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We discuss the role of scale dependence of entropy/complexity and its relationship to
component interdependence. The complexity as a function of scale of observation is
expressed in terms of subsystem entropies for a system having a description in terms
of variables that have the same a priori scale. The sum of the complexity over all
scales is the same for any system with the same number of underlying degrees of
freedom (variables), even though the complexity at specific scales differs due to the
organization/interdependence of these degrees of freedom. This reflects a tradeoff of
complexity at different scales of observation. Calculation of this complexity for a simple
frustrated system reveals that it is possible for the complexity to be negative. This is
consistent with the possibility that observations of a system that include some errors
may actually cause, on average, negative knowledge, i.e. incorrect expectations.
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1. Introduction

The study of the relationship of information and physics has a long history.
Maxwell’s demon has provided much of the impetus, as has the understanding of
computation as a physical process [1–9]. More recently, this interest has focused on
quantum information and computation. In this paper we will consider the role of
the interdependence of the components of a physical system and the relationship
of interdependence to microscopic and macroscopic degrees of freedom. Missing
from the conventional discussions of information in physics is the recognition that
information describing the macroscopic structure and dynamics of non-equilibrium
systems, must be related to changes in microscopic entropy.

Not only are non-equilibrium states related to a reduction in microscopic entropy
(which follows directly from the Second Law of Thermodynamics) but, more sig-
nificantly, the degree to which macroscopic behavior occurs must, in some sense,
be directly related to the degree of reduction in the entropy. This statement can
also be understood to follow from the discussion in Ref. 10 that macroscopically
observable degrees of freedom represent aggregates of many microscopic variables.
Macroscopically relevant aggregates arise when their internal/relative degrees of
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freedom are constrained, creating coherent behaviors that are observable on a large
scale. To develop a formalism that can address this topic we go beyond the under-
standing of pair correlations in physical systems, the usual tool of statistical physics,
to consider higher order correlations that are characteristic of coherent behaviors:
many particles that are coupled as described by k-fold correlations, where k may
be a macroscopic number. The use of microscopic correlations to obtain the macro-
scopic entropy for an equilibrium system was shown by Lindgren [11]. Our objective
is to relate the structure of the state space of the system (i.e. measures of the volume
of the state space, the entropy, as well as its geometrical structure) to the depen-
dencies between microscopic coordinates. These measures of state space structure
are relevant for both equilibrium and non-equilibrium systems. The structure of
the state space can be characterized in part by considering its volume at different
degrees of resolution (scale). The large-scale structure of the state space is related
to macroscopic degrees of freedom (especially for non-equilibrium systems), while
the fine scale structure is related to microscopic degrees of freedom.

The logic of this presentation is as follows. We begin by considering the conven-
tional definition of entropy/information as a measure of the state space volume of a
system. Then we consider the dependence of this quantity on the scale of observa-
tion. Larger scales correspond to reduced precision in observation, i.e. observation
only of collective behaviors of multiple components that carry redundant informa-
tion. Using a detailed consideration of the algebraic properties of the information
for multiple variables we provide explicit expressions for the amount of informa-
tion at each particular level of redundancy (scale). We compare this scale depen-
dent function in its entirety for different systems. This function, “the complexity
profile” [10] can be viewed as the scale dependent complexity, synonymous with the
scale dependent information, entropy or variety. We arrive at the conclusion that
this function can characterize the structure of a system, and in particular it demon-
strates that the existence of larger scale parameters (degrees of freedom) directly
corresponds to a loss of microscopic degrees of freedom through aggregation. This
is shown by deriving a sum rule that constrains the sum over complexity (amount
of information) in all degrees of freedom of the system. This fundamental, if simple,
observation of a tradeoff between fine and large-scale degrees of freedom has not
yet been made in the literature considering the role of information in physics.

In the process of this discussion we develop a formalism based upon information
theory that can treat all high order correlations of the components of a system.
Indeed, capturing these correlations is what enables us to describe the tradeoff
between fine and large-scale degrees of freedom through a sum rule. This sum rule
formalizes the tradeoff in state space at different scales. The formalism and the sum
rule together constitute a new treatment of the relationship between interdepen-
dence of components and measures of state space. We illustrate the formalism and
its implications by applying it to several simple models. Detailed applications to
models of specific complex systems are deferred to future publications.

