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1Chapter 1 IntroductionIn this thesis we will investigate and compare relationships between string theory,black holes and gravity waves. These relationships are worth exploring because planegravity waves are exact classical solutions to string theory, so any of their propertiesthat can be related to black holes deserve to be explored.In chapter two we review relevant aspects black hole physics, starting with thelocal de�nition of a black hole event horizon in terms of the focusing of null geodesicsof massless test particles. We review charged black holes coupled to a massless dilatonin low energy string theory, which have in their extreme limit zero entropy at �nitetemperature, and demonstrate the di�erence between the canonical spacetime metricand the \string frame" metric that couples to the string world sheet for black holeswith electric and magnetic charge. [1, 2, 3] Then we examine axion-dilaton black holesfound by Kallosh et al. [4], �nd out which extreme charged black holes provide exactconformally invariant backgrounds for string propagation, and review the stringystretched horizon and quantum-corrected string causality as developed by Susskind,Lowe and others. [5, 6, 7]In chapter three we examine properties of a class of gravitational wave metricsknown as PP waves, which have a null Killing vector and so propagate without dis-persion. As exact string backgrounds they are related through chiral null modelsto extreme charged black holes. [8] Plane waves form a subclass of PP waves withtranslation invariance in the transverse spatial dimensions. We discuss which planewaves are exact solutions to which string theories and compare the geodesic focusingof test particles and test strings in a plane wave background.Colliding plane wave spacetimes in Einstein relativity are generically singular yetthere does exist a class of nonsingular solutions. [9] We examine the Kasner spacetimewhich controls the asymptotic behavior for collinearly polarized colliding plane wavesand the di�erence between the singular and nonsingular solutions. We look briey at



2string-derived perturbations to colliding plane wave spacetimes. [10]Chapter four begins with a review of the colliding plane wave spacetime found byFerrari and Iba~nez [11] and independently by Yurtsever [13] that is locally isometric toa portion of the trapped region of a Schwarzschild black hole. Then we extend thoseresults to U(1) � U(1) axion-dilaton black holes and show that there are selectionrules on the focal lengths of the incoming waves. [14] In the case of full saturation ofthe BPS limits, corresponding to the extreme charged U(1) black hole, the incomingplane waves have constant in�nite amplitude and zero focal length.We explore the extreme limit of axion-dilaton colliding plane waves and show thatthe �eld strength becomes purely magnetic, with the axion and dilaton �elds takingthe �xed values they ow to at the horizon of the corresponding black hole, inde-pendent of their values at in�nity. We perform the maximal analytic extension ofthe spacetime to a black hole spacetime, which necessitates periodic boundary condi-tions on one transverse coordinate. We conclude with a discussion of the di�erencesbetween test string and test particle propagation across the Killing-Cauchy horizonof the axion-dilaton colliding plane wave system. We show that the geodesic focus-ing that creates the horizon is controlled by the supersymmetric limit, and we relatestringy focusing on the focal plane to the stringy stretched horizon as explored bySusskind and others.



3Chapter 2 A review of black holes instring theory2.1 What de�nes a black holeBefore we investigate any connections between black holes, string theory and gravi-tational waves, we will review the de�nition of a \black hole". In plain language, ablack hole is an object whose gravitational �eld is so strong that light cannot escape.A more elegant and precise way of making this de�nition is to explore the globalcausal properties of a spacetime M endowed with metric g�� . Let's assume that thecombination (M; g��) satisfy a condition known as strong aymptotic predictability,which in simple terms means that some kind of initial value problem exists somewhere,if not everywhere, in M .1 The region of M known as future null in�nity, or J +, iswhere light should wind up in the in�nite future, if the light has \escaped". We wantto examine the causal past of that escaped light, or J�(J +). A discrepancy betweenM and J�(J +) will tell us whether light somehow has started out in M but nevermade it to J +, so the di�erence between M and J�(J +) tells us about the \lightthat did not escape" to J +.Armed with these concepts we can now de�ne the black hole region B of spacetimeM as B = [M � J�(J +)]: (2.1)The black hole event horizon H is the boundary between the light that escapes andthe light that doesn't escape. In technical terms, H is de�ned to be the part of Mthat lies on the boundary of the causal past of future null in�nity in M , orH = _J�(J +) \M: (2.2)1For a lengthy, rigorous treatment of this topic, see [15] and references contained therein.



4This set of de�nitions is concise and elegant, but requires knowledge of the entirespacetime M , in the in�nite past and in�nite future. No local observer has accessto such information. A locally measurable de�nition of a black hole rests on theconcept of the trapped surface, which itself relies on the concept of geodesic focusing.A trapped surface is formed when null geodesics focus in a manner to be explainedlater in this section.Geodesic focusing is the source of nearly all singularities and causal pathologiesthat occur in classical general relativity [15]. This is where one might expect di�er-ences to arise between black holes in string theory and black holes in general relativity.The geodesic equations for test strings and test particles areParticles : d2x�d2� + ����dx�d� dx�d� = 0 (2.3)Strings : tuX� + ����(X(�; �))@aX�@aX� = 0; (2.4)where the derivatives @a and tu in the string formula (2.4) are with respect to stringworldsheet coordinates (�; �) [16]. For non-interacting strings, light cones formedby massless solutions to the string equation (2.4) match solutions to the particleequation (2.3) after integration over �, because (2.3) is contained in the center-of-mass limit of (2.4) [5]. However, when one adds string interactions, it was shown in [6]that string light cones becomes \leaky" and geodesic focusing becomes altered in amanner that will be discussed in a later section, and this becomes important in stringyblack hole physics. For now, we shall concentrate on the focusing of geodesics thatare de�ned by the normal test particle geodesic equation (2.3) in general relativity.Later we will compare geodesic focusing of particles and strings.The simplest example of the causal consequences of geodesic focusing of light isgravitational lensing around a point mass in d = 3, as illustrated in �gure 2.1 below.A light ashes at spacetime event E1 = (t = 0; x = 1; y = 0) and the light leaving E1is lensed by the spacetime geometry so that an observer O at spatial location ~xO seestwo images of the ash from E1: The two images seen by O represent two di�erentnull geodesics a and b; both of which leave (x = 1; y = 0) at t = 0: The geodesic a



5
-2.5

0
2.5

5

x

-5
-2.5

0
2.5

5
y

0

2

4

t

0

2Figure 2.1: Light cone of the event (0; 1; 0) as distorted by a point mass with theworldline (t; 0; 0) in d = 3. The inner ap is generated by null geodesics that haveleft the causal boundary of (0; 1; 0).crosses ~xO at t = ta and the geodesic b crosses ~xO at t = tb:If tb 6= ta there is a problem. Suppose ta < tb. The events (ta; ~xO) and (tb; ~xO)cannot both lie on the future light cone of the event E1; because the timelike observerO experiences both events. Therefore the geodesic a must lie on the future lightcone of E1; while b started out on the future light cone of E1 and somehow left it.Since the problem goes away only when ta = tb; it must be true that this is where theproblem starts and where null geodesics begin to fail to determine causal boundariesin spacetime.This is explicitly illustrated in �gure 2.1. The future light cone of the event (0; 1; 0)in the presence of the point mass travelling on the worldline (t; 0; 0) grows an innerap generated by null geodesics that cross a second time along the negative x-axis.In general, if two null geodesics a and b intersect once at some spacetime eventE1 and then reintersect at a later spacetime event E2; then both a and b leave the\boundary of the causal future" of E1 when they cross again at E2: Therefore anyevent E3 at t3 > t2 along either a or b can be reached by a timelike curve from E1:The null geodesics a and b lose their power to determine causal boundaries for E1after they cross at E2.Geodesic focusing is not a problem as long as there exists a discrete set of multipleimages. Geodesic focusing at the continuum level is more dangerous and hence more



6interesting. At this level a quantity �, called the expansion scalar, determines whengeodesic focusing is going to interfere with the unique delimitation of causal bound-aries. The value of � also tells us when there is a trapped surface, and hence whenthere is a black hole, in M . � can be calculated for null or timelike geodesics. Sincenull geodesic focusing de�nes a trapped surface, we will only consider null geodesicsin what follows.If na is a tangent vector to a null geodesic ; in spacetimeM with metric G�� , thenwe need to look at B�� = dD� n� where c means restriction to a d � 2 dimensionalsubspace orthogonal to n�.2 � is de�ned by � = TrB, where the trace is only over theafore-mentioned two-dimensional subspace. The rotation !ab and shear �ab tensors arethe antisymmetric and symmetric traceless parts, respectively, of B�� . The evolutionequation for � with respect to the a�ne parameter � along  isnD � = d�d� = � 1d � 2�2 � ������ + !��!�� � R�� ����; (2.5)known as the \focusing equation" for null geodesics. Spacetimes with !ab 6= 0 arenot foliatable into spacelike hypersurfaces and hence are not stably causal, so thatterm is zero if we exclude such spacetimes from consideration. Since �ab�ab � 0; ifRcd ncnd � 0; it follows thatd�d� + 12�2 � 0 ! ��1 � �0�1 + 12�: (2.6)Since � � 1V? dV?d� ; where V? is the transverse volume of a bundle of \nearbygeodesics," we don't want the RHS of the above inequality to cross through zero.If the expansion �0 < 0 at some � = �0 along some geodesic, then � ! �1 alongthat geodesic within a�ne parameter � � 2=j�0j. So V? ! 0 in a �nite amount of\proper time" after the bundle begins to focus, or converge, at �0:When this happensto geodesics that are initially intersecting at some previous � < �0; either the initialvalue problem breaks down or the geodesics fail to be extendible past the focal plane.2The subtleties in this projection are discussed in [17].



7The latter alternative de�nes a spacetime singularity and is generally accompaniedby the blowing up of curvature invariants in that region. The nonsingular alternativewill be described when we discuss plane gravity waves in a later section.A trapped surface tells us when � is zero or negative, which by (2.6) means that\nearby" geodesics will focus and � ! �1 in a �nite amount of a�ne parameter.This is the foundation of the Hawking-Penrose singularity theorem for black holes.[15]To be more precise, a trapped surface T is a compact, d� 2 dimensional spacelikesubmanifold of M having the property that both the \ingoing" and \outgoing" setsof null geodesics everywhere on T satisfy � < 0. A marginally trapped surface T 0satis�es � � 0. It can be proven that in a black hole spacetime, both T and T 0 arecontained within the black hole region B. An outer marginally trapped surface S isbasically a marginally trapped surface that is the boundary of a d � 1 dimensionalvolume called the trapped region C.In order to describe the evolution properties of black hole spacetimes, we needto consider a black hole at a given time, or equivalently in a foliatable spacetime,at a given spacelike slice or Cauchy surface �. The total trapped region T at agiven time � is the closure of the union of all trapped regions C at time �. Theapparent horizon A is then the boundary of T . On the apparent horizon A, nullgeodesics satisfy � = 0. If we de�ne H = H \ � as the \true event horizon" thenwe can say A � H. This eventually leads to the conclusion that everywhere on H ,the null geodesic generators satisfy � � 0, if spacetime in question satis�es the nullconvergence condition R�� n�n� � 0.This is how the black hole area theorem [15] is proven. The area of a black holeat time �1 is the area of H1 = H \�1. Since the null geodesics that generate H havepositive or zero expansion, and hence have V? expanding or staying the same into thefuture, it is not possible for the area of H2 to become smaller than the area of H1 if�2 > �1.This is a very important relation because it validates the idea that the area of ablack hole can act like entropy, and it gives us cause to seek out a way to explainthis entropy-like quantity, the area of a black hole event horizon, using quantum



8microstates in a quantum theory of gravity. The cornerstone of this analysis is basedon the geodesic focusing properties of test particles. Stringy geodesic focusing, aswe shall see, is more complicated, and contributes, along with string dualities, to astringy picture of a black hole, which will be reviewed later in this chapter.2.2 The charged dilaton black holeConsider the spacetime e�ective action for d = 4 gravity coupled to electromagnetismplus a massless dilaton with the couplingSeff = 116� Z d 4xp�g ��R+ 2D��D�� + e�2a� F��F ��� (2.7)As was uncovered in [1, 2] a massless dilaton coupling to TrF 2 alters the chargedblack hole solution from the familiar the Reissner-Nordstrom solution, and the precisemanner in which the dilaton-coupled black hole di�ers is sensitive to the coe�cient a.If the action (2.7) represents a low-energy limit of string theory, then a = 1. Themagnetically charged black hole solution with mass M , magnetic monopole P anddilaton �m F = Pe�0 sin � d� ^ d�; e�2�m = e�2�0  �� 2j�j� ! ; (2.8)has a spacetime metric that can be writtends2 = �(� � 2M)� dt2 + �(�� 2M) d�2 + �(�� 2j�j) d
; (2.9)where � is the asymptotic dilaton charge� = � 14� Z1 d2S�D��m = P 22M : (2.10)Electric-magnetic duality allows us to �nd the electrically charged solution by wayof the duality transformation F ! ~F�� = 12e�2�m �����F��, �m ! �e = ��m and



