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for understanding physical phenomena and calculating many quantities, es-pecially in systems at or near equilibrium. We use it to calculate entropy,speci�c and latent heats, phase transition properties, transport coe�cientsand so on, often with good accuracy. Important examples abound, such asMax Planck's realization that by staring into a furnace he could �nd Avo-gadro's number or Linus Pauling's highly accurate back-of-the-envelope cal-culation of the residual entropy of ice. But is statistical mechanics essentialfor the second law?In any event, it is still beyond anyone's computational ability (except inidealized situations) to account for a very precise, essentially in�nitely accu-rate law of physics from statistical mechanical principles. No exception hasever been found to the second law of thermodynamics|not even a tiny one.Like conservation of energy (the \�rst" law) the existence of a law so preciseand so independent of details of models must have a logical foundation thatis independent of the fact that matter is composed of interacting particles.Our aim here is to explore that foundation. The full details can be found in[2]. As Albert Einstein put it, \A theory is the more impressive the greaterthe simplicity of its premises is, the more di�erent kinds of things it re-lates, and the more extended is its area of applicability. Therefore the deepimpression which classical thermodynamics made upon me. It is the onlyphysical theory of universal content concerning which I am convinced that,within the framework of the applicability of its basic concepts, it will neverbe overthrown" [3].In an attempt to rea�rm the Second Law as a pillar of physics in its ownright, we have returned to a little noticed movement that began in the 1950'swith the work of Peter Landsberg [4], Hans Buchdahl [5], Gottfried Falk,Herbert Jung [6], and others (see [2] for references) and culminated in thebook of Robin Giles [7], which must be counted one of the truly great, butunsung works in theoretical physics. It is in these works that the concept of\comparison" (explained below) emerges as one of the key underpinnings ofthe second law. The approach of these authors is quite di�erent from linesof thought in the tradition of Sadi Carnot that base thermodynamics on thee�ciency of heat engines. (See [8], for example, for a modern exposition ofthe latter.)
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The basic questionThe paradigmatic event that the second law deals with can be described asfollows. Take a macroscopic system in an equilibrium state X and placeit in a room, together with a gorilla equipped with arbitrarily complicatedmachinery (a metaphor for the rest of the universe), and a weight|and closethe door. As in the old advertisement for indestructible luggage, the gorillacan do anything to the system|including tearing it apart. At the end ofthe day, however, the door is opened and the system is found in some otherequilibrium state, Y , the gorilla and machinery are found in their originalstate, and the only other thing that has possibly changed is that the weighthas been raised or lowered. Let us emphasize that although our focus is onequilibrium states, the processes that take one such state into another canbe arbitrarily violent. The gorilla knows no limits. (See �gure 1.)The question that the second law answers is this: What distinguishesthose states Y that can be reached from X in this manner from those thatcannot? The answer: There is a function of the equilibrium states, calledentropy and denoted by S, that characterizes the possible pairs of equilibriumstates X and Y by the inequality S(X) � S(Y ). The function can be chosento be additive (in a sense explained below), and with this requirement it isunique, up to a change of scale. Our main point is that the existence ofentropy relies only on a few basic principles, independent of any statisticalmodel|or even of atoms.What is exciting about this apparently innocuous statement is the unique-ness of entropy, for it means that all the di�erent methods for measuring orcomputing entropy must give the same answer. The usual textbook deriva-tion of entropy as a state function, starting with some version of \the secondlaw", proceeds by considering certain slow, almost reversible processes (alongadiabats and isotherms). It is not at all evident that a function obtained inthis way can contain any information about processes that are far from be-ing slow or reversible. The clever physicist might think that with the aid ofmodern computers, sophisticated feedback mechanisms, unlimited amountsof mechanical energy (represented by the weight) and lots of plain commonsense and funding, the system could be made to go from an equilibrium stateX to Y that could not be achieved by the primitive quasistatic processes usedto de�ne entropy in the �rst place. This cannot happen, however, no matterhow clever the experimentalist or how far from equilibrium one travels!What logic lies behind this law? Why can't one gorilla undo what another3