The discussion of information in physical systems in this paper can be conceptu-
ally linked to many quantitatively oriented discussions of complexity, since they are
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often related to information theory. The word “complexity” is used in the literature
in two ways. The first is as a quality whose attributes (to be identified) characterize
all complex systems. The second is as a quantitative measure, a single number that
characterizes a system, thus capturing the notion that some systems (mathemat-
ical or physical) are more or less complex than others. The various quantitative
approaches that have been taken often relate complexity to mathematical formula-
tions of thermodynamic or statistical entropy and information [12–33]. The notion
of descriptive complexity, one of the threads in the discussion of complexity suggests
that the complexity of a system is related to the length of its shortest description.
Since the length of a description is in some sense the minimal information, the
basis of most discussions of descriptive complexity is information theory [13], aug-
mented by algorithmic complexity [16–18], which considers the possibility of using
a shorter description and an algorithm for expanding it. The use of algorithmic
complexity indicates the importance of computation in the study of the proper-
ties of complex systems. Excluding this algorithmic aspect of most discussions, the
approach of information theory would be based upon a discussion of state space
volume. In considering the behavior of the state space volume at different scales of
observation, and the behavior of microscopic and macroscopic degrees of freedom,
we are therefore considering how information behaves as a function of scale. Missing
from these other treatments is a discussion of the interdependence of components
and specifically any formalism that can consider high order correlations between
components of the system. As shown below, without a treatment of these high order
correlations, an understanding of the relationship of microscopic and macroscopic
(or intermediate scale) observations of a system is not possible. Thus in this paper,
rather than approach the problem from the point of view of algorithmic complex-
ity, we directly consider how information in physical observations is related to a
multiscale approach that treats multiple redundancy, scale and interdependence.

There are two aspects of the concept of complexity that appear to cause the most
difficulty in formal discussions. The first problem is that there is a correspondence
between information and entropy that is counter to common intuition. The second
problem is the existence of observer dependence, suggesting arbitrariness in the
definition. The multiscale approach developed in this paper suggests that these
issues can be resolved by considering the scale dependence of observation rather
than observation at a particular scale, and especially not just the microscopic scale.
This leads to the characterization of a system by a scale dependent complexity
rather than a single number. This is not a new concept but it has received relatively
little attention in recent years and deserves to be reconsidered. In the following, we
introduce the two conceptual difficulties as additional motivation for the multiscale
formalism.

2. Model

The conventional definition of the physical entropy S of a system with a particular
macrostate (e.g. energy, composition, volume, (U, N, V )) in statistical physics and
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that of information H(z), the average information in a set of messages (descriptions)
whose probabilities Pz(s) map onto the ensemble of the microstates of the physical
system (z is a label for the set of possible messages and the probability over this
set, s is a particular value from the set; see the discussion of notation in Ref. 10,
Sec. 1.8.3) can be related by

H(z) =
S(U, N, V )

k ln(2)
= −

∑
s

Pz(s) log2 Pz(s). (1)

The sum over s indicates a sum over the finite or infinite set of messages, where
the messages are in one-to-one correspondence with the states of the system and
therefore can be considered as labels or descriptions of each state of the system.
Equation (1) allows the entropy to be generalized to treat non-equilibrium sys-
tems, as long as we assume a well-defined ensemble probability distribution, Pz(s).
We will further assume that the messages can be written using binary variables
s = {si}i=1,...,n, si = ±1, that these binary variables correspond to the components
of the system, and are all of the same scale, although they may be interdependent.
The interdependence of these components is captured by the probability of the sys-
tem state Pz(s) = Pz(s1, . . . , sn), which does not generally factor into probabilities
of the individual binary variables. The variables si considered individually have
the probability Pzi(si), which we can for simplicity assume to be equal for the two
possible values so that the information H(zi) is 1.