9P ! Q to give the same metric as (2.9) but with electric �eld and dilaton~F = Qe��0� dt ^ d�; e�2�e = e�2�0  �� � 2j�j! ; � = � Q22M : (2.11)The metric (2.9) can be written in a form closer to that of the Reissner-Nordstrommetric with the shift � = r + j�j, givingds2 = �(r � r+)(r � r�)R(r)2 dt2 + R(r)2(r � r+)(r � r�) dr2 +R(r)2 d
; (2.12)where R(r)2 = r2 � j�j2, r+ = 2M � j�j and r� = j�j. The familiar Reissner-Nordstrom metric when written in these coordinates has r� = M � pM2 � Q2 andR(r) = r2. There is an event horizon at r = r+ and and inner Cauchy horizonat r = r�. For Reissner-Nordstrom black holes, the maximal analytic extensionof the metric yields an in�nite chain of black holes [15], although in [18] it wasdemonstrated that the inner horizon is most likely physically unstable and neverformed in gravitational collapse in Nature. For the charged dilaton black holes, thereis an event horizon at r+ = 2M � j�j. However, the inner horizon at r� = j�j haszero area, since R(j�j) = 0. The inner horizon touches the singularity at r = j�j.An extreme charged black hole is what happens when r+ ! r�. If we parametrizer� = M � r0, then the extremal limit corresponds to r0 ! 0. For the Reissner-Nordstrom metric, r0 = pM2 � Q2 so the extreme state is reached for M = Q2. Forthe charged dilaton black hole, r0 =M�j�j so extremality is reached forM2 = Q2=2,but the area of the extreme Reissner-Nordstrom horizon is �nite, whereas the surfacer = j�j =M has zero area.This di�erence in the event horizon area at extremality leads us to an interestingpoint about black hole entropy in the presence of scalar �elds, raised in [1, 2] andfurther explored in [3]. The Reissner-Nordstrom black hole has Hawking temperatureTH = pM2 � Q22�(M +pM2 � Q2)2 = r02�r2+ ; (2.13)which vanishes for the extreme case r0 ! 0, while the entropy S = A=4 = �r2+ is



10always �nite for the extreme case. From the metric in coordinates (2.9) it can beeasily deduced that the Hawking temperature for charged dilaton black hole isTH = 18�Me�0 ; (2.14)which is �nite and nonzero even for the extreme limit. The black hole area A =4�R(r+)2 = 0 for M2 = Q2=2, so the extreme black hole somehow manages to havezero entropy at �nite temperature, which means it behaves more like an elementaryparticle with a mass gap than a thermodynamic ensemble of states. Furthermore,this behavior occurs only for value a = 1 in (2.9). Thus was born the idea that stringtheory somehow contains within it a microscopic basis for understanding the apparentmacroscopic thermodynamics of black holes.2.3 The string metric vs. the canonical metricIn string theory there exists a distinction between the \canonical metric" g�� appear-ing as a �eld in the spacetime action (2.7), and the \string metric" ĝ�� that appearsin the worldsheet sigma model action asS = 12��0 Z d� d� ĝ��(X)@aX�(�; � )@aX�(�; � ) + 12� Z d� d� R(2) �; (2.15)where the index a runs over the worldsheet coordinates (�; � ).The e�ective action as calculated from the vanishing of the worldsheet � functionat lowest order isSeff = 116� Z d 4xq�ĝ e�2� ��R̂ � 4D��D�� + F��F ��� ; (2.16)and one can switch between (2.7) and (2.16) (if a = 1 in (2.7)) via the conformaltransformation ĝ�� = e2� g�� : (2.17)



11A conformal transformation can't change the causal structure of a spacetime be-cause it only changes the a�ne parameter along the geodesic and has no e�ect on thedirection. However, sometimes reparametrization can have a signi�cant e�ect on themeasurable geometry. If a null geodesic for metric g�� has a�ne parameter � and anull geodesic for metric ĝ�� has a�ne parameter �̂ thend�̂d� = e2�; (2.18)so if �!1, spacetime pathologies that may appear within a �nite a�ne parameteras measured by g�� could be perceived as in�nitely far away as measured by themetric ĝ�� . (This is the inverse of how Penrose diagrams are able represent timelike,null and spatial in�nity using �nite distances on a diagram, but in that case theconformally transformed metric is intended to be an unphysical representation of theactual physical metric.) Also, if �!1 then volumes measured by metric g�� to bevanishing could take �nite values as measured by ĝ�� .This is precisely what happens with extreme magnetic black holes. The canonicalmetric g�� in (2.9) is the same whether the charge is electric or magnetic, but thestring metric ĝ�� is not the same for electric and magnetic charge. The di�erence ismost pronounced in the extreme limit. The string metric for the extreme magneticallycharged black hole isdŝ2m = e2�0(�dt2 + e4�m d�2 + �2d
); e2�m = e2�0  ��� 2j�j! ; (2.19)and the amount of a�ne parameter expended along a radial null geodesic connectingr0 and r �� = e�0  �� �0 + 2j�j log �� 2j�j�0 � 2j�j! ; (2.20)which becomes in�nite as � ! 2j�j. The extreme electrically charged black holebecomesdŝ2e = e2�0(�e4�e dt2 + d�2 + e4�e �2d
); e2�e = e2�0  � � 2j�j� ! : (2.21)



12The amount of a�ne parameter expended along a null radial geodesic connecting �0and � �� = e�0 �� � �0 + 2j�j log �r0� ; (2.22)and the amount of a�ne parameter needed to reach � = 2j�j from �0 is always �nite.It's important to remember that when we're talking about null geodesics in thecontext of string propagation using the string metric, we're talking about the behaviorof the null limit of the string center-of-mass motion described in equation (2.4). Aswe shall see later, the deviations from this center-of-mass behavior become importantwhen we discuss string propagation near black hole horizons.The dilaton in string theory also determines the coupling constant gs in the stringloop expansion through gs = e�0 , where �0 is the constant part of the �eld. In acurved asymptotically spacetime �0 is usually meant to be the value of � at spatialin�nity. Notice that the electric and magnetic dilaton �elds are driven to oppositeextremes of coupling, where we might expect string loop corrections to be large nearthe horizon of the magnetic black hole but vanish near the horizon of the electricblack hole. However, it turns out that each of these black hole spacetimes makesan exact string background without quantum corrections under the right conditions,which will be explained in section 2.5.2.4 Axion-dilaton black holesDimensionally-reduced superstring theory in d = 4 can be described as an N = 4supergravity theory. One subset of the �eld content of this theory is U(1) � U(1),with a vector and an axial vector. In this context, the charged dilaton black hole ofsection 2.2 can be generalized to include dyonic and axionic charge. The low energye�ective action with these solutions can be written in the formSeff = 116� Z d4xp�g (�R + 12 @��@���(Im�)2 � e�2� 2Xn=1F (n)�� F (n)�� (2.23)+ i 2Xn=1F (n)�� ?F (n)��):



13The complex scalar �eld � =  + ie�2�; where  is the axion.Black hole solutions to the equations of motion of (2.23) can be written [4, 19, 20]ds2 = �(r+ � r)(r � r�)(r2 � j�j2) dt2 + (r2 � j�j2)(r � r+)(r � r�) dr2 + (r2 � j�j2) d
; (2.24)wherer� =M � r0; r20 =M2 + j�j2 � 4 2Xn=1 j�(n)j2; �(n) = 12(Qn + iPn); (2.25)where (n) refers to the nth U(1) �eld, and fQn; Png are the U(1) electric and magneticcharges. The dilaton charge � of the previous section is generalized to� = �� i� = � 2M 2Xn=1 (�(n))2; � = ~P 2 � ~Q22M ; � = � ~P � ~QM : (2.26)The metric for the most general charge combinations of ~Q = fQ1; Q2g; ~P =fP1; P2g has the global structure of the Reissner-Nordstrom solution, with an eventhorizon at r = r+, an inner Cauchy horizon at r = r�. The singularity in these co-ordinates is at r = j�j. The magnetically charged dilaton black hole of the previoussection corresponds to the case ~P = fP; 0g; ~Q = f0; 0g and the electrically chargedblack hole corresponds to ~Q = fQ; 0g; ~P = f0; 0g. The Reissner-Nordstrom metricwith � = � = 0 can be obtained using ~Q = fQ=p2; 0g; ~P = f0; Q=p2g to giver0 = pM2 � Q2.The parameter r0 measures how far the black hole is from the extremal stater+ = r�; where the trapped region threatens to vanish and reveal a naked singularityto the universe. However, it has also long been known that there exist supersymmetricembeddings of extreme charged black holes. [21] The parameter r0 then measures thebreaking of those supersymmetries. If we label the two complex central charges ofN = 4 supergravity as (z1; z2), where z1 = p2(�(1)+ i�(2)) and z2 = p2(�(1)� i�(2)),



14then r0 can be written r20 = (M2 � jz1j2) (M2 � jz2j2)M2 : (2.27)The Bogomolny bound on the positivity of the mass in this system requiresM � jz1;2jfor the largest of the two central charge eigenvalues. So in this sense supersymmetryand cosmic censorship seem related.The entropy and temperature of axion-dilaton black holes can be written in termsof the central charges asT = 12�M q(M2 � jz1j2) (M2 � jz2j2)�qM2 � jz1j2 +qM2 � jz2j2�2 ; (2.28)and S = � �qM2 � jz1j2 +qM2 � jz2j2�2 : (2.29)Suppose we start with z1 � z2. The condition r0 = 0 then corresponds to thesaturation of one SUSY bound by M = jz1j. This restores one quarter of the brokensupersymmetries in that theory at the extreme horizon, so that we get an unbrokenN = 1 supersymmetry for the general extreme axion-dilaton black hole. In this limitthe black hole temperature T = 0 while the entropy becomes S = �(M2 � jz2j2) =�(jz1j2 � jz2j2), which is �nite and nonzero.There is some subtlety in saturating both Bogomolny bounds at once, which canonly happen for M = jz1j = jz2j. If we �rst set M ! jz1j in the U(1)� U(1) theoryand then take the limit jz2j ! jz1j, then the temperature T ! 0 and the entropyS ! 0. If we start with a single U(1) by setting jz1j = jz2j and then take thelimit M ! jz1j, the temperature T ! (8�M)�1 and the entropy S ! 0. This isthe limit of the extreme charged black hole of the previous section, with M = j�j,�nite temperature and zero entropy. But with either limit, N = 2 supersymmetry isrestored at the event horizon.



15The dilaton �eld is given bye�2� = e�2�0  r2 � (�2 +�2)(r +�)2 +�2 ! ; (2.30)and the axion �eld is  =  0 ((r +�)2 +�2)� 2e�2�0� r(r +�)2 +�2 : (2.31)The axion and dilaton �elds add to this interesting behavior at the horizon inthe r0 ! 0 limit. At the extreme horizon these �elds lose all dependence on theasymptotic values ( 0; e�2�0) and depend only on the values of Dirac-quantized con-served charges. The charges ( ~Q; ~P ) are not those charges, but they are related to theDirac-quantized conserved charges by Qj + iPj = e�0 (nj � ��0mj); with (nj;mj) 2 Z.As r ! r+ = r� the axion and dilaton �elds at the horizon ow to the critical values f = PnimiPm2i ; e�2�f = (Pi<j (nimj � njmi)2)1=2Pm2i : (2.32)This behavior was plotted in �gure 2.2 using Mathematica. In the plot the eventhorizon is at r = 0; the coordinate r is not the same one used in the metric (2.24).One consequence of (2.32) is that for extreme U(1) � U(1) axion-dilaton blackholes, the string metric ĝ�� ! e2�f g�� and r0 ! 0, so the string metric and thecanonical metric are related by a �xed constant factor at the horizon. As long as thisconstant is �nite, extreme axion-dilaton black holes look basically the same measuredby either the string or canonical metric.Near the horizon of an extreme axion-dilaton black hole, shifting � = r �M , themetric (4.9) can be writtends2 = � �2M2 � j�j2 dt2 + M2 � j�j2�2 d�2 + (M2 � j�j2) d
: (2.33)This spacetime is the product of anti-de Sitter spacetime in two dimensions times atwo-sphere, or adS2 � S2. It is also known as Bertotti-Robinson spacetime [22], and
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Figure 2.2: These contours of constant �0 show how the axion and dilaton �elds losetheir dependence on �0 and a0 and ow to �xed values on the horizon of an extremeaxion-dilaton black hole. Here the coordinate r measures distance from the extremehorizon.will mentioned again in the next two chapters because this metric can also describethe spacetime of colliding plane gravitational waves.2.5 Black holes as exact string backgroundsThe supersymmetry properties of extreme charged black holes in supergravity the-ories [23, 21, 20] suggested that these black holes might be protected from higherderivative corrections to the low-energy e�ective action. In the context of string the-ory, it is now known that certain types of extreme charged black holes are exactconformally invariant backgrounds for superstring sigma models. [8, 24] They belongto a general class of models called chiral null models, named so because a null Killingvector in the spacetime metric translates into a conserved chiral current in the world-sheet sigma model. A single chiral current in a sigma model is su�cient to establishconformal invariance to all orders in the �0 expansion, provided the conditions at oneloop are satis�ed.