one has wrought? The atomistic foundation of this logic is not as simple asis often suggested. It not only concerns things like the enormous number ofatoms involved (1023), but also other aspects of statistical mechanics that arebeyond our present mathematical abilities. In particular, the interaction ofa system with the external world (represented by the gorilla and machinery)cannot be described in any obvious way by Hamiltonianmechanics. Althoughirreversibility is an important open problem in statistical mechanics, it isfortunate that the logic of thermodynamics itself is independent of atomsand can be understood without knowing its source.The founders of thermodynamics|Rudolf Clausius, Lord Kelvin, MaxPlanck, Constantin Carath�eodory, and so on|clearly had transitions be-tween equilibrium states in mind when they stated the law in sentences suchas \No process is possible, the sole result of which is that a body is cooledand work is done" (Kelvin). Later it became tacitly understood that the lawimplies a continuous increase in some property called entropy, which was sup-posedly de�ned for systems out of equilibrium. The ongoing, unsatisfactorydebates (see referce [9, for example) about the de�nition of this nonequilib-rium entropy and whether it increases shows, in fact, that what is supposedly\easily" understood needs clari�cation. Once again, it is a good idea to try tounderstand �rst the meaning of entropy for equilibrium states|the quantitythat our textbooks talk about when they draw Carnot cycles. In this arti-cle we restrict our attention to just those states; by \state" we always mean\equilibrium state". Entropy, as the founders of thermodynamics understoodthe quantity is subtle enough, and it is worthwhile to understand the \sec-ond law" in this restricted context. To do so it is not necessary to decidewhether Boltzmann or Gibbs had the right view on irreversibility. (Theirviews are described in Joel L. Lebowitz's article \Boltzmann's Entropy andTime's Arrow", Physics Today, September 1993, page 32.)The basic conceptsTo begin at the beginning, we suppose we know what is meant by a thermo-dynamic system and equilibrium states of such a system. Admittedly theseare not always easy to de�ne, and there are certainly systems, such as a mix-ture of hydrogen and oxygen or an interstellar ionized gas, that can behaveas if they are in equilibrium even if it is not truly so. The prototypical systemis a \simple system", consisting of a substance in a container with a piston.4



But a simple system can be much more complicated than that. Besides itsvolume it can have have other coordinates, which can be changed by mechan-ical or electrical means|shear in a solid, or magnetization, for example. Inany event, a state of a simple system is described by a special coordinate U ,which is its energy, and one or more other coordinates (such as the volumeV ) called work coordinates. An essential point is that the concept of energy,which we know about from the moving weight and Newtonian mechanics,can be de�ned for thermodynamic systems. This fact is the content of the�rst law of thermodynamics.Another type of system is a \compound system", which consists of severaldi�erent or identical independent, simple systems. By means of mixing orchemical reactions, systems can be created or destroyed.Let us brie
y discuss some concepts that are relevant for systems andtheir states, which are denoted by capital letters such as X;X 0; Y; : : :. Op-erationally, the composition, denoted (X;X 0), of two states X and X 0 isobtained simply by putting one system in a state X and one in a state X 0side by side on the experimental table and regarding them jointly as a stateof a new, compound system. For instance, X could be a glass containing 100g of whiskey at standard pressure and 20� C, and X 0 a glass containing 50g of ice at standard pressure and 0� C. To picture (X;X 0) one should thinkthe two glasses standing on a table without touching each other. (See �gure2.) Another operation is the \scaling" of a state X by a factor � > 0, leadingto a state denoted �X. Extensive properties like mass, energy and volumeare multiplied by �, while intensive properties such as pressure stay intact.For the states X and X 0 as in the example above the example above 12Xis 50 g of whiskey at standard