.5)〉 1691.944 6625.197 26525.88 106254.9 424020.1

χN 0.106294 0.093304 0.081555 0.072379 0.065311
?→ 0.0000

4.0000
〈f(0.5)〉 14.00000 16.00000 18.00000 20.00000 22.00000 → N + 2

χN 0.682720 0.714286 0.739380 0.759893 0.777028 → 1

Table 10.6b. Illustrates how the fully chaotic region of λ∗ < λ < 4 is effectively
“linear” with no self-organization, and only emergence. The jump discontinuity in χ
at λ∗ reflects a qualitative change in the dynamics, with the energy input for λ ≤ λ∗

being fully utilized in the generation of complex internal structures of the system of
emerging patterns and no self-organization .

What happens for λ > λ∗ in the fully chaotic region where emergence per-
sists for all times N → ∞ with no self-organization, is shown in Table 10.6b
which indicates that on crossing the chaotic edge, the system abruptly trans-
forms to a state of effective linear simplicity that can be interpreted to result
from the drive toward ininality and effective bijectivity on saturated sets and
on the component image space of f . This jump discontinuity in χ demarcates
order from chaos, linearity from (extreme) nonlinearity, and simplicity from
complexity. This non-organizing region λ > λ∗ of deceptive simplicity char-
acterized by dissipation and irreversible “frictional losses”, is to be compared
with the nonlinearly complex domain 3 ≤ λ < λ∗ where irreversibility gen-



10 ChaNoXity: The Dynamics of Opposites 339

erates self-organizing useful changes in the internal structure of the system
in order to attain the levels of complexity needed in the evolution. While the
state of eventual evolutionary homeostasy appears only in 3 ≤ λ < λ∗, the
relative linear simplicity of λ > λ∗ arising from the dissipative losses char-
acteristic of this region conceals the resulting self-organizing thrust of the
higher periodic windows of this region, with the smallest period 3 appearing
at λ = 1 +

√
8 = 3.828427. By the Sarkovskii ordering of natural numbers,

there is embedded in this fully chaotic region a backward arrow that induces
a chaotic tunnelling to lower periodic stability eventually terminating with
the period doubling sequence in 3 ≤ λ < λ∗. This decrease in λ in the face of
the prevalent increasing disorder in the over-heated scorching λ > λ∗ region
reflecting the negmatter effect of “letting off steam”, is schematically indicated
in Fig. 10.10a and is expressible as

x −→ fλ(x)





self-organizing complex system
3 ≤ λ < λ∗, 0 < χ ≤ 1,

ininality−→ λ∗ ≤ λ ≤ 4, χ = 0,
chaotic complex system





regulating←−
Sarkovskii ↑

−→
effects

(10.2.74)

Under normal circumstances dynamical equilibrium is attained, as argued
above, within the temporal, iterational, self-organizing component of the loop
above. If, however, the system is spatially driven by an increasing λ into the
fully chaotic region, the global negworld effects of its periodic stable win-
dows acts as a deterrent and, prompted by the Sarkovskii ordering induces
the system back to its self-organizing region of equilibration. This condition of
dynamical homeostasy is thus marked by a balance of both the spatial and tem-
poral effects, with each interacting synergetically with the other to generate an
optimum dynamical state of stability, with Figs. 10.8b, c, d clearly illustrating
how new, distinguished and non-trivial features of the evolutionary dynamics
occur only at the 2N unstable fixed points of fλ, leading to emerging patterns
that characterize the net resources λ available to the interaction.

