
Round-off/Truncation Errors & Numerical Cancellation

Outline Notes

MS201 — Numerical Analysis I

6 November 2003

1 Introduction

When one tries to classify the errors in numerical computations, it might be useful to study the
sources of the errors and the growth of the individual errors. The sources of the errors are essentially
static while the growth takes place dynamically. There are essentially three sources of errors:

(a) Initial Errors;

(b) Local round-off errors;

(c) Local truncation errors.

The initial errors are errors in the initial data, a simple example of which is when data are
obtained from a physical or chemical apparatus.

Round-off errors depend on the fact that practically each number in a numerical computation
must be rounded (or chopped) to a certain number of digits.

Truncation errors arise when an infinite process (in some sense) is replaced by a finite one.
Examples of this include the computation of a definite integral through approximation by a sum
or the numerical integration of an ordinary differential equation by some finite difference method.

2 Absolute & Relative Errors

Definition 2.1 Absolute Error: The absolute value of the difference between the number x and its
finite representation fl(x).

a.e. = |x− fl(x)|

Definition 2.2 Relative Error: The ratio of the absolute error and the number x:

r.e. =
|x− fl(x)|

|x|
≥ 0

When does one use one or the other definition of error? Consider x = 0.33 and fl(x) = 0.30.
Clearly, a.e. = 0.03 and r.e. = 0.03/0.33 = .09091 ≈ 9.1%. When x = 0.33 × 10−5 and fl(x) =
0.30 × 10−5, a.e. = 0.03 × 10−5 = 3 × 10−7 but r.e. = 0.09091. Note that the relative error is
unchanged, while the absolute error changed by a factor of 105.

Several conclusions can be drawn:

• The absolute error is strongly dependent on the magnitude of x.

1

• The absolute error is misleading unless it is stated what it is an error of.

• The relative error is a measure of the number of significant digits of x that are correct.

• A relative error has meaning even when x is not known. It is given as a percentage value.

3 Round-off Error

When a calculator or digital computer is used to perform numerical calculations, an unavoidable
error, called round-off error, must be considered.

This error arises because the arithmetic performed in a machine involves numbers with only
a finite number of digits, with the result that many calculations are performed with approximate
representations of the actual numbers. There are two major approaches: chopping and rounding:

• When chopping a number to a specified number of decimal places, say m, the first m digits
of the mantissa are retained, simply chopping off the remainder.

• When rounding a number, the computer chooses the closest number that is representable by
the computer.

A natural question on may ask is what error is committed when a number is chopped or rounded
to n digits? Consider the number

x = 0.d1d2 · · · dndn+1 · · ·

Chopping to n digits produces the number

fl(x) = 0.d1d2 · · · dn

with an error

x− fl(x) = 0.dn+1dn+2 · · · × 10−n

< 0.9999999 · · · × 10−n

< 10−n

Does rounding x to n digits increase or decrease this error? We now show that the error is
decreased. Once again, consider:

x = 0.d1d2 · · · dndn+1 · · ·

If dn+1 < 5, chop x to n digits. The error is

x− fl(x) = 0.dn+1dn2 · · · × 10−n

≤ 0.4999999 · · · × 10−n

< 0.5× 10−n

When 5 < dn+1 ≤ 9, add 0.5× 10−n to x and chop the result. If x∗ = x + 0.5× 10−n,

round(x) = chop(x∗) = 0.d1d2 · · · d∗n

2

where 0 < d∗n < 5 and d∗n = dn + 1. The error is therefore

|x− round(x)| = 0.d1d2 · · · d∗n − 0.d1d2d3 · · · dndn+1 · · · |
= |d∗n − dn − 0.dn+1dn+2 · · · | × 10−n

= |1− 0.dn+1dn+2 · · · | × 10−n

< 0.5× 10−n

The last inequality follows since 5 < dn+1 ≤ 9.
In summary, the error committed by rounding a normalized number x to n digits (in base 10)

is 0.5× 10−n, which is 1/2 the maximum error committed by chopping.

