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It is shown that the various definitions of an extensive quantity appearing in the standard thermodynamics texts are not 
equivalent. Furthermore, none of these is found to be equivalent to the usual statistical-mechanical meaning. It is propsed 
that the statistical-mechanical meaning of an extensive quantity be adopted as the universal definition. 

1. Introduction. In statistical mechanics, it seems 
quite clear what is meant by an extensive quantity. 
For example, for fixed T and for large N and V with 
fixed density O = N/V ,  the entropy is extensive if 

S(V, N, T) ~ Ns(p, T) , 

or, more accurately, the limit 

lira 1 
N, V~ o~ : S( V, N, T) = s(p, T) 
p fixed N 

exists and depends on the intensive quantites p and 
T only. Here intensive quantities are those which are 
independent of  the size of  the system [ 1 ]. 

However, in thermodynamics, the position is not 
quite so clear-cut. Several definitions of  extensive ap- 
pear in the standard texts and close examination- 
shows that these are not equivalent to one another or 
to the statistical-mechanical definition given above. In 
fact, in thermodynamics texts, extensive quantities 
are defined variously as: 

(1) Those quantities whose values in a composite 
system equal the sum of the values in each of  the sub- 
systems [2,3]. 

(2) Those quantities whose values are halved when 
a system in equilibrium is divided into two equal 
parts [4]. 

(3) Those quantities which are homogeneous of 
degree one [5]. 

It is proposed to examine the way in which these 
various definitions are related to one another and 

hopefully to conclude which would seem to be the 
most sensible and useful to adopt as the standard de- 
finition of  an extensive quantity. 

2, Extensivity. Consider some quantity f which is 
supposed to be dependent on the three independent 
variables x, y and z. I f f - l ( x ,  y, z) is assumed exten- 
sive in the sense of  definition (1) of  section 1, then 

f ( x l  +x2, Yl +Y2, Zl +z2)  

=f (x l  ,Yl, Zl) +f(x2, Y2, z2 ) ,  (1) 

where (Xl, Y t ,  Zl) and (x2, Y2, z2) are the values of  
the independent variables in two subsystems. 

If  the two subsystems are identical so that x 1 = x2, 
Yl  =Y2, Zl =z2,  this relation leads to 

f (2x t ,  2Yl, 2Zl) = 2f(xl ,Y l ,  Zl) 

and so, definition (1) does imply definition (2). 
Again, if a system which is composed of  n identical 

subsystems is considered, eq. (1) yields 

f(nx,  ny, nz) = nf(x, y,  z)  , (2) 

where n is an integer. 
By putting nx = X, ny = Y, nz = Z, this latter equa- 

tion implies that 

n - I f ( x ,  Y, Z)  = f ( n - l X ,  n - l y ,  n - l Z ) .  

Validity of  eq. (2) for rational numbers m/n follows 
by noting that 
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f (rnn-lx,  mn- l y ,  m n - l z )  = mf (n - l x ,  n - l y ,  n - l z )  

= mn-I f (x ,  y, z ) .  

.'. Provided f(x, y, z) is a continuous function, defini- 
tion (1) is seen to imply definition (3). Also, the same 
argument shows that, provided f(x, y, z) is continuous, 
definition (2) implies definition (3). 

I f f - f ( x ,  y, z) is assumed extensive in the sense of 
definition (3) of section 1, then 

f(ax, ay, az)=af(x, y, z) . 

By taking a = 2, it is obvious immediately that defini- 
tion (2) is implied by definition (3). Hence, these two 
definitions are not quite equivalent due to the proviso 
regarding continuity which must be imposed before 
definition (3) may be deduced from definition (2). 

Possibly the most straightforward way of showing 
that neither definition (3) nor definition (2) implies 
definition (1) is to consider the following example: 

For an ideal classical gas, the entropy is proportional 
to 

S(U, II, N) = kN ln(aUVg/N h) 

where g, h > 0 and h =g  + 1 [5]. Here Uis the inter- 
nal energy, V the volume and N the number of parti- 
cles. 

This entropy is seen to be an extensive quantity 
as judged by definitions (2) and (3). However, if two 
systems together with the composite system formed 
from them are considered, it is seen that 

S(U 1 + U 2, VI + V2,N 1 + N  2) 

- S(U 1, V 1, x 1 ) - S ( U  2, V2,N 2) 

= kNln{  [(1 - "r)h/(1 - a)(1 - ~)g] 1--r (Th/ot(Jg)3"), 
(3) 

where a = U1/(U 1 + U2), ~ = V1/(V 1 + V2) , 7 =N1/ 
(N 1 +N2). The quantity on the right-hand side of eq. 
(3) is zero only if a = ~ = 7. Hence, for this example, 
the entropy is additive, and, therefore, extensive as 
judged by definition (I),  only if the added condition 
a =/3 = 3' is imposed. 

Hence, the assertion that the three forms of the 
definition of an extensive quantity found in thermody- 
namics textbooks are not equivalent is seen to be true. 
Also, since the statistical-mechanical definition is seen 

to imply that an extensive quantity is both additive 
and homogeneous of degree one, it follows that none 
of the thermodynamic definitions is equivalent to the 
statistical-mechanics one. 

However, it might be noted that, if the entropy S 
is homogeneous of degree one, then 

S(aU, aV, aN) =aS(U, V, N) , (4) 

where U is internal energy, V volume and N number 
of particles. 

Additivity of  the entropy, 

S(U I + U 2, V I + V 2, N 1 + N 2) 

=S(U 1, V1,N1) +S(U 2, V2,N2),  

is implied only if 

U2=xU 1, V 2 = x V  t, N 2 = x N  1. 

Hence, if U = Nu and V = No, where u and v are 
respectively the internal energy and volume per par- 
ticle, and S is homogeneous of degree one, then S is 
extensive in the statistical mechanical sense; that is, 

S(U, V, iV)= Ns(u, v) , 

where s(u, v) depends only on the internal energy and 
volume per particle and is seen to be the entropy per 
particle. 

A further point which should be noted is that, if 
the entropy is defined to be an extensive quantity ac- 
cording to the statistical-mechanics definition, it is 
seen that the conditions of the implicit-function the- 
orem are satisfied [6] and eq. (4) may be inverted to 
give, for example, Uas a function of S, V andN. In 
the past, the conditions under which this could be done 
have been alluded to but not stated explicitly [5]. 

In conclusion, it would appear that the most sen- 
sible definition to adopt for an extensive quantity is 
that which currently appears in statistical-mechanics 
texts. This proposal is advanced since extensive quan- 
tities so defined would possess all the properties listed 
here as the thermodynamic definitions (1), (2) and 
(3) and, although not stated explicitly, this definition 
is implied occasionally in thermodynamics literature 
already [7]. 

347 



Volume 94A, number 8 PHYSICS LETTERS 28 March 1983 

References 

[1 ] C.J. Thompson, Mathematical, statistical mechanics 
(Princeton Univ. Press, Princeton, 1972). 

[2] H.B. Callen, Thermodynamics (Wiley, New York, 1960). 
[ 3] E.A. Guggenheim, Thermodynamics (North-Holland, 

Amsterdam, 1967). 
[4] M.W. Zemansky, Heat and thermodynamics (McGraw-Hill, 

New York, 1968). 

[5 ] P.T. Landsberg, Thermodynamics with quantum statistical 
illustrations (Interscience, New York, 1961). 

[6] T.M. Apostol, Mathematical analysis (Addison-Wesley, 
Reading, 1957). 

[7] D. Tranah and P.T. Landsberg, Collect. Phenom. 3 
(1980) 81. 

348 