17The general chiral null model Lagrangian can be writtenL = F (x)@u ��@v +K(u; x)�@u + 2Ai(x; u)�@xi� + @xi �@xi + �0R�; (2.34)where the chirally-coupled vector �eld Ai comes from setting B�i, the o�-diagonalcomponents of the antisymmetric tensor, equal to G�i, the o�-diagonal components ofthe metric tensor (in the string frame). Solutions to the equations of motion for (2.34)as given in [8] were proven to be conformally invariant to all orders. These solutionsinclude extreme electrically charged black holes in d = 4, obtained by dimensionalreduction of chiral null models in d = 5.The Kaluza-Klein extreme electric black hole which is a solution to (2.7) withthe parameter a = p3 can be obtained from the dimensional reduction of a d = 5fundamental string [25], which has the chiral null LagrangianLFS = F (r)@u�@v + @xi �@xi + �0R�; (2.35)where r = pxixi, and F (r)�1 = 1 + Mr ; � = �0 + 12 lnF: (2.36)The extreme electrically charged black hole (2.21) can be obtained through thedimensional reduction of a generalized version of (2.35)LGFS = F (r)@u�@v + @u�@u+ @xi �@xi + �0R�; (2.37)where F and � are still given by (2.36).In order to get conformally invariant string backgrounds with magentic charge,it was shown in [24] that one must generalize the chiral null model (2.34) to in-clude curvature in the transverse coordinates so that the term @xi �@xi becomes (Gij+Bij)@xi �@xi. In addition, the dimensional reduction must be from d = 6 using theinternal symmetry group U(1)E � U(1)M , so that the electric and magnetic �elds



18come from compactifying in di�erent transverse directions. The conformal invariancein this case stems from the combination of the conserved chiral current with N = 4worldsheet supersymmetry in the four transverse dimensions, meaning that extremeblack holes with magnetic charge are only exact backgrounds for heterotic or TypeII superstring theories, unlike the extreme black holes with electric charge, which arealso exact for bosonic strings. The extreme black dyonic holes which were proved tobe exact string backgrounds in this manner include a subset of axion-dilaton blackholes with zero axion, hence ~Q � ~P = 0.2.6 String propagation near a black holeA discussion of the impact of string theory and supersymmetry in the microscopicderivation of black hole entropy is beyond the scope of this thesis. However there aresome crucial developments in that direction that are relevant to the colliding planewave systems disucssed in later chapters.One of the big problems with black hole event horizons and inner horizons is theenhanced sensitivity to small scales of distance. If the coordinate � is de�ned tomeasure the proper distance from the event horizon of a Schwarzschild black hole,then near the horizon the Schwarzschild metric can be approximated byds2 = ��2d!2 + d�2 + d�2 + d�2: (2.38)The proper time in the frame of a falling object is related to the proper time asmeasured by the Rindler observer at constant � for large ! byd�d! � �e�!; (2.39)so that the Rindler observer sees the object with a time resolution that becomesin�nite. This is where the di�erence between the propagation of test particles (2.3)and test strings (2.4) is important. Looking at a particle geodesic with in�nite timeresolution leads to problems because the Rindler observer can presumably see Planck



19scale physics if she waits long enough, even if the black hole is very large. This isone reason why semi-classical �eld theory has not wound up the winner in the raceto explain black hole entropy.The story for strings falling into the black hole is very di�erent, and leads to the\stringy stretched horizon" uncovered by Susskind [7]. If we try to describe a stringusing a time resolution d�=d! = " then we need to cut o� the mode expansion forthe string length at N � 1=". But the mean squared size of a string cut o� at modeN grows like logN; i:e: strings �ll more space as we try to measure them with greatertime resolution. The total length and longitudinal spread both grow like 1=" as weincrease the resolution.Since the resolution " � 1=N , the Rindler observer would see the passing stringbegin to grow in longitudinal size and transverse spread like e! , and grow in meansquared radius like w, until a natural cuto� is reached when appears to reach the sizeof the black hole and thermalizes around the horizon [26]. This seems contrary tocausality because the string has ostensibly fallen into the black hole, so how couldthe quantum information in the string thermalize around the outside of the horizon?The answer was provided by Lowe [5, 6] who showed that in string �eld theory,the equal-time commutator of string �elds does not vanish outside the light cone ofthe string but is nonzero and spreads as one narrows the time resolution of the mea-surement. The delimitation of causal boundaries in string theory follows a quantumuncertainty principle, and so the notion of a trapped surface is not precise in stringtheory but resolution-dependent.



20Chapter 3 Plane gravity waves andstring theory3.1 PP wave spacetimes3.1.1 Classi�cation and basic propertiesIt was realized at the end of the last decade that there exists a large class of time-dependent solutions to the Einstein equations that serve as exact nonperturbativebackgrounds for string propagation. [27, 28] These solutions represent gravitationalwave spacetimes characterized by the existence of a covariantly conserved null Killingvector. The general form of the metric in harmonic coordinates isds2 = �dU dV + h(U;X) dU2 + d�2Xi=1(dX i)2; (3.1)where d is the dimension of spacetime and i labels spacelike directions transverse tothe wave propagation direction. [29] The null Killing vector @V is a maximally de-generate principal null vector, so these spacetimes, called \PP waves" (plane-frontedwaves with parallel rays), are type N in the Petrov classi�cation of solutions to thevacuum Einstein equations. A principal null direction is a direction in which thegravitational analog of energy can ow | here it is only going in the direction of @V ,hence the maximal degeneracy.The only non-vanishing components of the Riemann tensor in the above coordinatesystem are RUiUj = �12@i@jh(U;X), so the curvature can be a discontinuous functionof U . The only nonvanishing component of the Ricci tensor is thenRUU = �12Xi @2i h(U;X): (3.2)



21For vacuum solutions, h(U;X) is a harmonic function in the transverse hyperplanewith completely arbitrary U dependence. But harmonic functions satisfy a superpo-sition principle, and hence so do vacuum PP wave spacetimes. So it appears that inthe case of vacuum PP waves, the gravitational �eld has the properties of a linear�eld theory.From above we can see that if the function h(U;X) is quadratic in the X i thenthe curvature becomes a function of U alone. To be more precise, a PP wave becomesa plane wave with d � 2 commuting spacelike Killing vectors whenh(U;X) =Xi;j hij(U) X iXj; (3.3)where the functions hij(U) encode the polarization and amplitude of the wave.The nonvanishing components of the Weyl and Ricci tensors are then given byCUiUi = Trhd � 2 � hii(U); CUiUj = �hij(U); RUU = �Tr h (3.4)where Trh = Pi hii(U): Note that a vacuum solution satis�es Trh = 0; so a planewave with Trh 6= 0 is not a pure gravity wave. Note also that the Weyl tensor can bemade to vanish if the polarization is purely diagonal and if hii(U) = Trh=(d�2) for alli: Since the Weyl tensor measures the part of the Riemann tensor that doesn't comefrom the Ricci tensor, this signi�es a wave that is pure scalar and/or electromagnetic.We'll see an example of this later.We can make the plane symmetry manifest by switching to Rosen coordinatesds2 = �dudv +Xij gij(u)(dxi)2; (3.5)using the coordinate transformation [30]U = u; (3.6)V = v + 12 dgijdu xixj ; (3.7)



22X i = F ij (u) xj : (3.8)where gij = F ki F kj ; d2F ijd2u = hik F kj and F ki dF kjdu = dF kidu F kj : (3.9)In the cases we'll be looking at, the polarization is diagonal (hij = 0 for i 6= j) andthe metric in Rosen coordinates is also diagonal. In Rosen coordinates it is obviousthat the spacelike Killing vectors @@xi become null wherever gii(u) = 0. As we shallsee later, this breakdown of plane symmetry is a manifestation of geodesic focusingand the consequent breakdown in the initial value problem for plane wave spacetimesin general.A concrete example of a plane wave that will be important later is the sandwichwave with constant parallel polarization. In harmonic coordinates in four spacetimedimensions the metric isds2 = �dU dV � h(U) (X2 � Y 2) dU2 + dX2 + dY 2; 0 � U � �U (3.10)= �dU dV + dX2 + dY 2; U < 0; U > �UThe metric with X2 � Y 2 gives a pure gravity wave with vanishing Ricci tensor.The metric with X2 + Y 2 yields a vanishing Weyl tensor, and couples to a stresstensor whose only nonvanishing component is TUU : (We've chosen conventions sothat h(U) > 0 corresponds to TUU > 0:)In Rosen coordinates, using the transformation (3.9), the metric becomesds2 = �du dv + dx2 + dy2; u � 0 (3.11)= �du dv + Fx(u)2 dx2 + Fy(u)2 dy2; 0 � u � �U;= �du dv +  Fx(�U) u � fx�U � fx!2 dx2 +  Fy(�U) u� fy�U � fy!2 dy2; u � �U;



23where Fx(0) = Fy(0) = 1 and�FxFx = � �FyFy = h(U); fx = �U � Fx(�U)_Fx(�U) ; fy = �U � Fy(�U)_Fy(�U) : (3.12)The constants fx; fy are the focal lengths of the wave. When u = fx or fy, thecorresponding spacelike Killing vector becomes null, breaking the spatial translationsymmetry and upsetting the existence of a global initial value problem. For h(U) > 0;in other words for source �elds that satisfy the strong energy condition, the equations(3.12) guarantee that at least one of the focal lengths will satisfy fi > �U; so thatat least one of the spacelike translation symmetries will be broken by propagationthrough the wave. This is why exact plane waves are not globally hyperbolic space-times, meaning that there does not exist a global foliation of a plane wave spacetimeinto space and time. This was �rst noted by Penrose. [31] This will be discussed inmuch greater detail later.In the simplest case where the function h(U) = h0, the metric in Rosen coordinatesfor the (+) polarization (zero Weyl tensor) is given by (3.11) withFx(u) = Fy(u) = cos (qh0 u); fx = fy = �U + cot (qh0�U): (3.13)Notice that for �U = �2ph0 , the focal length of the wave is fx = fy = �U , so thatparallel null geodesics focus exactly on the trailing edge of the wave. This relationshipbetween the width and the amplitude will come up again in relation to black holes.We'll compare test particle and string propagation through this plane wave in latersections.3.1.2 PP waves as exact string backgroundsPP wave spacetimes represent a geometrical limit of Einstein gravity in which gravitybehaves like a free �eld theory. Therefore these spacetimes should be exact solutionsto any generally covariant higher-derivative theory of gravity. The simplest way toanticipate this is to try to form any coordinate invariant combination of two or more



24curvature tensors from the PP wave metric (3.1). One will soon �nd that thereare no non-vanishing curvature invariants available for the construction of quantumcorrection terms to a coordinate-invariant low energy e�ective spacetime action. [32,33] Therefore, in any generally covariant theory of gravity polynomial in derivativesof the metric, the equations of motion for metrics restricted to this type are alwaysR�� = 0 and h(U;X) is always a harmonic function of the transverse coordinates X i.Since PP waves obey the at massless wave equation, they also give us an exactclassical identi�cation of the graviton. Usually the correspondence between curvatureuctuations and free gravitons is demonstrated by using g�� = ���+h��; and neglect-ing terms in the action which are more than quadratic in the small uctuation h: ForPP waves this is valid even when h is arbitrarily large. The plane symmetric PP wavetravels at the speed of light, and has a transverse, traceless polarization tensor, nomatter how strong the wave is. Therefore the assignment of the mass and spin of thegraviton from general relativity is not dependent on the notion of a small uctuationin the metric, and the mass and polarization states of the graviton are protected fromany generally covariant higher order curvature terms in the equations of motion, atleast in perturbation theory.We should therefore hope that PP wave backgrounds are nonperturbatively exactstring backgrounds. If they weren't, string theory would not be such a good candidatefor a quantum theory of gravity.Amati and Klim�cik [28] showed by explicit calculation that this was true for aplane gravity wave of the formds2 = �dU dV + h(U) d�2Xi=1 Ai (X i)2 dU2 + d�2Xi=1 (dX i)2 (3.14)where the Ai are constants. Assuming a constant dilaton background, the authorsinserted this metric into the worldsheet action (2.15) for a bosonic string. They wereable to calculate the conformal anomaly exactly for the plane wave metric, becausethe V integration in the generating functional can be done trivially to get a delta