The conceptual difficulty with the relationship given by Eq. (1) is that equilib-
rium systems, which maximize entropy, are not the systems we normally identify
as most complex. The equilibrium form of a human being is a murky liquid — it
is the most disordered/random system without visible structure or dynamics (even
through its microscopic description requires the most information). This difficulty
has led to definitions of complexity that give a low value for completely disordered
systems, and a higher value for systems away from equilibrium. Probably the earli-
est and most discussed variant on information which can be used to characterize the
non-equilibrium character of a system is Schrödinger’s concept of negentropy [12]
which, while originally defined as the negative of the entropy, can be better under-
stood as the difference between the equilibrium entropy and the entropy of the
system when it is in a non-equilibrium but well-defined ensemble Pz(s). Negen-
tropy, therefore, measures the entropic deviation of the system from the equilib-
rium state. Since this modified definition amounts to the addition of a constant
offset (the equilibrium entropy) for all possible non-equilibrium macrostates of a
particular system, it changes only in a non-essential way the concept defined by
Schrödinger. The negentropy defined in this way is high for systems that are out of
equilibrium. Its relationship with the multiscale formalism will be discussed below.

The second conceptual problem arises from a concern with the apparent depen-
dence of description length on the observer. In contrast to the unique definition of
the entropy of a physical system, the observer dependence of physical quantities
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(e.g. kinematic ones) is well-known and the objective of theory is relating what dif-
ferent observers report. In light of this perspective, it should not be surprising that
the complexity of a system may be observer dependent. We will argue that rather
than a single number for characterizing the complexity, at the very least, a scale
dependent complexity is needed, i.e. the complexity as reported by a sequence of
observers whose observations of the system are at different scales. This scale depen-
dence reflects the observer’s ability to distinguish details of the system. All observers
observe the same scope, i.e. the system in its entirety. Larger scale observers, how-
ever, see only redundant information. The concept of a scale dependent entropy
dates back to the ε-entropy of Kolmogorov [15], which is similar to Shannon noisy-
channel information theory [13]. The study of the ε-entropy has been largely limited
to the fine scale limit to describe the Kolmogorov–Sinai dynamical systems entropy
rate [15, 34]. There are several more recent works that have explored the scale
dependence of entropy in specific cases [10, 35–38].

The expressions we will give for the scale dependent entropy in terms of compo-
nent interdependence can be related to an intuitive notion of complexity without
either of the conceptual difficulties discussed above. Underlying the resolution of the
conceptual problems is the sum rule we will prove that reflects a tradeoff between
fine-scale and large-scale complexity for systems with different probability distribu-
tions over the same underlying degrees of freedom. This sum rule has widespread
relevance to our understanding of complex systems.

The multiscale representation is written by considering the level of redundancy
of specification of the information by the elements. The amount of information at
each scale is not an integer, but the scale is integral and ranges from 1 to n. The
amount of information that is shared by at least k variables is the complexity C(k),
we also define D(k), the information that has a redundancy of k, but not higher.
D(k) partitions the information disjointly and

C(k) =
n∑

k′=k

D(k′). (2)

The conventional entropy is the fine-scale complexity H(z) = C(1).
We can obtain an explicit expression for multiscale complexity in terms of the

probability distribution over the state space from a consideration of the algebraic
properties of the information. After an involved derivation, we obtain an explicit
expression for the scale dependent information in terms of the sum over the infor-
mation in all subsets of a particular size. The derivation requires ensuring that a
proper count is made of the different levels of redundancy of information. In gen-
eral, if we consider the information present in a particular subset of the system, this
will overlap the information of other subsets of the system. The degree to which
this overlap occurs (number of redundancies) depends on the multiplicity of the
underlying dependencies of the variables. In order to obtain just the information
in the system that has at least a particular redundancy and not that with less, we
determine the necessary combination of the possible sums over the information in
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subsets of the system. A careful treatment of the combinatorics of k-fold redun-
dancy for all k is necessary. Rather than provide this derivation here we will prove
below that our derived form is the only possible expression. The result is

C(k) =
k−1∑
j=0

(−1)k−j+1

(
n − j − 1
k − j − 1

)
Q(n − j) (3)

D(k) =
k∑

j=0

(−1)k−j+1

(
n − j

k − j

)
Q(n − j), (4)

where

Q(n − j) =
∑

{i1,...,ij}
H(z − {zi1 , . . . , zij})

= −
∑

{i1,...,ij}

∑
s

Pz(s1, . . . , sn) log2

∑
{s′

i1
,...,s′

ij
}
Pz(s1, . . . , s

′
iα

, . . . , sn) (5)

is the sum over subspace entropies, with n − j components, i.e. the information
excluding sets of j binary variables from the n total number of binary variables.
In the notation used the subtraction z − {zi1 , . . . , zij} indicates set subtraction,
i.e. omission from the set of variables considered. The sum over {ii, . . . , ij} implies
a sum over all distinct subsets of j variables out of the entire set of n variables. We
note that these are new expressions that have not appeared in the literature and
provide an explicit form for the information in k-fold dependencies for any system
described by a probability distribution over the ensemble [39].