pressure and 20� C, and 15X 0 is 10 g of iceat standard pressure and 0� C. Compound systems scale in the same way:15(X;X 0) is 20 g of whiskey and 10 g of ice in separate glasses with pressureand temperatures as before.A central notion is adiabatic accessibility. If our gorilla can take a systemfrom X to Y , as described above|that is, if the only net e�ect of the action,besides the state change of the system, is that a weight has possibly beenraised or lowered, we say that Y is adiabatically accessible from X and writeX � Y (the symbol � is pronounced \precedes"). It has to be emphasizedthat for macroscopic systems this relation is an absolute one: If a transitionfrom X to Y is possible at one time, then it is always possible (that is, it isreproducible), and if it is impossible at one time it never happens. This ab-5



solutism is guaranteed by the large powers of 10 involved|the impossibilityof a chair's spontaneous jumping up from the 
oor is an example.The role of entropyNow imagine that we are given a list of all possible pairs of states X; Ysuch that X � Y . The foundation on which thermodynamics rests, andthe essence of the second law, is that this list can be simply encoded in anentropy function S on the set of all states of all systems (including compoundsystems) so that when X and Y are related at all, thenX � Y if and only if S(X) � S(Y ) :Moreover, the entropy function can be chosen in such a way that if X andX 0 are states of two (di�erent or identical) systems, then the entropy of thecompound system in this pair of states is given byS(X;X 0) = S(X) + S(X 0):This additivity of entropy is a highly nontrivial assertion. Indeed, it is one ofthe most far reaching properties of the second law. In compound systems suchas the whiskey/ice example above, all states (Y; Y 0) such that X � Y andX 0 � Y 0 are adiabatically accessible from (X;X 0). For instance, by lettinga falling weight run an electric generator one can stir the whiskey and alsomelt some ice. But it is important to note that (Y; Y 0) can be adiabaticallyaccessible from (X;X 0) without Y being adiabatically accessible from X.Bringing the two glasses into contact and separating them again is adiabaticfor the compound system but the resulting cooling of the whiskey is notadiabatic for the whiskey alone. The fact that the inequality S(X)+S(X 0) �S(Y ) + S(Y 0) exactly characterizes the possible adiabatic transitions for thecompound system, even when S(X) � S(Y ), is quite remarkable. It meansthat it is su�cient to know the entropy of each part of a compound systemin order to decide which transitions due to interactions between these parts(brought about by the gorilla) are possible.Closely related to additivity is extensivity, or scaling of entropy,S(�X) = �S(X);which means that the entropy of an arbitrary mass of a substance is de-termined by the entropy of some standard reference mass, such as 1 kg of6



the substance. Without this property engineers would have to use di�erentsteam tables each time they designed a new engine.In traditional presentations of thermodynamics, based for example onKelvin's principle given above, entropy is arrived at in a rather roundaboutway which tends to obscure its connection with the relation �. The basicmessage we wish to convey is that existence and uniqueness of entropy areequivalent to certain simple properties of the relation �. This equivalence isthe concern of [2].An analogy leaps to mind: When can a vector-�eld, E(x), be encoded inan ordinary function (potential), �(x), whose gradient is E? The well-knownanswer is that a necessary and su�cient condition is that curlE = 0. Theimportance of this encoding does not have to be emphasized to physicists;entropy's role is similar to the potential's role and the existence and meaningof entropy are not based on any formula such as S = ��ipi ln pi, involvingprobabilities pi of \microstates". Entropy is derived (uniquely, we hope)from the list of pairs X � Y ; our aim is to �gure out what properties ofthis list (analogous to the curl-free condition) will allow it to be describedby an entropy. That entropy will then be endowed with an unambiguousphysical meaning independent of anyone's assumptions about \the arrow oftime", \coarse graining" and so on. Only the list, which is given by physics,is important for us now.The required properties of � do not involve concepts like \heat" or \re-versible engines", not even \hot" and \cold" are needed. Besides the \obvi-ous" conditions \X � X for all X" (re