25function in U0 (the classical value of the �eld U) and the X i integrals are Gaussian.Using the gauge gab = e��ab, the goal is for the e�ective action to be independent of�. The �-dependent part of the e�ective action was calculated to be�� = 26 � d48� Z d� d� �12�tu�� �2e��� 18� (Xi Ai) Z d� d� h(U0)(@U0)2 �; (3.15)so conformal invariance requires d = 26 and PAi = 0. Their analysis yielded thesame results for superstrings with d = 10. Therefore we know that the spin of thegraviton is protected nonperturbatively at the level of conformal �eld theory in stringtheory. A tadpole power-counting argument in [28] showed that this nonperturbativevanishing of the conformal anomaly can be maintained even after extending the formof the metric to the general PP wave (3.1) satisfying tuh(X;U) = 0, so one cansay that even at the level of nonperturbative string theory, PP waves represent thefree-�eld limit of gravity.Plane gravity waves with Trh 6= 0 aren't pure gravity waves; the non-tracelesspart of such a wave must come from other massless �elds in the theory. G�uven [34]found plane wave solutions of the d = 10 N = 1 supersymmetric Einstein-Yang-Millse�ective action for heterotic string theory with vector and antisymmetric tensor �eldslinear in the transverse coordinate X i were not corrected at higher order in �0 andpreserve the N = 1 supersymmetry of the action.A PP wave metric, having a null Killing vector, gives rise to a conserved chiralcurrent on the worldsheet, but the most general PP wave metric spoils the chiralsymmetry with an extra o�-diagonal component �Ai. The Lagrangian is [8]L = @u�@v +K(u; x)@u�@u+ 2 �Ai(x; u)@u�@xi + �Ai(x; u)�@u@xi�+ @xi �@xi + �0R�:(3.16)UsingFij = @iAj�@jAj and �Fij = @i �Aj�@j �Aj, the conditions for conformal invarianceat lowest order in �0 are@i F ij = 0; @i �F ij = 0; � = �(u); (3.17)



26�12 @2K(u; x) + @i@u(Ai + �Ai) + 2@2u �+O(�0s+k@sF@k �F) = 0: (3.18)The higher order corrections depend only on the transverse spatial derivatives of the�eld strengths, therefore if the equations (3.17) and (3.18) are satis�ed at lowest orderin �0 and the �eld strengths are independent of the transverse coordinates, then thePP wave metric is an exact conformally invariant background for string theory.There are two other limits in which (3.16) yields an exact string background. Thesolution Ai = � �Ai = �12�ijxj with K = �xixi and � constant in d = 4 gives the non-semisimpleWZW model found in [35]. SinceAi = Gui+Bui and �Ai = Gui�Bui, thesesolutions correspond to the vector �eld coming entirely from the antisymmetric tensor�eld. Supersymmetric string wave [36, 37] solutions have �Ai = 0 so that the vector�eld comes equally from the string-frame metric and antisymmetric tensor �eld. Itwas shown in [8] that supersymmetric string waves provide exact backgrounds forbosonic and heterotic string theories.3.1.3 How Do Test Particles Propagate Through the FocalPlane?As was discussed in the �rst chapter, geodesic focusing is the phenomenon of interestbehind black hole physics, including the entropy-like behavior of the area of the eventhorizon. Penrose [31] showed that plane gravity waves focus null geodesics in a mannerthat results not in an event horizon, but a Killing-Cauchy horizon beyond which theinitial value problem breaks down. Because plane waves are exact string backgrounds,and exhibit geodesic focusing, they provide a good laboratory for comparing testparticle and test string behavior.Truncating the metric (3.10) to d = 3 yieldsds2 = �dU dV � h(U)X2 dU2 + dX2; h(U) = ( �2�U )2 0 < U < �U;= 0 U < 0; U > �U; (3.19)where �U = �a=2: In d = 3 if Trh = 0 then h(U) = 0, so this metric cannot be



27a vacuum solution, it must be coupled to other massless �elds. (As will be shownlater, the metric (3.10) with X2 + Y 2 is related to the trapped region of an extremeaxion-dilaton black hole, so this simple example is not unrelated to black hole physicsin string theory.) We want to examine geodesic focusing in this spacetime, so thatwe may compare it with the focusing of test strings in the next section.The geodesic equations are�V + @h@U X2 _U2 + 4h(U) _U X _X = 0; �U = 0; �X + h(U) _U2X = 0; (3.20)and the null condition gives _U _V + h(U)X2 _U2 � _X2 = 0: (3.21)The above equations are invariant under rescaling the a�ne parameter by � ! ��;so the paths of massless test particles are the same for particles of all energies, ageneral feature of Einstein relativity. Therefore it is convenient and proper to choosefor the above spacetime U = �; after which the equations are easily solved. Nullgeodesics passing through this wave take the formU < 0 X(� ) = p0 �; V (� ) = p20 �;0 < U < �U X(� ) = c0 sin (!0 � ) + d0 cos (!0 � );V (� ) = Z _X(� )2 d� + v02;U > �U X(� ) = pf � + xf ; V (� ) = p2f � + vf ; (3.22)where !0 = �2�U and the parameter p0 represents the test particle momentum in thex-direction. The six constants above are determined by the continuity of X(� ); _X(� );and V (� ) (but not _V (� )) across the surfaces U = 0 and U = �U: The geodesics wereplotted below using Mathematica.In �gures 3.1 and 3.2 the plane wave passes between U = 0 and U = 200: Afterthe null geodesics focus at U � 216; they fail to determine the boundary of the causal
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Figure 3.1: Null geodesics from (�1000; 0; 0) pass through the wave between U = 0and U = 200 and are focused to a point. A similar picture was shown by Penrosein [31].future of the initial event, and the light cone is expanded out along the directionparallel to the wave. Null geodesics from an event at U = �1 would focus exactlyat f = �U = 200:Because of the extreme distortion of the light cone by the plane wave, everyspacelike hypersurface in this spacetime intersects at least one null geodesic morethan once. A global Cauchy surface cannot be de�ned, but for local calculations onecan de�ne a partial Cauchy surface and compute �eld theory Bogolyubov coe�cients.Gibbons [38] showed that although the quantum theory of a scalar �eld in a singleplane wave background is easily calculable and yields no particle creation, the theoryitself becomes ill-de�ned at the Cauchy horizon.3.1.4 How Do Test Strings Propagate Through the FocalPlane?String propagation through gravity waves has been fruitfully explored in the pastin the context of scattering amplitudes. A notion of \stringy singularity" based on
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Figure 3.2: The same as �gure 3.1, looking down the x-axis.in�nite string excitation was examined by Horowitz and Steif [32, 33], Sanchez and deVega [39] and others. While this looks like a good operational de�nition of singularstring propagation, it doesn't shed light on the nature of causal volume delimitationin string theory and the potential physically-relevant pathologies that could occurwhen causal volumes are delimited by solutions to worldsheet rather than wordlinemathematics. For this reason, we step back to that earlier work and re-examine itfrom a geodesic rather than an S-matrix point of view.In extending the geodesic picture to string theory, the test particle geodesics thatde�ne the boundary of the test particle light cone are represented by the zero modeof the string. This is the center-of-mass coordinate that obeys that standard geodesicequation. If we only look at the geodesics of test string zero modes, then the singu-larities and causal pathologies of general relativity remain with minor modi�cations(in the cases where we trust the background spacetime approximation, at least.)This is basically telling us that test particles propagate in \stringy general rel-ativity" rather similarly to how they propagate in ordinary general relativity. Thebiggest di�erence comes from the rescaling of the stringy a�ne parameter relative tothe test particle a�ne parameter by e2�: This has a noticeable e�ect mainly in thecase of a dilaton black hole with purely magnetic charge. [32]



30If we take all string modes into account, the counterpart to a geodesic equationin string theory becomestuX� + ����(X(�; �))@aX�@aX� = 0: (3.23)In the single plane wave metric (3.39) the equations reduce to�V � V 00 + @h@U X2 ( _U2 � U 02) + 4h(U)X ( _U _X � U 0X 0) = 0;�U � U 00 = 0; �X �X 00 + h(U) ( _U2 � U 02)X = 0: (3.24)The mass shell constraints come from the vanishing of the worldsheet stress tensorand automatically satisfy the �rst equation above. If we choose the gauge U = U(� )we get _U _V = �h(U)X2 _U2 + ( _X2 +X 02); _UV 0 = 2 _X X 0 (3.25)and the remaining second order equation reduces to�X �X 00 + h(U) _U2X = 0: (3.26)These equations don't allow the rescaling of string proper a�ne parameter, so ifwe further �x the gauge by U = p� and try to rescale p out of the equations through� 0 = p�; factors of p end up in the X 0 terms. Setting Lstring = 1 and expanding inopen string modes using X(�; �) = PXn(� ) cos (n�); we get�Xn(� ) = � n2p2 + h(U)! Xn(� ); (3.27)with V (�; �) = PVn(� ) cos (n�) obtainable by straightforward integration of (3.25).Assigning !n = qn2p2 + h0 and !0 = ph0 = �=2�U; it is convenient to expand inthe basis: U < 0 X0(� ) = p0 �; Xn(� ) = an cos (n�=p) + bn sin (n�=p) (3.28)0 < U < �U X0(� ) = c0 sin (!0 � ) + d0 cos (!0 � );



31Xn(� ) = cn sin (!n � ) + dn cos (!n � )U > �U X0(� ) = pf � + xf ; Xn(� ) = en cos (n�=p) + fn sin (n�=p)with U = � and the Vn(� ) obtained by integrating (3.25).This is related to the more common expansion for strings in at spacetimeU = p�; X(�; �) = X0(� ) + iXn �nn e�in� cos(n�) (3.29)through an = �2pn Im�n; bn = 2pn Re�n: (3.30)Applying continuity equations across the waves boundaries at U = 0 and U =�U gives the linear transformation between incoming and outgoing mode constants(an; bn) and (en; fn):en = an fcos(n�U=p) cos(!n�U) + (!n pn ) sin(n�U=p) sin(!n�U)g+ bn f� sin(n�U=p) cos(!n�U) + ( n!n p ) cos(n�U=p) sin(!n�U)g;fn = an fsin(n�U=p) cos(!n�U)� (!n pn ) cos(n�U=p) sin(!n�U)g+ bn fcos(n�U=p) cos(!n�U) + ( n!n p ) sin(n�U=p) sin(!n�U)g: (3.31)Transforming back to the basis (�n; ��n) by undoing (3.30), the Bogolyubov coef-�cients obtained match those obtained for d = 4 in [30], which according to theconventions used here is jBnj2 = 14 � pn!n�2 !40 sin2(!n�U): (3.32)It is signi�cant that this coe�cient is zero in scalar quantum �eld theory [38]. AsGibbons explained, there is no mixing between in and out bases in that case becausethere is a global null Killing vector guaranteeing that frequencies can be measured inthe same way before and after the wave's passage. Strings are excited because theyhave extended structure and oscillate time and space. String in and out bases are
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Figure 3.3: The surfaces swept out by X(�; 0) plotted for p = 1000; p = 2 and p = :01display the scale dependence of the string-de�ned light cone, behavior not present inthe test particle limit.getting mixed in outright de�ance of this target space Killing vector that has such apowerful restrictive e�ect on quantum �elds.String motion through the wave represented by (3.39) looks the same globally asthe particle motion when plotted at the same scale as in �gures 3.1 and 3.2. Themain di�erence becomes visible in the focusing region when the momentum is varied,as shown below:Figure 3.3 shows that the focal region as determined by strings becomes smearedby strings as the momentum decreases. This does not mean that string trajectoriesare no longer leaving the boundary of the causal future after they cross. This stillhas to be true at large distances. String e�ects obscure the location of the focal planebut not the global e�ects of geodesic focusing itself.This calculation was done using free classical strings. Integrating over the stringcoordinate � reproduces the center-of-mass limit in pictured in Figure 3.2. However,strings interact, and as shown in [6], interacting strings spread information outsidethe center-of-mass light cone, therefore the qualitative picture in �gure 3.3 agreeswith the results of interacting string �eld theory.To resolve the focal plane of the wave, we could examine strings at equal time withspacelike separation (according to the center-of-mass) and let the spacelike separation



33shrink to zero. But the commutator of string �elds has a spread in distance thatgrows as the time scale used to resolve it shrinks. So we can't know reliably whenthe spacelike separation has shrunk to zero if we want to pin that knowledge downwith very high time resolution. So we can't resolve the focal plane of the gravity waveusing string probes.This insight has already led to progress in understanding string thermalizationnear a black hole event horizon. Since geodesic focusing is also at the heart of singu-larity theorems, this might suggest that a spacetime singularity cannot be resolvedwith a string probe.3.2 Colliding plane wave spacetimes3.2.1 Classi�cation and basic propertiesColliding plane wave spacetimes in d = 4 whose metrics satisfy the vacuum Einsteinequations R�� = 0 have been classi�ed and understood by Yurtsever [9]. His generalsolution for the collision region for incoming waves with constant collinear polarizationcan be extended to arbitrary d in [10]. The metric can be written in the formds2 = �e�N(u;v)du dv + e�U(u;v) d�2Xi=1 e�iV (u;v)(dxi)2 (3.33)with the conditions d�2Xi=1 �i = 0; d�2Xi=1 �2i = D = d � 2: (3.34)The equations of motion for this system are most illuminating if we make a coor-dinate transformation from (u; v) to (�; �) de�ned by� = e�D2 U(u;v); �u = ��u; �v = �v: (3.35)
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Figure 3.4: Spacetime diagram of two colliding plane waves, with the collision regionshown to the future of the null surfaces u = 0, v = 0.In the collision region (u > 0; v > 0) the metric can then be writtends2 = l1l2 � 1�DD eQ(�;�)=2 (�d�2 + d�2) + � 2D DXi e�iV (�;�) (dxi)2; (3.36)where l1;2 are length scales determined by the incoming waves. The vacuum Einsteinequations reduce to V�� + V�� � V�� = 0; (3.37)Q� = ��D2 (V�2 + V�2); Q� = ��D V� V� ; (3.38)plus constraints for the initial data along (u = 0; v) and (u; v = 0): So the pure gravi-tational collinearly polarized colliding plane wave system of (3.33,3.36) in d spacetimedimensions reduces to solving the two-dimensional wave equation (3.37). The equa-tions (3.38) are then integrable to yield Q(�; �), as shown in the appendix. Usingknowledge about solutions to (3.37), the limit � ! 0 of (3.33,3.36) can be shown toresult in either an all-encompassing spacetime singularity or a nonsingular Killing-Cauchy horizon [9, 10], which will be examined in more detail ahead.