Panels (i), (ii), and (iii) of Fig. 10.10a magnifies these features of the defin-
ing fixed points and their classes for 3 ≤ λ < λ∗ that generates the stable-
unstable signature in the graphically convergent limit of t → ∞, essentially
reflecting the synthetic cohabitation of the matter-negmatter components as-
sociated with these points. This in turn introduces a sense of symmetry with
respect to the input-output axes of the interaction that, as shown in panel
(iii), is broken when λ > λ∗ with the boundary at the critical λ = λ∗ signal-
ing this physical disruption with a discontinuity in the value of the chanoxity
index χ. Fig. 10.10b which summarizes these observations, identifying the
self-organizing emergent region 3 ≤ λ < λ∗ as the “life” supporting complex
domain of the logistic interaction fλ. Below λ = 3, the resources of fλ are
insufficient in generating complexity, while above λ = λ∗ too much “heat” is
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Fig. 10.10a. In contrast with the relatively tame (i) and (ii), panel (iii) illustrates
the property of fully chaotic maximal ill-posedness and instability.

produced for support of constructive competition between the opposing direc-
tions, with the drive toward uniformity of ininality effectively nullifying the
reverse competition. χ is in fact the irreversibility index ι in the complexity
range 3 ≤ λ < λ∗. Both these parameters lie in the identical unit interval [0,1],
with absence of disorder-inducing P at (ι = 0)(T = Tc) corresponding to the
order-freezing λ = 3 and absence of order-generating E at (ι = 1)(T = Th)
consistent with the disorder-disintegrating λ = λ∗. The later case is effectively
indistinguishable from the former because when the engine is not present no
pump can be generated that shows up as an identical χ = 0 for λ > λ∗.
Significantly, however, while the former represents stability with reference to
D(f) the later is stability with respect to R(f), and in the absence of an
engine direction at ι = 1 with increasing irreversibility and chanoxity, con-
trol effectively passes from the forward stabilizing direction to the backward
destabilizing sense, thereby bringing the complementary neg-world effects into
greater prominence through the appearance of singularities with respect to
D(f). Finally, Fig. 10.10c which is a plot of the individual increasing and de-
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Fig. 10.10b. The dynamics of panels (i)-(iii) generates this division of the available
resource into order, 0 ≤ λ < 3; chaos, λ∗ ≤ λ; and complex, 3 ≤ λ < λ∗. This
complex region C is distinguished as a synthetic cohabitation of the stable-unstable
opposites of A and B. The feedback of the chaos and the order regions constitutes
the required synthesis to the higher level of complexity.

creasing parts of the logistic map confirms the observation that independent
reductionist evolution of the component parts of a system cannot generate
chaos or complexity. This figure, illustrating the unique role of non-injective
ill-posedness in defining chaos, complexity and “life”, clearly shows how the
individual parts acting on their own in the reductionist framework and not in
competitive collaboration, leads to an entirely different simple, non-complex,
dynamics.

The figures of the dynamics in regions λ < 3 and λ∗ < λ of actual and
deceptive simplicity can be interpreted in terms of symmetry arguments as
follows [3]. In the former stable case of symmetry in the position of the in-
dividual parts of the system, the larger the group of transformations with
respect to which the system is invariant the smaller is the size of the part that
can be used to reconstruct the whole, and symmetry is due to stability in the
positions. By comparison, the unstable chaotic region displays statistical sym-
metry in the sense of equal probability of each component part that, without
any fixed position, finds itself anywhere in the whole, and symmetry is in the
spatial or spatio-temporal averages.



342 A. Sengupta

Fig. 10.10c. Reductionism cannot generate chaos or complexity or “life”. This figure
clearly illustrates the unique role of non-injective ill-posedness in defining chaos,
complexity and “life”, how the individual parts acting independently on their own
in the reductionist framework not in competitive collaboration, leads to an entirely
different simple, non-complex, dynamics.

10.3 What Is Life?

This 1944 question of Erwin Schroedinger [29, “one of the great science classics
of the twentieth century”] credited with “inspiring a generation of physicists
and biologists to seek the fundamental character of living systems” [13], sug-
gests that “the essential thing in metabolism is that the organism succeeds
in freeing itself from all the entropy it cannot help producing while alive”,
thereby maintaining order by consuming the available free energy in generat-
ing high entropy waste. In biology, “life” might mean the ongoing process of
which living things are a part, or the period between birth and death of an or-
ganism, or the state of something that has been born and is yet to die. Living
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organisms require both energy and matter to continue living, are composed
of at least one cell, are homeostatic, and evolve; life organizes matter into
increasingly complex forms in apparent violation of the tenet of the second
law that forbids order in favour of discord, instability and lawlessness.