exivity) and \X � Y and Y � Zimplies X � Z" (transitivity) one needs to know that the relation behavesreasonably with respect to the composition and scaling of states. By this wemean the following:� Adiabatic accessibility is consistent with the composition of states:X � Y and Z � W implies (X;Z) � (Y;W ).� Scaling of states does not a�ect adiabatic accessibility: If X � Y , then�X � �Y .� Systems can be cut adiabatically into two parts: If 0 < � < 1, thenX �((1 � �)X; �X), and the recombination of the parts is also adiabatic:((1� �)X; �X) � X.� Adiabatic accessibility is stable with respect to small perturbations: If(X; "Z) � (Y; "W ) for arbitrarily small " > 0, then X � Y .7



These requirements are all very natural. In fact, in traditional approachesthey are usually taken for granted, without mention. They are not quite suf-�cient, however, to de�ne entropy. A crucial additional ingredient is thecomparison hypothesis for the relation �. In essence, this is the hypoth-esis that all equilibrium states, simple or compound, can be grouped intoclasses, such that if X and Y are in the same class, then either X � Y orY � X. In nature, a class consists of all states with the same mass andchemical composition|that is, with the same amount of each of the chem-ical elements. If chemical reactions and mixing processes are excluded, theclasses are smaller and may be identi�ed with the \systems" in the usualparlance. But it should be noted that systems can be compound, or consistof two or more vessels of di�erent substances. In any case, the role of thecomparison hypothesis is to insure that the list of pairs X � Y is su�cientlylong. Indeed, we shall give an example later where the list of pairs satis�esall the other axioms, but which is not describable by an entropy function.The construction of entropyOur main conclusion (which we do not claim isobvious, but whose proof canbe found in reference [2]) is that the existence and uniqueness of entropyis a consequence of the comparison hypothesis and the assumptions aboutadiabatic accessibility stated above. In fact, if X0, X and X1 are three statesof a system and � is any scaling factor between 0 and 1, then either X �((1� �)X0; �X1) or ((1� �)X0; �X1) � X must be true, by the comparisonhypothesis. If both alternatives hold, then the properties of entropy demandthat S(X) = (1� �)S(X0) + �S(X1):If S(X0) 6= S(X1) this equality can hold for at most one �. With X0 andX1 as reference states, the entropy is therefore �xed, apart from two freeconstants, namely the values S(X0) and S(X1).From the properties of the relation� listed above, one can show that thereis, indeed, always a 0 � � � 1 with the required properties, provided thatX0 � X � X1. It is the largest �, denoted �max, such that ((1��)X0; �X1) �X. De�ning the entropies of the reference states arbitrarily as S(X0) = 0and S(X1) = 1 unit, we obtain the following simple formula for entropy:S(X) = �max units:8



The scaling factors (1 � �) and � measure the amount of substance in thestates X0 and X1 respectively. The formula for entropy can therefore bestated in the following words: S(X) is the maximal fraction of substance inthe state X1 that can be transformed adiabatically (that is, in the sense of�) into the state X with the aid of a complementary fraction of substance inthe state X0. This way of measuring S in terms of substance is reminiscentof an old idea, suggested by Pierre Laplace and Antoine Lavoisier, that heatbe measured in terms of the amount of ice melted in a process. As a concreteexample, let us assume that X is a state of liquid water, X0 of ice and X1 ofvapor. Then S(X) for a kilogram of liquid, measured with the entropy of akilogram of water vapor as a unit, is the maximal fraction of a kilogram ofvapor that can be transformed adiabatically into liquid in state X with theaid of a complementary fraction of a kilogram of ice. (See �gure 3.)In this example the maximal fraction �max cannot be achieved by simplyexposing the ice to the vapor, causing the former to melt and the latter tocondense. This would be an irreversible process|that is, it would not bepossible to reproduce the initial amounts of vapor of ice adiabatically (inthe sense of the de�nition given earlier) from the liquid. By contrast, �maxis uniquely determined by the requirement that one can pass adiabaticallyfrom X to ((1� �max)X0; �maxX1) and vice versa. For this transformation itis necessary to extract or add energy in the form of work|for example byrunning a little reversible Carnot machine that transfers energy between thehigh-temperature and low-temperature parts of the system (see �gure 3). Westress, however, that neither the concept of a \reversible Carnot machine"nor that of \temperature" is needed for the logic behind the formula forentropy given above. We mention these concepts only to relate our de�nitionof entropy to concepts for which the reader may have an intuitive feeling.By interchanging the roles of the three states, the de�nition of entropyis easily extended to situations where X � X0 or X1 � X. Moreover, thereference points X0 and X1, where the entropy is de�ned to be 0 and 1 unitrespectively, can be picked consistently for di�erent systems such that theentropy will satisfy the crucial additivity and extensivity conditionsS(X;X 0) = S(X) + S(X 0) and S(�X) = �S(X):It is important to understand that once the existence and uniqueness ofentropy has been established one need not rely on the �max formula displayedabove to determine it in practice. There are various experimental means9