35Non-vacuum colliding plane wave systems have been discovered in d = 4 for scalarand electromagnetic sources by Chandrasekhar and others. [40, 11, 12] Two classes ofgeneral solutions for a Maxwell-dilaton system were discovered by Breton [41]. Themost interesting non-vacuum colliding plane wave metric in four spacetime dimensions(for the purposes of this dissertation) is the Bertotti-Robinson spacetime. [22] Themetric in the collision region can be writtends2 = �du dv + cos2(ua + vb ) dx2 + cos2(ua � vb ) dy2; (3.39)with the length scales a and b determined by the incoming waves before the collision.We will be seeing more of this metric when we discuss the connection between blackholes and colliding plane waves in chapter four.3.2.2 Obtaining incoming waves from collision region solu-tionsThe Bertotti-Robinson metric (3.39) covers the collision region of a colliding planewave system. Incoming single wave solutions are obtained through the Khan-Penroseprescription [42] ua ! ua H(ua ); vb ! vb H(vb ); (3.40)where H(x) is the Heaviside step function. Following the Khan-Penrose prescription,the incoming wave for the region (u > 0; v < 0) gives the metricds2 = �du dv + cos2 (ua ) (dx2 + dy2); (3.41)which from (3.13) we can see has the very simple form in harmonic coordinatesds2 = �dU dV � 1a2 (X2 + Y 2) dU2 + dX2 + dY 2; 0 � U � �U (3.42)= �dU dV + dX2 + dY 2; U < 0; U > �U;where �U = �a=2. Note that in the limit �U ! 0, the wave amplitude h0 = 1=a2 =



36(�=2�U)2 becomes in�nite while the product ph0�U = �=2 remains constant.3.2.3 Asymptotic structure of colliding plane wave space-timesGiven the pathological null geodesic focusing behavior shown for single plane wavesshown in �gure 3.1, one might expect that when two of these waves collide, somethingeven more nasty might happen. Penrose and Khan gave the �rst explicit exampleof a spacetime with two exact plane waves that collide to form a spacetime singu-larity. [43] Tipler proved a singularity theorem [44] for colliding plane waves, andgave some explicit examples of colliding plane wave spacetimes both with and with-out singularities. [45, 46, 47] Finally the general asymptotic structure of singular andnonsingular pure gravity plane wave collisions were elucidated by Yurtsever [9, 48],who also extended the applicability of the singularity theorem for exact plane wavesto the more physical case where the incoming waves are only nearly plane symmetricacross some �nite transverse region with size LT : Yurtsever's result was extended toarbitrary spacetime dimension in [10].As shown in the appendix, the asymptotic behavior of metric (3.33) hinges on thefact that solutions to the equation (3.37) behave like V (�; �) � �(�) ln� + �(�) as�! 0, which with (3.38) gives the leading behaviorV (�; �) � �(�) ln� + �(�); Q(�; �) � D2 �2(�) ln� + �(�): (3.43)If we put this into (3.36) and change time coordinates via t = �q=2 we getds2 = e��(�)=2l1l2(�dt2 + t2p�d�2) + DXi=1 e��i�(�) t2pi (dxi)2 (3.44)p� � (q � 2)=q; q � D4 �2(�) + D+1Dpi � qi=q; qi � 2D � �i�(�);in the limit of small time t! 0.



37The parameters l1;2 are length scales on the order of the focal lengths of theincoming waves, and the functions �(�); �(�), and �(�) are determined by amplitudesof the incoming waves. The functions �(�) and �(�) are irrelevant to the structure ofthe singularity but the value of �(�) is important. The formula relating �(�) to theincoming wave amplitudes is given in the appendix.In relation to the incoming plane waves, the new coordinate t represents the timefrom the initial collision to the eventual geodesic focusing on the focal plane of thecolliding wave system, which is continuous with the focal planes of the incomingwaves. Whether the geodesic focusing on the collision region focal plane leads to anall-encompassing spacetime singularity or the formation of a Killing-Cauchy horisonand the breakdown of the initial value problem depends on the value of �(�).To see this more clearly, let's examine the Kasner metric [49], which controls theasymptotic limit of colliding plane gravity waves. The Kasner metricds2 = �dt2 + d�1Xj t2pj (dxj)2 (3.45)is a time-dependent, spatially homogeneous solution to the vacuumEinstein equationstypically used to model anisotropic cosmologies. The Kasner exponents obey therelations d�1Xj pj = d�1Xj p2j = 1: (3.46)The Kasner metric has curvatureR����R���� = �8(2P3 + P4)t4 ; (3.47)with a spacetime singularity at t! 0: The constants P3 and P4 are the permutation-invariant combinations of products of three and four distinct Kasner exponents, re-spectively. For example, in four spacetime dimensions, P3 = px py pz; P4 � 0:The Kasner universe is singular as the time t! 0, when space dimensions with apositive Kasner exponent are in�nitely compressed and those with negative exponentsare in�nitely expanded. The only nonsingular solution occurs when a single Kasner



38exponent pk = 1 and, by virtue of the relations (3.46), all the other Kasner exponentspi = 0 for i 6= k. In this limit P3; P4 = 0 and the spacetime is at, with the metricds2 = �dt2 + t2 (dxk)2 +Xi6=k (dxi)2: (3.48)Note the similarity to the Rindler metricds2 = �(�k)2 d� 2 + (d�k)2 +Xi6=k (d�i)2; (3.49)if we take t ! i�k; xk ! � . The Rindler metric (3.49) is a wedge of Minkowskispacetime as seen by an observer uniformly accelerating in the xk direction. The atKasner metric (3.48) is a wedge of Minkowski spacetime behind the event horizon ofa Rindler observer. What appears to the accelerating observer (3.49) as the Rindlerevent horizon where @@� becomes null, looks from the point of view of the metric (3.48)like a Killing-Cauchy horizon where the spacelike Killing vector @@xk becomes null,spoiling the initial value problem. This relationship is one aspect of the generalrelationship between colliding plane wave spacetimes and black holes that will beexplored in detail in chapter four.Going back to the colliding plane wave asymptotic metric (3.44), we see that thenonsingular asymptotic behavior is only possible if the longitudinal exponent p� = 0,one of the transverse exponents pk = 1, and all of the other pj = 1 for k 6= j, whichrequires �(�) = �2pD � 1=D; �k = �pD � 1; �j = �1=pD � 1: (3.50)Almost satisying these conditions will not prevent the singularity. These conditions onthe incoming waves must be satis�ed precisely. The function �(�) is determined fromthe incoming waves data according to the integral (6.12). Yurtsever [9] showed thatthe nonsingular solutions ensured by (3.50) are unstable to arbitrarily small plane-symmetric perturbations in the incoming waves, and therefore a spacetime singularity



39is the generic outcome of the collision.The colliding exact plane wave problem is of course unphysical, because the wavesare in�nite in transverse extent. However, Yurtsever also proved that two gravita-tional waves that are approximately plane symmetric across some �nite transverseregion with size � LT , with the curvature falling o� in some arbitrary way outside ofthat region, will collide to form a singularity if their focal lengths are much smallerthan this transverse size. [48] This argument is based on causality | there is notenough proper time between the collision and the formation of the singularity for�nite-size e�ects to propagate to the center of the wave. It is not known whether anevent horizon forms around the singularity.This analysis was all based on pure gravity; there are singular and nonsingularEinstein-Maxwell-dilaton colliding plane wave solutions known [41] and their asymp-totic behavior was investigated in [14] and shown to have Kasnerian singular andnonsingular limits. Nonsingular solutions to Einstein's equations in the presence ofaxion, dilaton and N U(1) �elds were explored in [14] and will be explained in depthin chapter four, when we explore the relationship between black holes and collidingplane waves.3.2.4 String perturbations of colliding plane wave spacetimesUnlike the single plane wave spacetimes disucssed in the previous section, collidingplane wave metrics do not in general provide exact backgrounds for test string propa-gation, although we will see exceptions to this rule in the next chapter. In the collisionregion of the generic colliding plane wave spacetime, there are no null Killing vectorsat all (except at the focal plane where one or more spacelike Killing vector can be-come null), and all of the potential covariant higher-derivative terms in the e�ectiveaction become nonzero. One way to probe higher- order string e�ects on a collidingplane wave background geometry is to solve the string perturbed equations of motionin the Kasner metric which represents the leading behavior of a colliding plane wavespacetime (3.44) near the singularity.



40To lowest order in string tension �0, the spacetime e�ective action for the �eldg��(X) from (2.15) isSeff = 116�Gd Z ddxp�g e�2�  R+ 4D��D�� + �2R���R��� +O(�2)! ; (3.51)where � = �0=2 ; �0=4 for the bosonic and heterotic string respectively. 1The conformal transformation that gives the standard gravitational kinetic termis g�� ! ĝ�� = e� 4d�2�g�� ; (3.52)and the resulting diagonalized action isSeff = 116�Gd Z d dxq�ĝ (R̂ � 4d � 2D��D�� + �2 e� 4d�2� R̂���R̂��� +O(�2)):(3.53)In the following, we will assume that � = �0 + ��(x) and set �0 = 0 since theconstant mode can be absorbed into the ratio of �0=Gd: We will solve the equationsfor g�� and � to O(�) in the colliding plane wave geometry, and then rescale to getthe physical metric ĝ�� : The equations of motion for g�� and � at O(�) areR�� + 2D�D�� + �R���R��� = O(�2); (3.54)D�D�� � 2D��D�� � �4R���R��� = O(�2);We'll seek solutions of the formds2 = �e2N(t) dt2 + D̂Xi=1 e2Xi(t) (dxi)2; D̂ = d � 1; (3.55)where the perturbations are parametrized byN(t) = �m1=t2; Xi(t) = pi ln (t=t0) + �ci1=t2; �(t) = �f1=t2; (3.56)1The lowest order correction for the type II superstring is � �3R 4.



41and the d� 1 exponents fpig satisfyD̂Xi=1 pi = D̂Xi=1 pi2 = 1: (3.57)The quantities that give the most information about the perturbative \approach"to the singularity (how the lowest order string e�ects begin to \turn on" as t ! 0)are the sign of the dilaton coe�cient f1 and sign of the Ricci tensor R̂������ alongnull geodesics with tangent vector ��.The equations of motion can be solved to givef1 = P3 + 12 P4: (3.58)The quantities P3; P4 are the permutation invariant products of three and four distinct(in index, not value) Kasner exponents. They vanish identically when the exponentsfpij i = 1; : : : ; D̂g are any permutation of (1; 0; : : : ; 0):The dimensionless parameter that measures the relative importance of classi-cal string compared with quantum loop e�ects on some background geometry is(�0=Gd2=d�2) e�4�=d�2. This suggests that the relationship between the string scaleand the Planck scale depends on the spacetime curvature and any other background�elds which act as sources for the dilaton. In the appendix it is shown that f1 isnegative for all combinations of Kasner exponents in all dimensions. This negativesign is in agreement with the analogous calculation performed in Schwarzschild space-time. [50]As for the sign of R̂������, let's look at null geodesics with momentum k1 in thedirection we'll call x1. The tangent vector � heading towards t = 0 has nonzerocomponents � = (�jk1j(t0=t)p1 ; k1(t0=t)2p1). From (3.54), (3.52) and the relationbetween R̂�� �̂��̂� and R������ for ���� = 0 one can show that to O(�)R̂�� ; �̂��̂� = ��R���R��� ���� (3.59)= �4�k21t4 (t0t )2p1 �p21 (1� p1) + (P3 + 2P4)� :



42This vanishes for d = 4 because in three spatial dimensions p̂2 � p̂3 = �P3 for anychoice of the longitudinal direction xd̂; and P4 is zero for d < 5. It can be shown thatR̂�� �̂��̂� can be either negative or positive, because the �rst term above is alwayspositive while the second one is always negative, and the two terms are comparablein magnitude. So perturbation theory doesn't show any unique focusing or defocusingbehavior for the test particle limit of string theory.