Example 3.1 Following Cheney & Kincaid (1985), consider a binary computer having a word
length of 64 bits (binary digits) where as much as possible of the normalized floating-point number
±q × 2m must be contained in these 64 bits. One allocation is as follows:

sign of q 1 bit
sign of m 1 bit
integer |m| 14 bits
number q 48 bits

With such a machine, real numbers with |m| as large as 214 − 1 = 16383 can be represented. The
mantissa is 48 bits and, since 2−48 ≈ 0.3553×10−14, it can be inferred that approximately 14 digits
of accuracy should be obtained in single precision. For integer representation, only the mantissa is
used so that the decimal integers range from −

(
248 − 1

)
to +

(
248 − 1

)
.

This hypothetical machine would represent a machine number as follows. The leftmost bit is
used for the sign of the mantissa; the next bit designates the sign of the exponent (0 corresponds to
a plus and 1 to a minus sign); the next 14 bits are used to represent the exponent and the remaining
48 bits represent the normalized mantissa.

Consider a positive number in normalized floating-point form,

x = ±q × 2m,
1
2
≤ q < 1, |m| ≤ 214 − 1 = 16383.

Replacing x by its nearest machine number, denoted by fl(x), is a process known as rounding and
the error involved is known as round-off error. Writing x in normalized binary notation

x = (0.1a2a3 · · · a48a49a50 · · ·)2 × 2m

the nearest machine number to the left of x (rounding down) on the real number line is

xL = (0.1a2a3 · · · a48)2 × 2m

while the nearest machine number to the right of x (rounding up) is

xR =
[
(0.1a2a3 · · · a48)2 + 2−48

]
× 2m.

The closer of these machine numbers is the one chosen to represent x.
If x lies closer to xL than xR, then

|x− xL| ≤
1
2
|xR − xL| = 2−49+m,

so that the relative error bound is calculated as
|x− xL|
|x|

≤ 2−49+m

(0.1a2a3 · · ·)2 × 2m
≤ 2−49

1
2

= 2−48,

and the same result applies when x is closer to xR. The number 2−48 is known as the unit round-off
error for this hypothetical machine.

3

More generally, let a real number x be written in the form

x = s · (.d1d2 · · · dndn+1 · · ·)β × βm

The chopped machine representation of x is given by

fl(x) = s · (.d1d2 · · · dn)β × βm

The rounded machine representation of x is given by

fl(x) =

{
s · (.d1d2 · · · dn)β × βm 0 ≤ an+1 < β

2

s ·
[
(.d1d2 · · · dn)β + (.00 · · · 01)β

]
× βm β

2 ≤ an+1 < β

Note that (.00 · · · 01)β denotes β−n. With most real numbers, we have fl(x) 6= x and it is easy to
show that the relative error is

x− fl(x)
x

= −ε,

where
−β−n+1 ≤ ε ≤ 0 chopped fl(x)
−1

2β−n+1 ≤ ε ≤ 1
2β−n+1 rounded fl(x)

Following Atkinson (1989), we will illustrate the proof for chopping. Assume that s = +1 since the
case s = −1 will not alter the sign of ε. Since

x = (.d1d2 · · · dndn+1 · · ·)β × βm

and the chopped machine representation of x is

fl(x) = (.d1d2 · · · dn)β × βm

we have
x− fl(x) = (.00 · · · 0dn+1 · · ·)β × βm

Letting γ = β − 1, we obtain

0 ≤ x− fl(x)
≤ (.00 · · · 0γγ · · ·)β × βm

= γ
[
β−n−1 + β−n−2 + · · ·

]
× βm

= γ

[
β−n−1

1− β−1

]
× βm

= β−n+m

Therefore, the relative error for chopping is obtained from

0 ≤ x− fl(x)
x

≤ β−n+m

(.d1d2 · · · dndn+1 · · ·)β

≤ β−n

(.100 · · ·)β

≤ β−n+1

4

The formula for the relative error
x− fl(x)

x
= −ε,

is usually written as
fl(x) = (1 + ε)x.