to determine entropy that are usually much more practical. The standardmethod consists of measuring pressures, volumes and temperatures (on someempirical scale), as well as speci�c and latent heats. The empirical tempera-tures are converted into absolute temperatures T (by means of formulas thatfollow from the mere existence of entropy but do not involve S directly), andthe entropy is computed by means of formulas like �S = R (dU + PdV )=T ,with P the pressure. The existence and uniqueness of entropy implies thatthis formula is independent of the path of integration.Comparability of statesThe possibility of de�ning entropy entirely in terms of the relation� was �rstclearly stated by Giles [7]. (Giles's de�nition is di�erent from ours, albeitsimilar in spirit.) The importance of the comparison hypothesis had beenrealized earlier, however [4, 5, 6]. All these authors take the comparisonhypothesis as a postulate|that is, they do not attempt to justify it fromother simpler premises. However, it is in fact possible to derive comparabilityfor any pair of states of the same system from some natural and directlyaccessible properties of the relation� [2]. In this derivation of comparison thecustomary parametrization of states in terms of energy and work coordinatesis used, but it has to be stressed that such parametrizations are irrelevant,and therefore not used, for our de�nition of entropy|once the comparisonhypothesis is established.To appreciate the signi�cance of the comparison hypothesis it may behelpful to consider the following example. Imagine a world whose thermody-namical sytems consist exclusively of incompressible solid bodies. Moreover,all adiabatic state changes in this world are supposed to be obtained bymeans of the following elementary operations:� Mechanical rubbing of the individual systems, increasing their energy.� Thermal equilibration in the conventional sense (by bringing the sys-tems into contact.)The state space of the compound system consisting of two identical bod-ies, 1 and 2, can be paramertized by their energies, U1 and U2. Figure 4shows two states, X and Y of this compound system, and the states thatare adiabatically accessible from eachof these states. It is evident from the10



picture that neither X � Y nor Y � X holds. The comparison hypothesisis therefore violated in this hypothetical example, and it is not possible tocharacterize adiabatic accessibility by means of an additive entropy function.A major part of our work consists of understanding why such situations donot happen|why the comparison hypothesis appears to be true in the realworld.The derivation of the comparison hypothesis is based on an analysis ofsimple systems, which are the building blocks of thermodynamics. As alreadymentioned the states of such systems are described by one energy coordinateU and at least one work coordinate, like the volume V . The following con-cepts play a key role in this analysis:� The possibility of forming \convex combinations" of states of simplesystems with respect to the energy U and volume V (or other workcoordinates). This means that given any two states X and Z of onekilogram of our system one can pick any state Y on the line betweenthem in U , V space and, by taking appropriate fractions � and 1 � �in states X and Z, respectively, there will be an adiabatic processtaking this pair of states into the state Y . This process is usuallyquite elementary. For example, for gases and liquids one need onlyremove the barrier that separates the two fractions of the system. Thefundamental property of entropy increase will then tell us that S(Y ) ��S(X) + (1 � �)S(Z). As Gibbs emphasized, this \concavity" is thebasis for thermodynamical stability|namely positivity of speci�c heatsand compressibilities.� The existence of at least one irreversible adiabatic state change, startingfrom any given state. In conjuction with concavity of S this seeminglyweak requirement excludes the possibility that the entropy is constantin a whole neighborhood of some state. The classical formulations ofthe second law follow from this.� The concept of thermal equilibrium between simple systems, whichmeans, operationally, that no state changes takes place when the sys-tems are allowed to exchange energy with each other at �xed workcoordinates. The zeroth law of thermodynamic says that if two sys-tems are in thermal equilibrium with a third, then they are in thermalequilibrium with one another. This property is essential for the additiv-ity of entropy, because it allows a consistent adjustment of the entropy11