These expressions can be concretized by considering the behavior of a system
that partitions into subsets Θα each of which consists of |Θα| completely dependent
variables, i.e. there are only two possible states of each subset, a binary degree of
freedom. The redundancy of information inherent in the dependency of the variables
implies that the scale of the degree of freedom is equal to the number of variables
in the subset. Specifically, we consider the partition

n =
∑
α

|Θα| =
∑

q

nqq, (6)

where nq is the number of subsets consisting of q completely interdependent vari-
ables, i.e.

Pz(s1, . . . , sn) =
∏

i,j∈Θα

δ(si, sj) (7)

(while this expression indicates variables of a subset all adopt the same orienta-
tion, it is only necessary that the choice of one variable fixes the orientation of all
other variables of the set) and for this simple case we have the result (by direct
substitution):

D(k) = nk, (8)
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this means that D(k) counts the number of distinct degrees of freedom that are
k-fold redundant, which in this case is the same as the number of partitions with
k elements.

To prove the results in Eqs. (3) and (4) we note the following must hold for
the correct expressions: (a) the expressions must be symmetric in all subsets of the
variables of the same size (this includes the case of single variables), (b) they must
satisfy Eq. (8) for the example chosen. This proves the correctness of the formulas
given in Eqs. (3) and (4), since by direct algebraic inversion of Eq. (4).a D(k) is
the only function of average subsystem entropies with property (b).

For the case specified by Eq. (8), there is a simple relationship of the multiscale
complexity with robustness to noise. In the presence of noise that is independent
for each variable, the probability of observer error is given by the likelihood that
more than half of the redundant variables are incorrect, which for k completely
correlated variables is

perr(k) =
k/2∑
m=0

(
1 − 1

2
δ(m, k/2)

)(
k

m

)
(1 − r)mr(k−m)

∼ 1
2

(
1 − erf

(√
2k(1/2 − r)

))
, (9)

where r is the probability of a single variable error, and the asymptotic expression
is for large k.

We can obtain additional intuitive results that generalize Eq. (8) by considering
a system that partitions into subsets. First consider partitions that are independent
of each other but are not as simply constrained within. For such a system that
partitions into several subsets (clusters), each of which is interdependent, but with
no dependency between them, the complexities of subgroups add. If we have subsets
of variables indexed by α, we have

C(k) =
∑
α

Cα(k), (10)

where Cα(k) is the kth entropy of the αth subset. This generalizes the extensivity
of the entropy and is a first step toward considering the topic of subdivision and
hierarchy [10, Chap. 2, 41–43]. We can also consider the possibility of subdivisions
that are exact replicas (i.e. multiple copies that have the same state) in which case
it can be seen that:

C(k) = C1(�k/g�), (11)

where C1 is the complexity of one subdivision, and g is the number of copies. This
means that the scale is multiplied, while keeping the same value of the complexity.

aUsing the identity

δk,k′ =
nX

j=1

(−1)k−j

„
n − k′
n − j

« „
n − j
k − j

«
.
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We see that for the case of completely dependent or independent variables, the
definition of the complexity as a function of scale provides intuitive results.

It is now possible to describe the relationship between interdependence and the
scale of degrees of freedom. This relationship is captured by a sum rule. Several
qualitative and quantitative applications of such a sum rule have been discussed
previously [10, 38], however this formal statement is presented here for the first
time. The sum rule is proven by direct substitution of the expressions in Eqs. (3)
or (4), and can be written as

∑
k

C(k) =
∑

k

kD(k) = Q(1) =
∑

i

H(zi), (12)

where the final expression is equal to n for equal probabilities for the case of the
binary variables. A conceptual illustration of the sum rule is provided in Fig. 1. For
a class of systems that have the same degrees of freedom, but different correlations
between them, the sum rule reflects a tradeoff between complexity at different
scales. When parts of a system are independent, they do not provide redundant
information and cannot be visible at a large-scale. Independence indicates a large
amount of information at a fine scale, while dependence indicates information at a
larger scale. This tradeoff alleviates the conceptual difficulty with the conventional
definition of entropy and complexity.