Definition 3.1 The “unit round” of a computer is the number δ satisfying: (a) it is a positive
floating-point number, and (b) it is the smallest such number for which

fl(1 + δ) = 1.

The unit round δ is given by

δ =
β−n+1 chopped definition of fl(x)
1
2β−n+1 rounded definition of fl(x)

Example 3.2 Consider rounding arithmetic on a binary machine. In order to show that

fl(1 + 2−n) > 1,

write

1 + 2−n = [(.100 · · ·)2 + (.000 · · · 00100 · · ·)2]× 21

= (.100 · · · 00100 · · ·)2 × 21.

Form fl(1 + 2−n), noting that there is a 1 in the (n + 1)-st position of the mantissa,

fl(1 + 2−n) = (.100 · · · 01)2 × 21 = 1 + 2−n+1,

and so
fl(1 + 2−n) > 1,

although
fl(1 + 2−n) 6= 1 + 2−n.

The fact that δ cannot be smaller than 2−n follows by considering again

1 + 2−n = (.100 · · · 00100 · · ·)2 × 21.

If δ̂ < δ, then 1 + δ̂ has a zero in the (n + 1)-st position of the mantissa and the definition of
rounding would then imply that fl(1 + δ̂) = 1.

Definition 3.2 Exact Integers Bound: is the largest integer K for which

k an integer and 0 ≤ k ≤ K ⇒ fl(k) = k.

This also implies that fl(K + 1) 6= K + 1. Show that K = βm.

Noting that the lower (L) and upper (U) exponent limits satisfy L ≤ m ≤ U , the smallest
positive floating-point number is

xL = (.100 · · · 0)β × βL.

Using the notation γ = β − 1, the largest positive floating-point number is

xU = (.γγ · · · γ)β × βU

=
(
1− β−m)

× βU .

Thus, all floating-point numbers x must satisfy

xL ≤ x ≤ xU .

5

4 Significant digits

Our intuition tells us that the more accurate a number is, the more digits (that follow the decimal
point) will be correct, once the number is expressed in normalized format. To make this statement
more precise, we relate the number of correct digits to the relative error.

Definition 4.1 p∗ approximates p to t significant digits if t is the largest integer > 0 such that

r.e. =
|p− p∗|

p
≤ 5× 10−t

Taking log10 of both sides results in

log10(r.e.) ≤ log10(5× 10−t)
= log10 5− t

so that
t ≤ log10

5
r.e.

A related statement is that if x and y are normalized floating-point machine numbers such that
x > y > 0 and 1− y

x ≥ 2−k, then at most k significant binary bits are lost in the subtraction x− y.

Example 4.1 Given a relative error r.e. = 0.5, how many significant digits do we have?

t ≤ log10

5
5× 10−1

= 1

Given r.e. = 0.1,

t ≤ log10

5
0.1

= log10 50

so that 1 < t < 2. There is one significant digit.

Example 4.2 Consider x = 3.29 and fl(x) = 3.2. How accurate is the approximation fl(x)? The
relative error is

r.e. =
∣∣∣∣3.29− 3.2

3.29

∣∣∣∣ =
9× 10−2

3.29
≈ 3× 10−2

so that
t ≤ log10

5
3× 10−2

= 2 + log10(5/3)

which implies that t lies between 2 and 3. There are 2 significant digits.

The number of significant digits is only weakly dependent on the value of the relative error
mantissa. For example, as long as

r.e. ∈ [0.5× 10−2, 5.0× 10−2]

there are two significant digits.

Example 4.3 Another way to pose the question is given x = 3.2, what is the worst possible ap-
proximation to x which is accurate to 2 significant digits? Let the approximation be x∗. Therefore

2 = t = log10

5∣∣∣3.2−x∗

3.2

∣∣∣
6

Taking the antilog of both sides (10 to the power),

100 =
5∣∣∣3.2−x∗

3.2

∣∣∣
Rearranging terms,

20
3.2

= |3.2− x∗|−1

or
|3.2− x∗| ≈ 1

6.25
= 0.16

The worst approximation to x while retaining 2 significant digits is therefore x∗ = 3.04 or x∗ = 3.36.