43Chapter 4 Plane gravity waves and blackholes4.1 Schwarzschild colliding plane waves4.1.1 The collision region metricThe Schwarzschild metric is only static in the regions where @@t is timelike. Inside thetrapped region of a Schwarzschild black hole the metric can be written:ds2 = � r(2M � r) dr2 + r2 d�2 + (2M � r)r dt2 + r2 sin2 � d�2: (4.1)In the trapped region, the metric is quite violently dependent on the timelike radialcoordinate, while @@t and @@� act as a pair of spacelike commuting Killing vectors. A vi-olently time-dependent spacetime with two commuting spacelike Killing vectors is alsoa potential description of the spacetime of two colliding plane symmetric gravitationalwaves. This idea was �rst recognized and explored in the in the Einstein-Maxwelllimit by Chandrasekhar [40]. A colliding plane wave metric locally isometric to the in-terior of a Schwarzschild black hole was obtained by Ferrari, Iba~nez and Bruni [11, 12].The direct transformation from a Schwarzschild black hole to a colliding plane wavespacetime was described by Yurtsever [13]The metric (3.33) for the interaction region of two colliding, collinearly polarized,plane symmetric gravity waves becomes for d = 4ds2 = �e�N(u;v) du dv + e�U(u;v) �eV (u;v) dx2 + e�V (u;v) dy2� : (4.2)The metric (4.1) can be put in the form of the metric (4.2) using either of the two



44coordinate transformations [13]r ! r�(u; v) =M(1� sin(ua + vb )); �! �2 � (ua � vb ); (4.3)t ! x; �! yM ;yielding the metricsds2 = � 4M2ab �1� sin(ua + vb )�2 du dv + cos2(ua + vb )(1� sin(ua + vb ))2 dx2+ cos2(ua � vb )�1 � sin(ua + vb )�2 dy2: (4.4)The coordinate transformation r ! r�(u; v) allows a choice of two boundaryconditions for the value of r on the collision region focal plane at u=a+v=b = �=2. The(+) choice gives r = 2M at the focal plane, with the curvature invariantR����R���� =3=4M4, matching the value at the event horizon of the black hole. In other words,the (+) choice matches the colliding wave focal plane to the black hole event horizon.The (�) choice leads to r = 0 at the focal plane, and there is a curvature singularitythere as well. So the (�) choice in the coordinate transformation (4.3) maps thecolliding plane wave focal plane to the singularity at r = 0.As for the values of the length parameters (a; b), if we want the metric (4.4) toreduce to Minkowski spacetime at u = v = 0, as it should if it represents the collisionof two plane waves propagating against a at background, then we introduce theconstraint ab = 4M2 on the incoming waves. The average focal length of the collisionregion is then f = pf1f2 = �pab=2 = �M .4.1.2 Obtaining the incoming wavesThe metric (4.4) applies to the u > 0; v > 0 region of a colliding plane wave spacetime.The Khan-Penrose prescription (3.40) applied to the metric (4.4) gives the incoming



45waves. The incoming wave in the region u > 0; v < 0 can be writtends2 = ��1 � sin(ua )�2 du dv + cos2(ua )(1 � sin(ua ))2 dx2 + cos2(ua )�1 � sin(ua )�2 dy2; (4.5)which can be put in the Rosen form (3.5) by a coordinate transformation u! !(u).This metric has R����R���� = 0 as is true for all PP waves. But the Weyl tensorcomponent Cuxux = �3 cos2(ua )a2 (1 � sin(ua ))3 (4.6)blows up as U ! �a=2 for the (�) waves, showing that the (�) incoming waves aresingular in some sense before they collide.In almost-harmonic coordinates the metric becomesds2 = �(1� sin�Ua �)2 dUdV � 3a2 (1� sin�Ua �) (X2� Y 2) dU2 + dX2 + dY 2; (4.7)which shows that these plane waves have constant traceless polarization, as we wouldexpect from a pure gravity wave.4.2 Axion-dilaton colliding plane waves4.2.1 The collision region metricThe Schwarzschild metric can be arrived at from the axion-dilaton metric (2.24) bytaking the charge to zero, which sends r0 ! M and � ! 0. Comparing (2.25)and (4.3), it is easy to deduce that the the coordinate transformation from (r; �; t; �)to (u; v; x; y) that transforms the trapped region of an axion-dilaton black hole to acolliding plane wave system is given by 1r ! M � r0 sin(ua + vb ); �! �2 � �ua � vb� ; (4.8)t ! x r0=(M2 � j�j2) 12 ; �! y=(M2 � j�j2) 12 :1We're breaking the cyclic boundary conditions for � again but we'll restore them later.



46The axion-dilaton colliding plane wave metric now takes the formguv = �2ab  �M � r0 sin(ua + vb )�2 � j�j2! ; (4.9)gxx = (M2 � j�j2) cos(ua + vb )2�M � r0 sin(ua + vb )�2 � j�j2gyy = cos2(ua � vb ) ��M � r0 sin(ua + vb )�2 � j�j2�M2 � j�j2 :If we want g��(0; 0) = ��� , we have to constrain the length parameters a and b tosatisfy ab = 4(M2 � j�j2): This constraint is signi�cant because a and b measure thefocal lengths of the incoming waves, and f = �pab=2 is the e�ective focal length ofthe colliding wave system. The condition M � j�j is a supersymmetry bound thathelps enforce cosmic censorship in the black hole system. This bound in the collidingplane wave system tells us that the e�ective focal length of the colliding axion-dilatonplane wave system f � 0 and only approaches zero in the singular extreme dilatonlimit M = j�j: This looks and acts like a supersymmetric enforcement of cosmiccensorship, although it was derived by asking for spacetime to be exactly at beforethe arrival of each incoming wave. This is one of the interesting parallels betweencolliding plane wave systems and black holes.Abbreviating r�(u; v) =M�r0 sin(u=a+v=b); the axion and dilaton �elds become (u; v) =  0 (�2 + (� + r�(u; v))2)� 2e�2�0� r�(u; v)�2 + (� + r�(u; v))2 (4.10)and e�2�(u;v) = e�2�0 r�(u; v)2 � (�2 +�2)�2 + (� + r�(u; v))2 : (4.11)Transforming from (t; �) to (x; y) by (4.8), the N U(1) potentials with electric andmagnetic charges (Q(n); P (n)) are transformed from (A(n)t ; A(n)� ) toA(n)x = e�0 r0 �P (n)�+Q(n) (� + r�(u; v))�qM2 � j�j2 �r�(u; v)2 ��2 � �2� ; (4.12)



47A(n)y = �e�0 P (n) cos(ua � vb )qM2 � j�j2 : (4.13)The value of R����R���� evaluated at the (�) focal planes at u=a+ v=b! �=2 isequal to value of R����R���� for the equivalent axion-dilaton black hole, evaluated atthe horizons r� =M � r0R����R���� = 8 (M4 + 4M2 r02 + 12M r03 + 7 r04 � 2M2 j�j2 + 2 r02 j�j2 + j�j4)(r2� � j�j2)4 :(4.14)This quantity is �nite except for the (�) solution in two limits: the Schwarzschildlimit (� = 0; r� = 0), and the singular dilaton black hole limit (r� = j�j = M),which is also the zero focal length limit of the system.4.2.2 Spacetime structure near the focal planeAxion-dilaton colliding plane waves don't obey the vacuumEinstein equations becausethe matter �elds contribute to a nonzero stress tensor. However, the metric obtainedthrough the transformation (4.8) �ts the form of the metric (3.36) for d = 4 andthe coordinate transformation (3.35) is still valid. (This transformation determinesthe existence of a foliation of the interaction region into spacelike hypersurfaces � =constant and works for R�� 6= 0 as long as the plane waves are collinearly polarized.)After the transformsation we end up in (�; �) coordinates with the metricds2 = l1l2 �� 12 eQ(�;�)=2 (�d�2 + d�2) + �(eV (�;�) dx2 + e�V (�;�) dy2 ): (4.15)Remarkably enough (but not so remarkable once one recalls that this is still es-sentially a two-dimensional problem), the functions V (�; �) and Q(�; �) still sat-isfy (3.43) in the limit �! 0: Therefore, the Kasner asymptotic limit also applies toaxion-dilaton colliding plane waves.The coordinate transformation (3.35) for the metric under consideration can be



48solved exactly, giving�(u; v) = 12 �cos 2ua + cos 2vb � ; �(u; v) = 12 �� cos 2ua + cos 2vb � ; (4.16)and is invertible to give (u(�; �); v(�; �)): If we substitute this back into (4.9) andtake the limit �! 0 we getds2 = (M � r0)2 � j�j2M2 � j�j2  �d�2 + d�24(1 � �2) ! (4.17)+ �2(1 � �2)  M2 � j�j2(M � r0)2 � j�j2! dx2 + (1� �2)(M � r0)2 � j�j2M2 � j�j2 dy2:Combining (3.35) and (3.43), we can calculate �(�)�(�) = � lim�!0 V (�; �)=U = lim�!0 ln (gxx=gyy)ln (gxxgyy) = 1; (4.18)which means that these metrics are in general nonsingular. However, as � ! 0 wehave V (�; �)! �(�) ln� + �(�); which for this metric is�(�) = ln (1� �2)(M2 � j�j2)(M � r0 )2 � j�j2 : (4.19)This term results in a curvature singularity in the Schwarzshild limit (r0 =M;� =0). The singularity for the extreme dilaton limit where r0 = 0 and M = j�j isn'tobvious in these coordinates. In the supersymmetric limit r0 ! 0, R����R���� �(ab)�2; where ab = 4(M2 � j�j2) measures the e�ective focal length of the collisionregion. The limit M = j�j means that either a or b ! 0 with the other remaining�nite, so that one of the incoming waves has zero focal length, as we shall see inthe next subsection, in�nite amplitude, and hence the collision region has zero focallength and in�nite R2. 2It is important to note that the singular limits of axion-dilaton colliding planewaves do not come from a singular Kasner limit. The e�ective Kasner exponents2The singularity at � = �1 is related to the breaking of cyclic boundary conditions in (4.8) andisn't important for this analysis.



49of these waves are always the at combination (px = 1; py = p� = 0). This metricbecome singular when normally benign constants in subleading terms blow up in twospeci�c and precise limits, the Schwarzschild and extreme dilaton limits.4.2.3 Obtaining the incoming wavesThe Khan-Penrose prescription (3.40) applied to axion-dilaton colliding plane wavesyields for the region (u > 0; v < 0)guv = ��M � r0 sin(ua )�2 � j�j22(M2 � j�j2) (4.20)gxx = cos2(ua ) (M2 � j�j2)�M � r0 sin(ua )�2 � j�j2gyy = cos2(ua ) �M � r0 sin(ua )�2 � j�j2M2 � j�j2 :This metric can be put into harmonic coordinates but the solution for general U istoo messy to be illuminating. The salient features can be seen as U ! 0. The metricin Rosen coordinates satis�es g��(0) = ��� . In harmonic coordinates the metric isdiscontinuous, at for U ! 0� and for U ! 0+ds2 = �dU dV + ( 1a2 (�1 + r20 (4M2 + j�j2)(M2 � j�j2)2 )X2 (4.21)+ 1a2 (�1� r20 (2M2 + j�j2)(M2 � j�j2)2 )Y 2) dU2 + dX2 + dY 2: (4.22)The polarization tensor is in general not constant, but becomes constant in two limits:the Schwarzschild limit (r0 !M;�! 0) and the extreme black hole limit (r0 ! 0).In the Schwarzschild limit the polarization becomes constant and traceless, signifyinga pure gravity wave. In the extreme limit the polarization becomes constant butthe trace is nonzero, so the Ricci tensor is also nonzero. However, the Weyl tensorvanishes for r0 ! 0, signifying a scalar-electromagnetic wave with no gravitationalcomponent.