Among the various characterizations of life that can be found in the liter-
ature, the following are particularly noteworthy.

◮ Everything that is going on in Nature (implies) an increase of entropy of
the part of the world where it is going on. A living organism continually
increases its entropy and thus tends to approach the dangerous state of
maximum entropy, which is death. It can only keep aloof from it, i.e. stay
alive, by continually drawing from its environment “negative entropy”. The
essential thing in metabolism is that the organism succeeds in freeing itself
from all the entropy it cannot help producing while alive by attracting, as it
were, a stream of negative entropy upon itself (in order) to compensate the
entropy increase it produces by living. It thus maintains itself stationery
at a fairly high level of orderliness (= fairly low level of entropy) (by)
continually sucking orderliness from its environment. In the case of higher
animals we know the kind of orderliness they feed upon: the extremely well-
ordered state of matter in more or less complicated organic compounds,
which serve them as foodstuff. After utilizing it they return it in a very
much degraded form — not entirely degraded, however, for plants can
still make use of it. These, of course, have their most powerful supply of
negative entropy in the sunlight. Schroedinger [29].

◮ Life is a far-from-equilibrium dissipative structure that maintains its local
level of self-organization at the cost of increasing the entropy of the larger
global system in which the structure is imbedded. Schneider and Kay
[27].

◮ A living individual is defined within the cybernetic paradigm as a system
of inferior negative feedbacks subordinated to (being at the service of) a
superior positive feedback. Korzeniewski [16].

◮ Living things are systems that tend to respond to changes in their envi-
ronment, and inside themselves, in such a way as to promote their own
continuation; this may be interpreted to mean that a living system contin-
uously computes the solution to the problem of its own continued existence
through a process of internal adjustments to external causation. Morales
[19].

The message of bidirectional homeostasy implicit in the above passages
forms the basis of Cinquin and Demongeot’s Positive and Negative Feedback:
Striking a Balance Between Necessary Antagonists [7] in a wide class of bio-
logical systems that possess multiple steady states. To deal with such classes
of nonequilibrium systems, Schneider and Kay’s [27] reformulation of Kestin’s
Unified Principle of Thermodynamics [14] implies that thermodynamic gra-
dients drive self-organization, and chemical gradients lead to autocatalytic
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self-organizing dissipative reactions with positive feedback, with the activity
of the reaction augmenting itself in self-reinforcing reactions, stimulating the
global activity of the whole. Seen in this perspective, “life is a balance between
the imperatives of survival and energy degradation” identifiable respectively
with the backward and forward directions of Eq. (10.2.69). In the present con-
text, it is more convenient and informative to view these arrows not by affine
translation as was done in Sec. 10.2.2, but by considering the two worlds in
their own reference frames with their forward arrows opposing each other and
establishing a one-to-one correspondence between them; the activating and its
regulating spaces are then equivalent22. This equivalence of the forward with
its corresponding backward will serve to differentiate “life” from the normal
complex system as suggested below.

All multicellular organisms are descendants of one original cell, the fertil-
ized egg (or zygote) with the potential to form an entire organism through a
process of bifurcation called mitosis. The function of mitosis is to first desta-
bilize the zygote by constructing an exact copy of each chromosome and then
to distribute, through division of the original (mother) cell, an identical set of
chromosomes to each of the two progeny (daughter) cells. The two opposites
involved in this process are the male — modeled by the increasing positive
slope half of the logistic map — sperm cell (represented by the fixed point
xM = 0) and the female — modeled by the decreasing, negative slope of the
map — egg (represented by the fixed point xF = (λ − 1)/λ). The first cell
division of the fertilized egg for λ = 3, initiates a chain of some 50 bifurca-
tions to generate the approximately 1014 cells in an adult human, with each
division occurring at equal intervals of approximately twenty hours. All of the
approximately 200 distinct types of cells are derived from the single fertilized
egg xF through a process known as differentiation and specialization by which
an unspecialized cell specializes into one of the many cooperating types, such
as the heart, liver and muscle, each with its own individually distinctive role
collaborating with the others to make up the whole living system. During this
intricately regulated stage of self-organization, certain genes are turned on, or
become activated, while other genes are switched off, or deactivated, so that a
differentiated cell develops specific characteristics and performs specific func-
tions. Differentiation involves changes in numerous aspects of cell physiology:
size, shape, polarity, metabolic activity, responsiveness to signals, and gene ex-
pression profiles can all change during differentiation. Compare this with the
emerging patterns of partitioning induced by the logistic map for number of
iterates ≤ N in the 2N stable cycle that resulted in the definition (10.2.73) of
the chanoxity index in Sec. 10.2.3, followed by the self-organizing iterates for
times larger than N . This sequence of destabilizing-stabilizing cell divisions