The last example demonstrates that the concept of significant digits is not simply a matter of
counting the number of digits which are correct.

5 Floating Point Operations

Example 5.1 Let x = 3.3453236 and y = 2.316236236. The addition of x and y is

x + y = 5.661559836

which is assumed to be exact (it is in this example). Now assume 4 digit arithmetic (normalized
form).

fl(x) = 0.3345× 101

and
fl(y) = 0.2316× 101

so that the addition is
fl(x) + fl(y) = 0.5661× 101.

As a final step, the computer rounds this number to 4 digits by applying the fl() operator to both
sides:

x⊕ y = fl {fl(x) + fl(y)} = 0.5661× 101

The intermediate operation fl(x) + fl(y) is assumed for the sake of exposition to be performed
exactly. In reality, the computer must perform this operation using one or more words of finite
length.

Example 5.2 Consider 5 digit chopping (all numbers are normalized).

x = 1/3, y = 5/7

so that
fl(x) = 0.33333× 100 and fl(y) = 0.71428× 100.

Let us add two positive numbers.

x⊕ y = 0.10476× 101 = fl {fl(x) + fl(y)}

7

However, the exact value is

x + y =
1
3

+
5
7

=
22
21

= 1.047610 · · ·
= 0.1047619× 101

The absolute error is

a.e. = (0.1047619− 0.10476)× 101

= 0.0000019× 101

= 0.19× 10−4

The relative error is

r.e. =
0.19× 10−4

1.04 · · ·
≈ 0.2× 10−4

while the number of significant digits t satisfies

t < log10

5
.2× 10−4

= log10 25 + log10 104

< log10 2.5 + 5

Therefore,
t = 5

6 Error Propagation

Assume the operation
x⊕ y = (1 + δ)(x + y)

δ is the relative error of this operation. Errors propagate across multiple operations.
For example, the addition of three numbers:

(x⊕ y)⊕ z = fl {x(1 + δ) + y(1 + δ)) + z(1 + δ)}
= (1 + 3δ)(x + y + z)

We have assumed that all the relative errors are equal. The result is that the addition of three
numbers gives a maximum relative error of three times the r.e. of one of the input numbers.
In reality, different signs for the error lead to error cancellations, so that the results are not so
detrimental.

Example 6.1 Consider the evaluation of the integral

In =
1
e

∫ 1

0
exxn dx

8

A little manipulation (integration by parts) yields the recurrence relation

I0 = 1− 1
e

In = 1− nIn−1, n = 1, 2, . . .

Note that the integrand is always positive within the range of integration and that the area
under the curve, and hence the value of In, decreases monotonically with n. Thus, for all n, we
may deduce that In > 0 and In < In−1.

The results of running a Matlab program implementing this recurrence relation in double-
precision (16-digit) arithmetic are as shown in the following table:

n Exact Value Recursion Relative Error
0 6.321206e− 01 6.321206e− 01 0.00e + 00
1 3.678794e− 01 3.678794e− 01 0.00e + 00
2 2.642411e− 01 2.642411e− 01 0.00e + 00
3 2.072766e− 01 2.072766e− 01 2.68e− 16
4 1.708934e− 01 1.708934e− 01 1.79e− 15
5 1.455329e− 01 1.455329e− 01 1.03e− 14
6 1.268024e− 01 1.268024e− 01 7.11e− 14
7 1.123835e− 01 1.123835e− 01 5.57e− 13
8 1.009320e− 01 1.009320e− 01 4.97e− 12
9 9.161229e− 02 9.161229e− 02 4.92e− 11
10 8.387707e− 02 8.387707e− 02 5.38e− 10