504.3 Extreme axion-dilaton colliding plane wavesOn the face of it, it seems ludicrous to discuss the trapped region of an extremeblack hole, because this region lives only at r = r+ = r� = M: However, if wetake the colliding plane wave version of the trapped region of an axion-dilaton blackhole in (4.9) and examine the r0 ! 0 limit, we get a very nontrivial spacetime, theBertotti-Robinson colliding plane wave spacetime (3.39) described previouslyds2 = � 4ab(M2 � j�j2) du dv + cos2(ua + vb ) dx2 + cos2(ua � vb )dy2: (4.23)For axion-dilaton black holes the limit r0 ! 0 corresponds to the saturation of SUSYbounds for mass and central charge in the background supergravity theory and �xedvalues for the axion and dilaton �elds at the extreme horizon. In order to haveg��(0; 0) = ��� we still need the constraint ab = 4(M2 � j�j2).The proper time �� for a freely-falling observer with no transverse momentum tocross from the point of collision at u = v = 0 along a path with u=a = v=b to thefocal plane at u=a + v=b = �=2 is�� = �2p2qM2 � j�j2 (4.24)so we can see that the the proper time from the collision to the focal plane onlyvanishes in the limit M = j�j, the limit of the dilaton charged black hole with ahorizon with zero area described section 2.2.In the extreme limit the axion and dilaton �elds reduce to the constant �xed val-ues (2.32) that they take at the extreme horizon of an axion-dilaton black hole (2.24).The axion and dilaton are constant and take these �xed values over the entire Bertotti-Robinson spacetime, even in the at region before either wave has passed. Note thatthe axion and dilaton �elds for r0 6= 0 also take their �xed constant values in the atregion before the waves have arrived, but evolve to their values at r� on the focalplanes of the incoming and colliding waves.As shown in (3.42), an incoming wave obtained from the above Bertotti-Robinson



51metric via the Khan-Penrose prescription can be rewritten in harmonic coordinatesas ds2 = �dU dV � � �2�U �2 (X2 + Y 2) dU2 + dX2 + dY 2; 0 � U � �U(4.25)ds2 = �dU dV + dX2 + dY 2; U < 0; U > �U;where �U � �a=2:The constraint ab = 4(M2 � j�j2) would require that in the limit M = j�j, atleast one of the incoming waves has zero width and in�nite amplitude. This is yetanother aspect of the pathological nature of the singular charged dilaton black holegiven by this limit.4.4 Maximal analytic extensionWe have shown that the asymptotic causal structure of the axion- dilaton collidingplane wave spacetime near the Killing-Cauchy horizon at u=a+v=b = �=2 is like thatof the Kasner metric (3.45)s2 = �dt2 + t2p1dx2 + t2p2dyz + t2p3dz2 (4.26)in the limit p1 = 1; p2 = p3 = 0. This corresponds to the wedges of Minkowski space-time in Rindler coordinates that are \behind the horizon" for the usual constantlyaccelerating observer. This insight was derived using the general asymptotic structureof colliding plane graviational waves in [9], but it is more easily derived using blackhole coordinates. The proper time from r = r� as measured by a nearby freely fallingobserver is to �rst order in jr � r�j� 2+(r) � 2(r+ � r) r2+ � j�j2r0 ! ; � 2�(r) � 2(r � r�) r2� � j�j2r0 ! : (4.27)
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Fig. a Fig. bFigure 4.1: Fig.a shows the wave collision in the (u; v) or (�; z) plane. Fig.b showshow the metric near u=a+v=b! �=2 looks in the (�; �) plane. The lines �� = const:are lines of constant x that cross on the Killing-Cauchy horizons �� = 0; where @@xbecomes null.Changing coordinates by assigning �� = t r0=(r2� � j�j2); the metric becomesds2 � �d� 2� + � 2�d�2� +R(r�)2d
: (4.28)In the (�; �) plane the metric is the wedge of Rindler spacetime de�ned in Minkowskicoordinates by T 2 �X2 = � 2�; XT = tanh��: (4.29)The axion-dilaton colliding plane wave maps to the wedges of Rindler spacetimein the \trapped regions" II and IV and the maximal analytic extension across �� = 0gives back the parts of Rindler space that correspond to the non-trapped regionsI and III. It is important to remember that � is proportional to x; and that thespacelike Killing vector @@x becomes null on the Killing-Cauchy horizon at �� = 0:This signals the breakdown of spatial translation invariance in the x-direction justas @@t becoming null in regions I and III of �gure 4.1 signals the breakdown of time-translation invariance there.From this point the maximal analytic extension of the axion-dilaton colliding
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Figure 4.2: The axion-dilaton colliding plane wave metrics analytically extend fromthe shaded regions of the above diagram into the black hole metric above it.plane wave metric follows the same steps as for the generic axion-dilaton black hole,which has the same causal structure and maximal analytic extension of a Reissner-Nordstrom black hole, except in the extreme dilaton limit to which we will returnlater. The Schwarzschild limit was described by Yurtsever in [9].There is however one problem { we've broken the cyclic boundary conditions on� in the coordinate transformation �! y=(M2 � j�j2) 12 : The cyclic boundary condi-tions on �; as extended across the surfaces �� = 0; can be restored by compactifyingspacetime in the y-direction for the incoming waves on a circle of radiusqM2 � j�j2:If we insist that the maximal extension of the axion- dilaton colliding plane wavespacetime be analytic, compacti�cation of the y-direction is forced on the incomingwaves. [9]



54The maximal analytic extension of the axion-dilaton colliding plane wave metrichas two sandwich waves with translation symmtery in the x and y directions prop-agating in a universe where the y-coordinate lives on a circle of radius qM2 � j�j2:The waves collide to form either an event horizon r+ or a Cauchy horizon r� ofan axion-dilaton black hole spacetime, from which the spacetime In �gure 4.2, the(+) region is where the (+)-branch of the axion-dilaton colliding plane wave metricextends to the black hole spacetime to give an asymptotically at universe plus anaxion-dilaton black hole to the future. The (�) region is where the (�) branch of thecolliding wave metric extends from the trapped region II into the axion-dilaton blackhole spacetime to the future.4.5 Comparing string and particle propagationIn sections 3.1.3-4 we compared test particle and string propagation through a singleplane wave with a constant pro�le in d = 3. Does this comparison give us anyinformation about test particle vs. string propagation across the Killing-Cauchyhorizon of an axion-dilaton black hole? And how is this related to the stringy stretchedhorizon discussed in section 2.6?Geodesic focusing in a colliding plane wave background can be examined by cal-culating the expansion scalar �. In the axion-dilaton plane wave spacetime (4.9), anull vector n = _x�@� that is tangent to a null geodesic  leads to the equation2 guv _u _v = �( p2xgxx + p2ygyy ) (4.30)along , where px and py are constants of motion along :Null geodesics along which px 6= 0; py 6= 0 do not focus in an axion-dilaton collidingplane wave spacetime, as they would if there were a singularity rather than a Killing-cauchy horizon. The geodesic focusing that de�nes the focal plane and the Killing-cauchy horizon only occurs in this spacetime for null geodesics that are parallel withpx = py = 0. This class of null geodesics delimit the light cone of an event to the



55in�nite past of the plane wave collision. If px = py = 0 then we can choose _v = 0;and n = _u @@u : The geodesic equation �u+�uuu _u2 = 0 is solved by _u = �guv; and, usingthe axion-dilaton colliding plane wave metric (4.9), we get� = Dana = �1pg @@u (pgguv) = 1jguvjpgxxgyy @@u (pgxxgyy) (4.31)= 1jguvjj cos (ua + vb ) cos (ua � vb )j @@u j cos (ua + vb ) cos (ua � vb )j (4.32)which becomes in�nitely negative as u=a+ v=b! �=2.The transverse volume element V? = pgxxgyy = j cos (ua + vb ) cos (ua � vb )j is inde-pendent of r0; so the focusing is controlled by the supersymmetric limit of r0 ! 0,by the Bertotti-Robinson colliding plane wave system. The incoming waves (4.25)when truncated to d = 3 are the plane waves we used to compare particle and stringgeodesic focusing in sections 3.1.3-4. Therefore it seems reasonable to extrapolatethose results to the collision region of the axion-dilaton colliding plane wave system.This focusing of initially parallel light rays de�nes the Killing Cauchy horizon onthe focal plane of the collision region. Parallel light rays delimit causal boundariesof events to the in�nite past, so information from the in�nite past of the collidingwave spacetime is focused together on the focal plane. This spacetime is on the edgeof being singular. Small perturbations of the incoming waves lead to the genericsingular solutions. [48] It is interesting to compare this with the in�nite buildup ofwave fronts from distant perturbations that renders unstable the inner horizon of acharged black hole, as shown by Chandrasekhar and Hartle in [45]. That is also causedby the focusing of information from the in�nite past, which in their case representedinformation from outside the black hole that was being propagated from r+ throughthe Cauchy horizon at r�.The Killing-Cauchy horizon for the axion-dilaton colliding plane wave metric ismapped to r = r� in the axion-dilaton black hole via the coordinate transforma-tion (4.8). The quantity V? = pgxx gyy becomes p�gtt g�� across the horizon, so the



56in�nite red shift from the black hole point of view gtt ! 0 looks from the collidingplane wave point of view like in�nite geodesic focusing V? ! 0. From the black holepoint of view, the boundary of the trapped region is de�ned by �bh ! 0 at r = r+.From the colliding plane wave point of view, the Killing-cauchy horizon is de�nedby �cpw ! �1 there. So we ought to be able to �nd a relationship between stringpropagation through a single plane wave, string propagation through the collidingplane wave focal plane, and string propagation through a black hole event horizon asstudied by Susskind and others in [7].In studying the stringy stretched horizon, Susskind �xed p = 1 and looked at"(N): In the plots in �gure 3.3 we �xed N = 1 and varied p instead, with the samee�ect that as we try to look at the string on a decreasing time scale " = p=N; thestring looks longer and appears to �ll more space.The Killing-Cauchy horizon formed by axion-dilaton colliding plane waves mapsto a past horizon of an axion-dilaton black hole, as shown in �gure 4.2. So the\stringy stretched focal plane" can be viewed as the time-reversed version of the\stringy stretched horizon" described in section 2.5. In other words, suppose we arein the maximally extended colliding plane wave spacetime described in section 4.4,where two waves in a cylindrical universe collide to produce the axion-dilaton blackhole spacetime in �gure 4.2 at r = r+: A FIDO close to r+ in region I would seea test string emerging from the collision region at t = �1 �lling the past horizonof the white hole created by the collision and then shrinking rapidly. This is thetime-reversed version of what the FIDO at the future horizon sees.In section 3.3 we illustrated how it should not be possible to focus strings precisely,because of the same stringy causal fuzziness that leads to the stringy stretched horizonand the thermalization of string quantum information around the event horizon of ablack hole. In light of this, and in light of the manner in which the inner horizon isrelevant to the stringy understanding of black hole thermodynamics [51], one mightwonder if the in�nite wave front problem at the inner horizon still exists when thespread of information outside of the light cone in string theory is taken into account.It could be possible in string theory that information could di�use across the inner



57horizon without leading to in�nite wave front density. If this were true it would bevery interesting.



58Chapter 5 Concluding remarksIn this thesis we examined the relationships between black holes and plane-frontedgravitational waves that are exact conformally invariant backgrounds for variousstring theories.The coordinate transformation that relates the trapped region of a Schwarzschildblack hole and a colliding plane gravity wave discovered by Ferrari and Iba~nez [11, 12]extends naturally to the class of axion-dilaton black holes that are classical solutionsto the electric-magnetic duality-invariant action (2.23)Seff = 116� Z d4xp�g (�R + 12 @��@���(Im�)2 � NXn=1F (n)�� ? ~F (n)��):The local coordinate transformation (4.8)r ! M � r0 sin(ua + vb ); � ! �2 � �ua � vb� ;t ! x r0=(M2 � j�j2) 12 ; �! 1 + y=(M2 � j�j2) 12transforms an axion-dilaton black hole metric characterized by mass M and complexaxion-dilaton charge � to the collision region of a colliding axion-dilation plane wavemetric (4.9) guv = �2 ��M � r0 sin(ua + vb )�2 � j�j2�ab ;gxx = (M2 � j�j2) cos(ua + vb )2�M � r0 sin(ua + vb )�2 � j�j2gyy = cos2(ua � vb ) ��M � r0 sin(ua + vb )�2 � j�j2�M2 � j�j2 :The constants a and b represent the focal lengths of the incoming waves obtained