It is useful to compare the scale dependent complexity with the concept of negen-
tropy. Adding to the usual definition of negentropy, the entropy of the equilibrium
system (as discussed previously), and assuming that the equilibrium entropy is

(a)

(b)

(c)

k

C(k)

Fig. 1. Schematic illustration of the sum rule for entropy/complexity C(k) (vertical axis) as a
function of scale, k (horizontal axis, increasing to the right). A system with the highest possible fine
scale complexity corresponds to a system with independent/random degrees of freedom (curve (a)).
When all degrees of freedom are coherent the system has a behavior at the largest scale, but the
same low value of complexity at all finer scales (curve (b)). Intuitively, complex non-equilibrium
systems (curve (c)) have a much higher complexity than either random or coherent systems,
except at the finest scale for random systems and except a small but slightly higher complexity
for coherent systems at the largest scales. The area under all curves is the same for systems with
the same underlying degrees of freedom.
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given by independent binary variables, the negentropy can be seen to be

∑
i

H(zi) − H(z) =
n∑

k=2

C(k), (13)

which includes all of the larger scale complexity without distinguishing its scale.
A reason to consider the scale dependent complexity in its entirety is that we can
have correlations between pairs of variables of the system (microscopic correlations)
that give a high negentropy, without any large-scale behavior, i.e. observable degrees
of freedom.

The above expressions can be made more intuitive by considering the case of
three variables. In this case we have

C(1) = H(z),

C(2) =
∑
{i,j}

H(zi, zj) − 2H(z), (14)

C(3) =
∑

H(zi) −
∑
{i,j}

H(zi, zj) + H(z).

We can illustrate the multiscale complexity for three elements using a Venn
diagram (Fig. 2), which shows the information overlap between these elements.
The area of the entire diagram is the total entropy H(z) = H(z1, z2, z3). The area
of each circle is H(zi). The intersection of a pair of circles is the mutual information
I(zi; zj) = H(zi, zj)−H(zi)−H(zj), which corresponds to the information that can
be learned from zi about zj or vice versa, or the information that is available to an
observer from either zi or zj. The three pairwise overlapping regions also overlap in
the region labeled D(3) in the figure. This might be given the notation I(z1; z2; z3)
and called the mutual information of three variables (with caveats given below).

D(1)

D(2)

 D(3)

H(s1)

H(s2)
H(s3)

Fig. 2. Venn-type diagram illustrating the information and redundancy of the information in a
system with three variables.
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We identify the regions D(1), D(2), and D(3) as the singly, double, and triply
redundant regions, respectively. Expressions in Eq. (8) and the sum rule can be
verified graphically, or the analogous expressions from Eq. (5) for D.

To work out a particular example, we consider the three binary variables as
binary (Ising model) spins interacting through a magnetic interaction J to give the
probability:

P (s) = eJ
P

i,j sisj

/∑
s

eJ
P

i,j sisj . (15)

We evaluate

H(z) = 6J(e−J − e3J)/Z ln(2) + log2(Z),

∑
{i,j} H(zi, zj) = 6(2e−J log2(2e−J)

+ (e−J + e3J) log2(e−J + e3J ))/z + 3 log2(Z),

∑
i H(zi) = 3,

(16)

where

Z = 2(3e−J + e3J). (17)

The results for C(k) from Eq. (3) are plotted in Fig. 3 as a function of J . For positive
J the spin alignment causes the increase in C(2) and C(3) with the information
overlap reaching 1. For negative J , the spins are frustrated in trying to antialign
leading ultimately to six possible states C(1) = log2(6).

What is interesting is the behavior of C(3), which becomes negative for
negative J , with a limiting value of

C(3) → 3 − log2(54) + log2(6) ≈ −0.169925. (18)

C(1)

C(2)
C(3)

J

C(2)

–1 0 1 2

–1

–0.5

0.5

1

1.5

2

2.5

3

C(3)

Fig. 3. Plot of the amount of information C(k) observable at each scale k as a function of the
interaction strength J between three spins.