11 7.735223e− 02 7.735223e− 02 6.41e− 09
12 7.177325e− 02 7.177325e− 02 8.29e− 08
13 6.694770e− 02 6.694778e− 02 1.16e− 06
14 6.273216e− 02 6.273108e− 02 1.73e− 05
15 5.901754e− 02 5.903379e− 02 2.75e− 04
16 5.571935e− 02 5.545930e− 02 4.67e− 03
17 5.277112e− 02 5.719187e− 02 8.38e− 02
18 5.011985e− 02 −2.945367e− 02 1.59e + 00
19 4.772276e− 02 1.559620e + 00 3.17e + 01
20 4.554488e− 02 −3.019239e + 01 6.64e + 02

21 4.355743e− 02 6.350403e + 02 1.46e + 04
22 4.173644e− 02 −1.396989e + 04 3.35e + 05
23 4.006181e− 02 3.213084e + 05 8.02e + 06
24 3.851655e− 02 −7.711400e + 06 2.00e + 08
25 3.708621e− 02 1.927850e + 08 5.20e + 09
26 3.575842e− 02 −5.012410e + 09 1.40e + 11
27 3.452253e− 02 1.353351e + 11 3.92e + 12
28 3.336929e− 02 −3.789382e + 12 1.14e + 14
29 3.229068e− 02 1.098921e + 14 3.40e + 15
30 3.127967e− 02 −3.296762e + 15 1.05e + 17

For large n, the values do not exhibit the anticipated behaviour. For n > Np, where Np is
dependent on the precision of the arithmetic, successive values of In increase in magnitude and
alternate in sign.

9

Increasing the precision merely delays the point at which the problems are noticed. Why does
this happen? The computation of I0 is not exact; no matter how good the intrinsic functions are,
there will be an error, ε0, in the value we obtain for I0. We therefore start our recurrence relation
with Î0 where

Î0 = I0 + ε0.

Even if we incur no further rounding errors, the effect of this initial error is such that we
compute a sequence {

În | n = 1, 2, . . .
}

using the recurrence relation

În = 1− nÎn−1, n = 1, 2, . . . ,

rather than the values {In} defined by

In = 1− nIn−1, n = 1, 2,

If we let εn = În − In be the error at step n, then, using the two recurrence relations, we obtain

εn = −nεn−1,

and hence
εn = (−1)n n! ε0.

Using double-precision arithmetic, ε0 ≈ 2.204×10−16 and the rapid growth of the factorial is enough
to destroy any accuracy we might hope to achieve. We say that this recurrence relation is unstable,
and it is important to recognize such situations, as well as those which are inherently stable.

7 Numerical Cancellation

Example 7.1 Consider the quadratic equation x2 − 2ax + ε = 0 which has the two solutions

x1 = a +
√

a2 − ε and x2 = a−
√

a2 − ε.

If a > 0 and ε is small compared with a, the root x2 is expressed as the difference between two
almost equal numbers and a considerable amount of significance is lost. Instead, if we write

x2 =
ε

a +
√

a2 − ε
,

we obtain the root as approximately ε
2a without loss of significance.

Example 7.2 Suppose that, for a fairly large value of x, we know that cosh(x) = a; sinh(x) = b
and that we want to compute e−x. Clearly

e−x = cosh(x)− sinh(x) = a− b,

leading to a dangerous cancellation while, on the other hand,

e−x =
1

cosh(x) + sinh(x)
=

1
a + b

,

gives a very accurate result.

10

8 Some Final Thoughts

Suppose we want to compute f(x) where x is a real number and f is a real function. In practical
computations, the number x must be approximated by a rational number r since no computer can
store numbers with an infinite number of decimals.

The difference |r − x| constitutes the initial error while the difference ε0 = |f(r)− f(x)| is the
corresponding propagated error. In many cases, f is such a function that it must be replaced by a
simpler function f1 (often a truncated power series expansion of f).

The difference ε1 = |f1(r) − f(r)| is then the truncation error. The calculations performed by
the computer, however, are not exact but pseudo-operations of a type discussed earlier. The result
is that instead of getting f1(r) we get another value f2(r) which is then a wrongly computed value
of a wrong function of a wrong argument.

The difference ε2 = |f2(r) − f1(r)| could be termed the propagated error from the roundings.
The total error is ε = ε0 + ε1 + ε2.

11