22 Thus in R, | a |= | −a | defines an equivalence, and if a < b then −b < −a
when viewed from R+, but a < b in the context of R−. The basic fact used here
is that two sets are “of the same size”, or equipotent, iff there is a one-to-one
correspondence between them.
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represent emerging self-organization in the bidirectional synthetical organi-
zation (10.2.69) of a complex system: through cell cooperation, the organism
becomes more than merely the sum of its component parts.

Abnormal growth of cells leading to cancer occur because of malfunctioning
of the mechanism that controls cell growth and differentiation, and the level of
cellular differentiation is sometimes used as a measure of cancer progression.
A cell is constantly faced with problems of proliferation, differentiation, and
death. The bidirectional control mechanism responsible for this decision is a
stasis between cell regeneration and growth on the one hand and restraining
inhibition on the other. Mutations are considered to be the driving force of
evolution, where less favorable mutations are removed by natural selection,
while more favorable ones tend to accumulate. Under healthy and normal
conditions, cells grow and divide to form new cells only when the body needs
them. When cells grow old and die, new cells take their place. Mutations can
sometimes disrupt this orderly process, however. New cells form when the
body does not need them, and old cells do not die when they should. Each
mutation alters the behavior of the cell somewhat. This cancerous bifurcation,
which is ultimately a disease of genes, is represented by the chaotic region λ ≥
λ∗ where no stabilizing effects exist. Typically, a series of several mutations
is required before a cell becomes a cancer cell, the process involving both
oncogenes that promote cancer when “switched on” by a mutation, and tumor
suppressor genes that prevent cancer unless “switched off” by a mutation.

Life is a specialized complex system of homeostasis between these oppo-
sites, distinguishing itself by being “alive” in its response to an ensemble of
stratified hierarchal units exchanging information among themselves so as to
maintain its entropy lower than the maximal possible for times larger than the
“natural” time for decay of the information-bearing substrates. Like normal
complex systems, living matter respond to changes in their environment to
promote their own continued existence by resisting “the gradients responsible
for the nonequilibrium condition”. A little reflection however suggests that
unlike normal complex systems, the activating direction in living systems cor-
responds not to the forward-inverse arrow of the physical world but to the
backward-direct component with its increase of entropic disorder generating
collaborative support from the restraining self-organizing effect of the forward
component in an equilibrium of opposites. Thus it is the receptor “yin” egg
xF that defines the activating direction of evolution in collaboration with the
donor “yang” sperm xM, quite unlike the dynamics of the Lorenz equation,
for example, that is determined by the activating temperature gradient acting
along the forward arrow of the physical world.

In the present context, let us identify the backward-direct, catabolic, yin
component M of life L := {B,M} as its mind collaborating competitively
with the forward-inverse, anabolic, yang body B, and define
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Definition 10.3 (Life). Life is a special complex system of activating mind
and restraining body.

In this terminology, a non-life complex system (respectively, a dissipative
structure) is a hierarchal (respectively, non-hierarchal) compound system with
activating body and restraining mind. To identify these directions, the follow-
ing illustrative examples should be helpful.