June 24, 2004 16:42 WSPC/169-ACS 00006

Multiscale Complexity/Entropy 57

This is not consistent with our normal understanding of the Venn diagram in Fig. 2.
However, the Venn diagram is only a visual aid, and is not a formally valid represen-
tation of information theory. Indeed, the negative value of C(3) a counter example.
We note that the average mutual information of two variables must always be posi-
tive, but the mutual information that results from a single message may be negative.
The case we have here is different because it is the average information rather than
the information in a single message that is negative, this can occur when we con-
sider the mutual information of three variables [43]. The meaning of a negative
mutual information can be understood from the example we are considering here.
Its origin is the incompatibility of the interactions that try to anti-align any pair of
the three spins, technically known as frustration. Specifically, if we ask what does
the state of spin 1 inform us about the state of spin 3, we learn that it is likely to be
opposite. If, however, we ask, what does spin 1 inform us about the state of spin 2,
and what does the state of spin 2 tell us about the state of spin 3, we will discover
that the state of spin 3 is likely to be the same as spin 1. This conflicting infor-
mation leads to the negative value of C(3). More generally, the negative large-scale
entropy reflects the possibility that partial information gained about a system from
messages that contain errors may be misleading, i.e. this is disinformation resulting
from partial knowledge. The negative value of C(3), also implies that the multiscale
complexity is not always a monotonically decreasing function, as has been stated
elsewhere [10].

As a step towards discussing dynamics, consider a Markov chain with transition
matrix T where the possible states at a particular time are assumed to be of a
single scale (but higher scales arise from interplay between times)

pzj−1|zj (sj) =
∑
sj−1

T (sj|sj−1)pzj−1 (sj−1). (19)

We obtain expressions for C(k) per time step in terms of the conditional information
along the chain (H(z′|z) is the information in s′ given s taken from the probability
distribution Pz(s)):

C(k) = H(zk|z0) − H(zk−1|z0), (20)

H(zk|z0) = −
∑
s0,sk

pz0(s0)T k(sk|s0) log2(T
k(sk|s0)). (21)

The expression for C(1) reduces to the standard entropy of a Markov chain, and
C(k) is always positive. The sum rule is given by:∑

k

C(k) = lim
k→∞

H(zk|z0) = H(z0), (22)

consistent with equation (12). For the more specific case of a single binary variable
with transition matrix: (

(1 + f)/2 (1 − f)/2
(1 − f)/2 (1 + f)/2

)
, (23)
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we have

H(zk|z0) = h((1 + fk)/2), (24)

where

h(p) = −p log2 p − (1 − p) log2(1 − p) (25)

showing the role of the eigenvalues of the transition matrix (1, f) in determining the
multiscale complexity. If the information transferred along the chain was assumed
to be retained from step to step in a random way, the result would be C(k) =
h(p) (1−h(p))k−1, so the difference between this expression and the equations above
reflects “correlations” in the propagation of information along the Markov chain.

The above treatment considered binary variables, but can be generalized.
To generalize the treatment to apply also to continuum variables, such as position
x of a particle, we begin using a simplified approach that considers the informa-
tion associated with a single variable, even if that variable is a real number, to be
at a single scale. In this case, the concept of scale becomes solely associated with
numbers of particles that are behaviorally related, rather than the distance a par-
ticular particle travels. While this violates some aspects of intuition, it enables a
direct analysis of a variety of physical systems in which particles are the underlying
physical entity. In particular, all of the above expressions for C(k) and D(k) apply
to multiparticle systems with the interpretation of si as the particle coordinate(s)
and H(zi) as the information needed to specify each coordinate. The simplest non-
trivial case is C(k) for an ideal gas of indistinguishable particles. While it might
seem that the independence of the particles would lead to a non-zero C(k) only
for k = 0, indistinguishability is an implicit interdependence. Since the entropy of
any subset of j particles has the form S(j) = jkB ln(v/j), where v is temperature
dependent and proportional to the volume, we have

C(k) =
k−1∑
j=0

(−1)k−j+1

(
n − j − 1
k − j − 1

)(
n

j

)
(n − j) log2(v/n − j). (26)

C(k) for k > 0 depends only on n. A plot is shown in Fig. 4. A more complete
treatment of continuum variables would also consider that the information about a
single real number does not have a single scale, but rather has multiple scales asso-
ciated with smaller and larger variations in the position variable x. This separation
of scales is, in a sense, orthogonal to the issue of distinguishability described above.
The total amount of information at all scales, appears in the formalism as C(1)
which can be inferred from the usual result C(1) = log(L/d) where L is the maxi-
mum variation and d is the finest observable precision. A more complete discussion
of the scale dependence of continuum variables will be given elsewhere.