59from above through the Khan-Penrose prescription [42] and satisfy the relation ab =4(M2 � j�j2): This metric has a Killing-Cauchy horizon at ua + vv = �2 ; where thespatial translation Killing vector @@x becomes null. The curvature at the Killing-Cauchy horizon is equal to the curvature at r = r� of the corresponding axion-dilatonblack hole and so is �nite except in the Schwarzschild and extreme electrically ormagnetically charged dilaton limits where the curvature at r� diverges.The limit r0 ! 0; which for the black hole metrics corresponds to an extreme blackhole, takes the axion-dilaton colliding plane wave metric to the Bertotti-Robinsonmetric (3.39) ds2 = �du dv + cos2(ua + vb )dx2 + cos2(ua � vb ) dy2;which has a �nite mean focal length ab = 4(M2 � j�j2) despite the fact that thetrapped region of the corresponding black hole has become in�nitesimal. The productab of the non-vanishing parameters describing the colliding waves is related to theentropy of a nonsingular extreme black hole with 1=4 unbrokenN = 4 supersymmetrythrough ab = 4Sextr� : (5.1)An incoming wave obtained from the Bertotti-Robinson collision region can bedescribed in harmonic coordinates as a shock wave of thickness �U = �a=2; where a isthe focal length of that wave, and constant curvature of magnitude 1=a2 = (�=2�U)2:If we send a ! 0 while keeping the other incoming focal length b �nite, then theconstraint ab = 4(M2 � j�j2) says that M = j�j: The limit a! 0 corresponds to anincoming wave with zero thickness and in�nite amplitude, and is singular from thepoint of view of strings passing through the wave being excited to in�nite mass. Theblack hole corresponding to the M = j�j limit has a singular horizon, zero entropyand 1=2 of N = 4 supersymmetry unbroken.The maximal analytic extension of the metric (4.9) across the Killing-Cauchyhorizon gives back the non-trapped regions of the corresponding axion-dilaton hole,but requires that the y coordinate live on a circle of radiusqM2 � j�j2: The resulting



60spacetime has two plane-symmetric single waves propagating in a cylindrical universethat collide and form a past horizon of an axion-dilaton black hole, shown in �gure 4.2.The propagation of test particles and test strings in a plane gravitational wavewere compared. Geodesic focusing for the axion-dilaton colliding wave system iscontrolled by the supersymmetric Bertotti-Robinson limit. The single plane wavesobtained from this collision region metric therefore make good toy backgrounds tostudy stringy geodesic focusing. The string equivalent of a massless geodesic equationdoes not allow for rescaling the a�ne parameter; consequently light cones as delimitedby strings depend on momentum. This introduces a time resolution dependence intostring geodesic focusing that is the same time resolution dependence that was analyzedin the stretched black hole horizon by Susskind in [7], suggesting that a \stretchedfocal plane" is the colliding plane wave analog of a stretched horizon for the blackhole. The thermalization of string information at the stringy stretched horizon andthe blurring of string geodesic focusing open the possibility that charged black holeinner horizons in the context of string theory might not su�er from the in�nite wavefront density that renders them unstable in the context of ordinary classical andsemi-classical �eld theory.Because many d = 4 extreme black holes are known to provide nonperturbativelyexact backgrounds for selected string theories, we can say now that each of those ex-act extreme black hole solutions gives us for free a corresponding nonperturbativelyexact colliding plane wave background for string propagation. These nonsingularspacetimes are in�nitely sensitive to plane-symmetric perturbations in the incomingwaves, and the generic solution is singular. So we have a class of exact nonsingu-lar string plane wave scattering backgrounds related by in�nitesimal deformationsof the incoming states to singularity-forming wave scattering spacetimes for whichperturbations around zero string tension fail because the corrections become large.As for the relevance of this work to more contemporary pressing issues in stringtheory, in this thesis we have established a relationship between the near-horizonadS2�S2 geometry of the black holes in string theory and that of colliding plane waves.One may attempt to further generalize it for the more general exact backgrounds of



61string theory with adS5 � S5 geometry, which is the near-horizon geometry of D3branes. It will be a challenge to �nd the relevant reinterpretation of adS5 � S5spacetime via some analog of colliding waves, which we have studied in this work,and understand their meaning in string theory. Since the black holes we are studyingmay be understood as an intersection of 4 D3 branes, we may be able to adrress all ofthese issues directly in ten dimensions, which is the critical dimension for the stringtheory.



62Chapter 6 Appendix6.1 Details of Colliding Wave SolutionThe metric for a spacetime representing the collision of two plane symmetric gravitywaves with equal constant, linear polarizations is 1ds2 = �2e�Ndudv + e�U d�2Xi=1 e�iV (dxi)2; d�2Xi=1 �i = 0; (6.1)where N;U; V are functions of u; v obeying the boundary conditionsregion IV u � 0; v � 0 U;N; V = 0 (6.2)region III u � 0; v � 0 U = U(v); V = V (v); N = 0region II u � 0; v � 0 U = U(u); V = V (u); M = 0region I u � 0; v � 0 U = U(u; v); V = V (u; v); N = N(u; v):The condition R�� = 0 is unamended by higher-derivative terms in regions IV,III, and II, but will not provide an exact solution to the equations of motion for aclassical string background in region I, to the future of the scattering event, wherethe singularity will form. We will �rst examine the general solution for the Ricciat case, and then perturb that general solution with the O(�0) corrections for thebosonic and heterotic string.For the above metric, with D � d � 2 and the normalization PDi=1 �2i = D; Ricciatness leads to the equations U;uv � D2 U;uU;v = 0 (6.3)1The more general case of nonconstant, unequal initial polarizations is not exactly solvable butnot immune from the above singularity theorem.



63V;uv � D4 (V;uU;v + V;v U;u) = 0 (6.4)U;uu +N;uU;u � 12 (U 2;u + V 2;u ) = 0 (6.5)U;vv +N;v U;v � 12 (U 2;v + V 2;v ) = 0 (6.6)N;uv + D(D�1)4 U;uU;v � V;u V;v = 0: (6.7)This system is integrable. Equations (A3, A4) are constraint equations and willalways be satis�ed if they are satis�ed at the boundary of the interaction region bythe incoming waves. To obtain the general solution given boundary conditions onthe characteristic surfaces (u = 0; v) and (u; v = 0); we need to make two coordinatetransformations. First, de�ne � � e�D2 U(u;v): Because equation (A1) gives �;uv = 0;we can then de�ne a coordinate � such that �;u = ��;u and �;v = �;v: Then � and� are timelike and spacelike coordinates, respectively, because�du dv = 14�;u�;v (�d�2 + d�2): (6.8)De�ne null coordinates r � � � � and s � � + �: The surface fu = 0; vg is thesurface fr = 1; sg and the surface fu; v = 0g is fr; s = 1g: Equation (A2) becomesV;rs + 12(r + s)(V;r + V;s) = 0; (6.9)which is a linear hyperbolic second order equation whose solution can be expressed interms of an integral of the solution to the adjoint equation integrated with the initialdata on the null hypersurfaces that bound region I.The formal solution isV (r; s) = sZ1  V;s0(1; s0) + V (1; s0)2(1 + s0)! A(1; s0; r; s) ds0 (6.10)+ rZ1  V;r0(r0; 1) + V (r0; 1)2(r0 + 1)! A(r0; 1; r; s) dr0;with A(r0; s0; r; s) the kernel of the di�erential operator adjoint to that acting on



64V (r; s): [52] The adjoint equation has the solutionA(r0; s0; r; s) =  r0 + s0r + s !1=2 P�12 (1 + 2z) z � (r0 � r)(s0 � s)(r0 + s0)(r + s) : (6.11)The integral has a logarithmic divergence as r+ s = 2�! 0; r0 6= r; s0 6= s; whichcorresponds to z !1: In this limit, P�12 (1+2z)! 1� z�1=2 ln z+ 3 ln2� z�1=2+O(z�3=2):The leading behavior of V as �! 0 is V (�; �) = �(�) ln�+ �(�)+O(� ln�)+O(�):The function �(�) is determined by the incoming amplitudes in the integral�(�) = 1� 1p1 + � 1Z� [p1 + sV (1; s)];s"1 + ss� �#1=2 ds (6.12)+ 1� 1p1 � � 1Z�� [p1 + rV (r; 1)];r"r + 1r � �#1=2 dr:The equation (A5) integrates to give the relatione�N�;u�;v � e�Q=2�D+1D �2; Q(�) = �D4 �2(�) + �(�) +O(� ln�): (6.13)As �! 0 the metric componentsgii ! e��i��qi ; qi � 2D � �i�(�) (6.14)g�� = g�� ! e��(�)=2l1l2 �q�2; q � D4 �2(�) + D+1Dwhere l1 � 1=2U;u(p) ; l2 � 1=2U;v(p) are normalization length scales taken at somepoint p in the interaction region. If we de�ne the timelike coordinate t = � q2 thebehavior of the metric as t! 0 isds2 = e��=2l1l2(�dt2 + t2p�d�2) + DXi=1 e��i�(�) t2pi (dxi)2 (6.15)p� � (q � 2)=q; pi � qi=q: (6.16)



65The leading terms of the components of the Riemann tensor areRuivi � t2(pi+p�)�22D2  2(D � 1)�D(D� 4)�i � D22 �2(�)! (6.17)Ruiui; Rvivi � t2(pi+p�)�24 ��2(�) (1� �2i ) � �i�(�)�D4 �2(�)� 1D�� (6.18)Rijij � t2(pi+pj)�24D2 �8 � 4D�(�)(�i + �j) + 2�i�j�2(�)� (6.19)Ruvuv � �t2p�4D �4(D � 1) �D2�2(�)� ; (6.20)and they agree with the corresponding components for the Kasner metric.6.2 Properties of Kasner ExponentsThe Kasner metric is given in equation (3.45). The Kasner exponents in D̂ = d�1 =D + 1 spatial dimensions, satisfy the relationsD̂Xi=1 pi2 = D̂Xi=1 pi = 1: (6.21)This is a homogeneous but anistotropic vacuum cosmology with n directions withpi > 0 which expand for increasing time, and m directions with pi < 0 which shrinkfor increasing time. Because of the above constraints, 1 � m � D̂ � 2 and 2 � n �D̂ � 1: The volume element p�g = t expands as time increases, and shrinks to zeroapproaching the initial singularity, independent of n;m or D̂:All coordinate invariant quantities must also be invariant under permutations ofthe Kasner exponents. We will call a permutation invariant product of l di�erentexponents Pl: In D̂ spatial dimensions, all Pl will vanish identically for l > D̂: ThesePl can be expressed as sums of powers of the exponents, (e:g:; P3 = (P pi3 � 1)=3; )and vice versa. The dilaton coe�cient f1 is proportional to P3+ 12P4: Using identitiesfor P3 and P4; it can be shown thatP3 + �P4 = ��4 D̂Xi=1 p2i (pi � 1)(pi � a); a = 13(1 + 4�); (6.22)



66where � is a constant. For f1; � = 1=2 and a = 3: Since no exponent can have avalue greater than one, f1 is negative semi-de�nite, and is zero only in the case whereone of the exponents has the value one, and the rest are zero, which is actually atspacetime.To determine whether the null convergence condition is satis�ed by the O(�0)perturbation, we need to calculate the sign ofR̂������ = �4�k21t4 (t0t )2p1 �p21 (1� p1) + (P3 + 2P4)� : (6.23)The �rst term inside the parentheses is positive. The second term is negative because,from above, if � = 2 then a = 1; so whether or not the null convergence condition isobeyed at O(�0) depends on the Kasner exponent in the spatial direction of the nullgeodesics in question.The Kasner exponents live on the intersection of the unit D̂� 1 sphere P pi2 = 1with the D̂ � 1 hyperplane P pi = 1; which is a D̂ � 2 sphere, so for each D̂ thereis a (D̂ � 2) - parameter family of possible exponents. To determine the conditionsunder which R̂������ can be negative, we need only examine the parameter spaceof exponents near symmetric points with n equal positive exponents p and m equalnegative exponents q: The values of p and q are thenp = 1̂D �1 +q(D̂ � 1)m=n� ; q = 1̂D �1 �q(D̂ � 1)n=m� : (6.24)Setting n = 1;m = D̂ � 1 gives p = 1; q = 0; which is at spacetime, so thesmallest nontrivial value for n is n = 2: Explicit calculation shows thatD̂ � 8 n � 2 R̂������ < 0; n > 2 R̂������ > 0 (6.25)D̂ � 9 n � 3 R̂������ < 0; n > 3 R̂������ > 0if the X1 direction has p1 > 0: However, if p1 < 0; then R̂������ > 0 for allD̂; n; andm: Since R̂������ is a smooth function on this parameter space, then wecan say that R̂������ < 0 in some open neighborhood around those symmetric



67points where it is negative. If we look near the point (p1 = 1; pi = 08i 6= 1);then R̂������ = 0 at that point, and decreases away from it in every direction. Nearother \at" solutions, i:e: near (p1 = 0; pi0 = 1; pi = 08i 6= i0; 1); variations inthe direction of positive p1 with not more than two other positive exponents lead toR̂������ < 0; and all other variations lead to R̂������ > 0: So the region of parameterspace for Kasner metrics where the null convergence condition is violated in sigmamodel perturbation theory is some open neighborhood around metrics with eithertwo or three positive Kasner exponents, depending on whether there are eight ormore spatial dimensions. (Actually, the number of positive exponents rises again forD̂ � 100:)
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