unit for di�erent systems. It leads to a de�nition of temperature bythe usual formula 1=T = (@S=@U)V .Using these notions (and a few others of a more technical nature) thecomparison hypothesis can be established for all simple systems and theircompounds.It is more di�cult to justify the comparability of states if mixing processesor chemical reactions are taken into account. In fact, although a mixture ofwhiskey and water at 0� C is obviously adiabatically accessible from separatewhiskey and ice by pouring whiskey from one glass onto the rocks in theother glass, it is not possible to reverse this process adiabatically. Henceit is not clear that a block of a frozen whiskey/water mixture at �10� C,say, is at all related in the sense of � to a state in which whiskey andwater are in separate glasses. Textbooks usually appeal here to gedankenexperiments with \semipermeable membrane" that let only water moleculesthrough and withhold the whiskey molecules, but such membranes reallyexist only in the mind [10]. However, without invoking any such device, itturns out to be possible to shift the entropy scales of the various substancesin such a way that X � Y always implies S(X) � S(Y ). The converseassertion, namely, S(X) � S(Y ) implies X � Y provided X and Y have thesame chemical composition, cannot be guaranteed a priori for mixing andchemical reactions, but it is empirically testable and appears to be true inthe real world. This aspect of the second law, comparability, is not usuallystressed, but it is important; it is challenging to �gure out how to turnthe frozen whiskey/water block into a glass of whiskey and a glass of waterwithout otherwise changing the universe, except for moving a weight, butsuch an adiabatic process is possible.What has been gained?The line of thought that started more than forty years ago has led to anaxiomatic foundation for thermodynamics. It is appropriate to ask what ifanything has been gained compared to the usual approaches involving quasi-static processes and Carnot machines on the one hand and statistical me-chanics on the other hand. There are several points. One is the eliminationof intuitive, but hard-to-de�ne concepts like \hot", \cold" and \heat". An-other is the recognition of entropy as a codi�cation of possible state changes,12



X � Y , that can be accomplished without changing the rest of the universein any way except for moving a weight. Temperature is eliminated as an apriori concept and appears in its natural place as a quantity derived fromentropy and whose consistent de�nition really depends on the existence of en-tropy, rather than the other way around. To de�ne enetropy, there is no needfor special machines and processes on the empirical side, and there is no needfor assumptions about models on the statistical mechanical side. Just as en-ergy conservation was eventually seen to be a consequence of time translationinvariance, in like manner entropy can be seen to be a consequence of somesimple properties of the list of state pairs related by adiabatic accessibility.If the second law can be demysti�ed, so much the better. If it can beseen to be a consequence of simple, plausible notions then, as Einstein said,it cannot be overthrown.AcknowledgementsWe are grateful to Shivaji Sondhi and Roderich Moessner for helpful sugges-tions. Lieb's work was supported by NSF grant PHY 9820650. Yngvason'swork was supported by the Adalsteinn Kristj�ansson Foundation and the Uni-versity of Iceland.References[1] C. Kittel and H. Kroemer, Thermal Physics, p. 57, Freeman, NY (1980).[2] E.H. Lieb and J. Yngvason, Physics Reports 310, 1 (1999).[3] A. Einstein, Autobiographical Notes in Albert Einstein: Philosopher-Scientist P. A. Schilpp (ed.), Library of Living Philosophers, vol VII, p.33, Cambridge University Press, London, 1970.[4] P.T. Landsberg, Rev. Mod. Phys. 28, 363 (1956).[5] H.A. Buchdahl, The Concepts of Classical Thermodynamics, CambridgeUniversity Press, London (1966).[6] G. Falk and H. Jung Handbuch der Physik, III/2, S. Fl�ugge ed., p. 199Springer, Berlin (1959).[7] R.Giles, Mathematical Foundations of Thermodynamics, Pergamon, Ox-ford (1964). 13
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