The technical results reported thus far may not provide sufficient intuitive under-
standing of the nature of this formal framework. The central idea is to consider the
collective motions of a system and the relationship of such collective motions to
the dependencies that exist between smaller scale degrees of freedom. As an aid
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Fig. 4. Plot of C(k) for a gas of N = 100 indistinguishable particles. The line is the curve
N/(k − 1).

to communicating the broad relevance of this concept, it may be helpful to apply
this framework to an example of a complex system. Consider the comparison of
the multiscale complexity of two systems, the first is a human being, the second
is a collection of biological cells. We consider the human being to be confined to
a single large room, the collection of cells, e.g. microbes, to be confined to a pond
of the same volume as the room. As a first approximation, we consider as vari-
ables describing the system the set of possible locations of the cells of the person,
and the set of possible locations of the microbes. The multiscale complexity of the
locations of the microbes might be first approximated as randomly located at any
location in the volume available. The cells of the person are similarly randomly
located anywhere in the room. The primary difference being that the location of
the cells of the person must all be near the same location at any particular time,
while those of the microbes need not be. This statement might be described by
correlations between positions of the cells, the pairwise distribution, but such a
representation does not capture the many possible dependencies that might exist
between the variables. In the formalism developed in this paper, we use the N -fold
correlation of all of the positions of the cells to capture their mutual dependency.
Indeed, the multiscale complexity of these two systems can be simply character-
ized. For the human being at the simplest level of approximation it is C(k) = H(x)
for k ≤ N , and zero otherwise; and D(k) = H(x) for k = N , and zero other-
wise. For the microbes it is C(k) = NH(x) for k = 1, and zero otherwise; and
in this case D(k) is equal to C(k). If we relax the simplest approximations used
in this analysis and consider the possibility of interactions between microbes, or
freedom of motion of parts of the human being with respect to other parts, this
would give rise to corrections to the multiscale complexity. All such corrections
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reflect the dependence/independence of the degrees of freedom of the system. The
formal result contained in Eqs. (3) and (11) provides proof that a tradeoff between
fine-scale and large-scale degrees of freedom is preserved no matter how realistic a
model is used for the discussion of biological (or other complex) systems.

Oftentimes, complex systems are considered to be systems that have behav-
iors on multiple scales. This is frequently captured conceptually by self-similar
geometrical fractals and more general scaling behaviors [44]. For the purpose of
information theory, a specific geometric fractal has no information aside from its
generating algorithm. However, we can consider various stochastic fractal models
that have increasing information at finer scales. For simplicity, we can consider
stochastic generalizations of conventional geometric fractals such as Cantor’s set
and the Sierpinski gasket. For Cantor’s set, recursively defined as the omission of
the middle third of remaining line segments starting from the segment [0, 1], we
define a stochastic fractal by defining s(x), a binary variable located at a finite but
large number N of evenly spaced locations x along the unit interval [0, 1], through
assigning recursively the middle third of the remaining intervals with a probability
of 1/2 to the value 1, and otherwise zero. The resulting multiscale complexity is
given by D(N/3m) = 2m−1, for m = 1, 2, 3, . . . , so that C(k) = 2�1+log3(N/k)�−1.
This gives the approximate expression log C(k) ≈ d(log(N) − log(k)), where d is
the box-counting dimension d = log(2)/ log(3). Similarly, for the Sierpinski gas-
ket, we define the value of s(x, y), a binary variable located at one of a finite but
large number A of locations uniformly distributed in a triangle, recursively with
a probability of 1/2 to the value 1 in the middle (upside-down) triangle of the
remaining unselected triangles partitioned into four triangles. This gives the value
D(A/4m) = 3m− 1. This gives the result C(k) = 3�1+log4(N/k)� − 1, or

log C(k) ≈ (d/d0)(log(N) − log(k)), (27)

where d is the fractal dimension d = log(3)/ log(2), and d0 is the embedding dimen-
sion d0 = 2. The power-law result in Eq. (20) is quite general as can be seen by con-
sidering a d0 dimensional body and recursively partitioning it into W parts, of which
X are assigned the value 0 or 1 with probability 1/2 and the remainder are subject
to the next level of recursion. The box-counting dimension is d = d0 log(X)/ log(W )
and the above expression gives C(k). The power law behavior of the complexity of
stochastic fractals is consistent with the idea that they represent systems with
behaviors at all scales, and according to the multiscale complexity they are more
complex than either fully disordered or fully ordered systems with the same number
of degrees of freedom at all scales except the smallest and largest.