Example 10.2. (a) In the Lorenz model the forward-inverse arrow in the direc-
tion of the positive z-axis is, according to Fig. 10.5b, the activating direction
of increasing order and self-organization. The opposing gravitational direc-
tion, by setting up the convection cells that reduces the temperature gradient
by increasing the disorder of the cold liquid, marks the direction of entropy
increase. Since the forward-inverse body direction is the activating direction,
the Lorenz system denotes a non-life complex system. Apart from these orga-
nizing rolls representing “the system’s response to move it away from equilib-
rium”, availability of the angular variables prevents the Lorenz system from
generating any additional emerging structures in the body of the fluid.

The familiar prototypical example of uni-directional entropy increase re-
quired by equilibrium Second law of Thermodynamics of the gravity domi-
nated egg crashing off the table never to reassemble again is explained, in
terms of Fig. 10.5b, as an “infinitely hot reservoir” dictating terms leading to
eventual “heat death”: unlike in the Lorenz case, the gravitational effect is not
moderated here for example by the floor rising up to meet the level of the
table, with the degree of disorder of the crashed egg depending on the height
of the table.

(b) For the logistic map in the complexity region of λ, the activating
backward-direct arrow {D, {D, f(D)}, {D, f(D), f2(D)} · · · } is of increasing
iterations, disorder, and entropy, while the restraining, expanding direction
of self organization corresponds to decreasing non-injectivity of the increas-
ing inverse iterates. Because the activating direction is that of the mind, the
logistic dynamics is life-like.

The dominance of the physical realization M of M as the brain in de-
termining the dynamics of L is reflected by the significance of sleep in all
living matter. While there is much debate and little understanding of the evo-
lutionary origins and purposes of sleep, there appears, nevertheless, to be a
consensus that one of the major functions of sleep is consolidation and opti-
mization of memories. However, this does not explain why sleep appears to
be so essential or why mental functions are so grossly impaired by sleep de-
privation. One idea is that sleep is an anabolic state marked by physiological
processes of growth and rejuvenation of the organism’s immune and nervous
systems. Studies suggest sleep restores neurons and increases production of
brain proteins and certain hormones. In this view, the state of wakefulness is
a temporary hyperactive catabolic state during which the organism acquires
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nourishment and procreates: “sleep is the essential state of life itself”. Anything
that an organism does while awake is superfluous to the understanding of life’s
metabolic processes, of the balancing states of sleep and wakefulness. In sup-
port of this idea, one can argue that adequate rest and a properly functioning
immune system are closely related, and that sleep deprivation compromises
the immune system by altering the blood levels of the immune cells, result-
ing in a greater than normal chance of infections. However, this view is not
without its critics who point out that the human body appears perfectly able
to rejuvenate itself while awake and that the changes in physiology and the
immune system during sleep appear to be minor. Nevertheless the fact that
the brain seems to be equally — and at times more — active during sleep
than when it is awake, suggests that the sleeping phase is not just designed
for relaxation and rest. Experiments of prolonged sleep deprivation in rats led
to their unregulated body temperature and subsequent death, is believed to
be due to a lack of REM sleep of the dreaming phase. Although it is not clear
to what extent these results generalize to humans, it is universally recognized
that sleep deprivation has serious and diverse biological consequences, not
excluding death. In the context of our two-component activating-regulating
formulation of homeostasy and evolution, it is speculated that sleep, partic-
ularly its dreaming REM period, constitutes a change of guard that hands
over charge of L to its catabolic G component from the anabolic M that rules
the wakeful period. It is to be realized that all living matter are constantly
in touch with their past through the mind; thus anything non-trivial that
we successfully perform now depends on our ability to relate the present to
the past involving that subject. In fact an index of the quality life depends
on its ability to map the past onto the present and project it to the future,
and the fact that a living body is born, grow and flourish without perishing
(which an uni-directional second law would have), thanks to anabolic synthe-
sis due to its immune system, is a living testimony to the bi-directionality of
the direct-inverse arrow manifesting within the framework of the backward-
forward completeness of the living world.