Finally, to relate the multiscale complexity to the usual study of large-scale
behavior through the order parameters of an equilibrium thermodynamic system,
we label the entropy by the size of the system, CN (k), and suggest that the ther-
modynamic limit is given by C∞(α) = limN→∞ CN (αN). We note that the order
parameter reflects the highly redundant information that is available about the
system in the thermodynamic limit. For example, we can consider an interacting
Ising system with N interacting spins. Assuming that the system is ferromagnetic,
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regardless of the geometry of interactions (long range or spatial), the high tempera-
ture limit corresponds to independent spins and the low temperature limit to having
all spins aligned. The multiscale complexity of such a system in these two limits is
readily understood. In the high temperature limit each of the microscopic variables
is independent and the complexity is given by C(k) = N for k = 1, and zero oth-
erwise. In the low temperature limit C(k) = 1 for k ≤ N . The same result applies
for an anti-ferromagnet on a bipartite lattice. We can also consider generalizations
of the Ising model, such as the Mattis model [46]. The conventional treatment
of the thermodynamic limit requires explicitly recognizing the order parameter to
study its properties. By contrast, the multiscale complexity, because it evaluates all
k-fold correlations, allows for all possible orderings. This can be readily proven for
the Mattis model, which, if the order parameter is known, can be transformed into
the conventional infinite range Ferromagnetic Ising model by redefining the sign of
a subset of the spin variables. The proof follows from the invariance of the multi-
scale complexity under redefinition of the variables. Similar considerations apply to
more complex models such as spin glass [45] models, where conventional treatments
require identifying “by-hand” the order parameter. Thus at low temperatures, the
information in the macroscopic order will be present in CN (k) at macroscopic val-
ues of k. Application of this methodology to thermodynamic systems to obtain
the characteristic behavior through the phase transitions will be further discussed
elsewhere [47].

3. Conclusion

In summary, we have studied the multiscale properties of the structure of the state
space of a system in terms of the interdependence of components, treating all pos-
sible (k-fold) correlations. This treatment made use of the formal properties of
the information of subsets of the system. We derived a specific expression for the
information that is present in k or more fold redundancy in the system, C(k) and
for precisely k-fold redundancy, D(k). We proved the expressions by showing that
they are the only ones that are correct for the case of a system partitioned into
subsets that are completely interdependent. We further proved a sum rule demon-
strating a tradeoff, for different systems with the same underlying variables, of
information needed to describe systems at different scales. This multiscale treat-
ment provided a resolution of two conceptual difficulties facing formal studies of
quantitative complexity. Furthermore, we illustrated the utility of the formalism
and its conceptual framework by applying it to a variety of models of simple and
complex systems. We (a) calculated the multiscale complexity of simple interdepen-
dent systems revealing some interesting results, particularly that negative values
for the k-fold information are possible; (b) calculated the multiscale complexity of
a simple Markov chain; (c) made an initial step toward extending the formalism
to continuum variables and indistinguishability; (d) showed the broader conceptual
relevance of the formalism by considering the difference between the multiscale char-
acterization of independent biological cellular microorganisms, and cells forming a
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human being; (e) considered a model of stochastic fractals illustrating the idea that
complex systems have behaviors on multiple scales; and (f) considered the appli-
cation of the formalism to traditional studies of thermodynamic phase transitions.
These results for models of simple and complex systems suggest that the multiscale
complexity provides a widely applicable quantitative and conceptual tool for char-
acterizing complex systems and their behaviors on multiple scales. In separate work
we address the relevance of the multiscale complexity to the response of the system
to external forces and the functional capabilities of complex biological and social
systems, and particularly the importance of the sum rule in capturing a trade-off
between behaviors/capabilities of a system at different scales [48–50].
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