10.4 Conclusions: The Mechanics of Thermodynamics

In this paper we have presented a new approach to the nonlinear dynamics of
evolutionary processes based on the mathematical framework and structure
of multifunctional graphical convergence introduced in [30]. The basic point
we make here is that the macroscopic dynamics of evolutionary systems is in
general governed by strongly nonlinear, non-differential laws rather than by
the Newtonian Hamilton’s linear differential equations of motion

dxi

dt
=
∂H(x)

∂pi
,

dpi

dt
= −∂H(x)

∂xi
, −∞ < t <∞ (10.4.1)
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of an N particle isolated (classical) system in its phase space of microstates
x(t) = (xi(t),pi(t))

N
i=1. As is well known, Hamiltonian dynamics leads directly

to the microscopic-macroscopic paradoxes of Loschmidt’s time-reversal invari-
ance of Eq. (10.4.1), according to which all forward processes of mechanical
system evolving according to this law must necessarily allow a time-reversal
that would require, for example, that the Boltzmann H-function decreases
with time just as it increases, and Zarmelo’s Poincare recurrence paradox
which postulates that almost all initial states of isolated bounded mechanical
system must recur in future, as closely as desired. One approach — [10], [24]
— to the resolution of these paradoxes require

(1) A “fantastically enlarged ” phase space volume as the causative entropy
increasing drive. Thus, for example, a gas in one half of a box equilibrates on
removal of the partition to reach a state in which the phase space volume
is almost as large as the total phase space available to the system under
the imposed constraints, when the number of particles in the two halves be-
comes essentially the same. In this situation, for a dilute gas of N particles
in a container of volume V under weak two-body repulsive forces satisfying
the linearity condition V/N ≫ b3 with b the range of the force, Boltzmann
identifies the thermodynamic Clausius entropy with SB = k ln |Γ (M)|, where
Γ (M) is the region in 6N -dimensional Lioville phase space of the microstates
belonging to the equilibrium macrostate M in question; the second law of
thermodynamics then simply implies that an observed macrostate is the most
probable in the sense that it is realizable in more ways than any other state.
When the system is not in equilibrium, however, the phase space arguments
imply that the relative volume of the set of microstates corresponding to
a given macrostate for which evolution leads to a macroscopic decrease in
the Boltzmann entropy typically goes exponentially to zero as the number of
atoms in the system increases. Hence for a macroscopic system “the fraction
of microstates for which the evolution leads to macrostates with larger Boltz-
mann entropy is so close to one that such behaviour is exactly what should
be seen to always happen”, [18]. A more recent interpretation[9] is to consider
not the number of microstates of a macrostate M , but the most probable
macroscopic history as that which can be realized by the greatest number
of microscopic paths compatible with the imposed constraints. Paths, rather
than states, are more significant in non-equilibrium systems because of the
non-zero macroscopic fluxes whose statistical description requires considera-
tion of the temporal causative microscopic behaviour.

(2) The statistical techniques implicit in the foregoing interpretation of
macroscopic irreversibility in the context of microscopic reversibility of New-
tonian mechanics rely fundamentally on the conservation of Lioville measures
of sets in phase space under evolution. This means that if a state M(t) evolves

asM(t1)
t1<t2−→ M(t2) such that the evolved phase space Γt2(M(t1)) ofM(t1) is

necessarily contained in Γ (M(t2)) by the arguments in (1), then the preserva-
tion of measures requires that Γt2(M(t1)) ⊆ Γ (M(t2)) by the law of increasing
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SB. Conversely, even asM(t2)
t1<t2−→ M(t1) is not prohibited by the microscopic

laws of motion, the exact identification of the subset Γt2(M(t1)) ⊆ Γ (M(t2))
cannot be ensured a priori to enable the system to eventually end up in
Γ (M(t1)); although the macroscopic reverse process is permissible, it is im-
probable enough never to have actually occurred. Identifying the macrostate
of a system with our image f(x) of a microstate x in “phase space” D(f) that
generates the equivalence class [x] of microstates, invariance of phase space
volume can be interpreted to be a direct consequence of the linearity assump-
tion of the Boltzmann interaction for dilute gases that is also inherent in his
stosszahlansatz assumption of molecular chaos which neglects all correlations
between the particles.

(3) Various other arguments like cosmological big bang and the relevance
of initial conditions preferring the forward arrow to the reverse are invoked
to argue a justification for macroscopic irreversibility, that in the ultimate
analysis is a “consequence of the great disparity between microscopic and
macroscopic scales, together with the fact (or very reasonable assumption)
that what we observe in nature is typical behaviour, corresponding to typical
initial conditions”, [10].

In comparison the multifunctional graphical convergence techniques, founded
on difference rather than differential equations, adapted here avoids much of
the paradoxical problems of calculus-based Hamiltonian mechanics, and sug-
gests an alternate specifically nonlinear dynamical framework for the dissi-
pative dynamical evolution of Nature supporting self-organization, adaption,
and emergence in complex systems in a natural manner. The significant con-
tribution of the difference equations is that evolution at any time depends
explicitly on its immediate predecessor — and thereby on all its predecessors
— leading to non-reductionism, self-emergence, and complexity.

To conclude, we recall the following passages from Jordan [11] as a graphic
testimony to chanoxity:

Approximately one hundred participants met for three days at a conference
entitled “Uncertainty and Surprise: Questions on Working with the

Unexpected and unknowable”. The diversity of the conference was vital (as)
bringing together people with very different views strengthened the
probability of extraordinary explanatory behaviour and the hope of

producing entirely new structures, capabilities, and ideas. Out of our
interconnections might emerge the kind of representation of the world that

none of the participants, individually, possess or could possess. One purpose
of the conference was to develop the capacity to respond to our changing

science and to new ideas about the nature of the world as they relate to the
unexpected and unknowable.

Participants recognized early on their difficulties in communicating with one
another across the diversity of their backgrounds. One of the issues the

group tried to resolve was differences in levels of understanding and
experience related to the theme of uncertainty and surprise. The desire for a
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common language was a reoccurring theme among conference participants as
they tried to work out questions and ambiguities regarding even the

fundamental themes of the conference, including the definitions of
complexity, emergence, and uncertainty. Can we name or label what

complexity is? Emergence was an idea that wove itself throughout much of
the informal conversation, yet emergence as a term created confusion among
the participants. There was acknowledgment of a need to state more clearly
our assumptions with regard to fixed structure versus emergence. If you use

“emergence” to mean in the complexity sense, it implies some sort of scale
shift having to do with a fundamentally different structure of the

organization of interactions, or a shift in the nature of the network, or of
knowing, or awareness. Some conference participants cautioned the group

not to equate emergence with miraculous magic.

(It was) recognized that there are tendencies toward stability and tendencies
toward variance. Our assumption about the value of stability may lead us to

to our assumption of the value of permanence. There is evidence that the
value of permanence may be a socially constructed Western trap that is not
shared by Eastern philosophies. Complexity science leads us to understand

that the degree of variability in the distribution of fluctuations in system
dynamics is more important than any average quantity, which is counter to
the traditional paradigms of medicine, management, and scientific research.

We used to believe that equilibrium was the optimal for systems.
Complexity science leads us to believe that stability is death and survivality

is in variability. The tension between stability and variability is similar to
the tension in the social sciences between exploitation and exploration. We

often think of exploitation as a strategy for maintaining stability and
exploration as a strategy for exploiting variability. We may need a balance
between exploration and exploitation, stability and variability, convergence

and divergence within a state.

An issue that resurfaced several times throughout the conference was the
relationship between individual elements and collective elements.

Traditionally Western thought has tended toward the individual over the
collective; the opposite view is often taken by Eastern thought. It is not a

question of either the individual or the collective, but the interaction of the
two that is needed; · · · the individual and the group are the singular and

plural of the same process. In order to honor the tension between the
individual and the collective, a good model might be “If you win I win; if I
lose, you lose”. One participant felt that you can design an organization in
such a way that people profited or lost together based upon how well they
all did. One of our best levers for facing uncertainty and surprise might be

to encourage quasi-autonomy (individuality) but at the same time
willingness to cooperate across disciplines because this kind of collaboration

gives us more capabilities and skills.
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