Lecture 28 : Directional Derivatives, Gradient, Tangent Plane

The partial derivative with respect to x at a point in \mathbb{R}^{3} measures the rate of change of the function along the X -axis or say along the direction $(1,0,0)$. We will now see that this notion can be generalized to any direction in \mathbb{R}^{3}.

Directional Derivative : Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, X_{0} \in \mathbb{R}^{3}$ and $U \in \mathbb{R}^{3}$ such that $\|U\|=1$. The directional derivative of f in the direction U at $X_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is defined by

$$
D_{X_{0}} f(U)=\lim _{t \rightarrow 0} \frac{f\left(X_{0}+t U\right)-f\left(X_{0}\right)}{t}
$$

provided the limit exists.
It is clear that $D_{X_{0}} f\left(e_{1}\right)=f_{x}\left(X_{0}\right), D_{X_{0}} f\left(e_{2}\right)=f_{y}\left(X_{0}\right)$ and $D_{X_{0}} f\left(e_{3}\right)=f_{z}\left(X_{0}\right)$.
The proof of the following theorem is similar to the proof of Theorem 26.2.
Theorem 28.1: If f is differentiable at X_{0}, then $D_{X_{0}} f(U)$ exists for all $U \in \mathbb{R}^{3}$, $\|U\|=1$. Moreover, $D_{X_{0}} f(U)=f^{\prime}\left(X_{0}\right) \cdot U=\left(f_{x}\left(X_{0}\right), f_{y}\left(X_{0}\right), f_{z}\left(X_{0}\right)\right) \cdot U$.

The previous theorem says that if a function is differentiable then all its directional derivatives exist and they can be easily computed from the derivative.

Examples :

(i) In this example we will see that a function is not differentiable at a point but the directional derivatives in all directions at that point exist.

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$ when $(x, y) \neq(0,0)$ and $f(0,0)=0$.
This function is not continuous at $(0,0)$ and hence it is not differentiable at $(0,0)$.
We will show that the directional derivatives in all directions at $(0,0)$ exist. Let $U=\left(u_{1}, u_{2}\right) \in$ $\mathbb{R}^{3}, \quad\|U\|=1$ and $\mathbf{0}=(0,0)$. Then

$$
\lim _{t \rightarrow 0} \frac{f(\mathbf{0}+t U)-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{t^{3} u_{1}^{2} u_{2}}{t\left(t^{4} u_{1}^{4}+t^{2} u_{2}^{2}\right)}=\lim _{t \rightarrow 0} \frac{u_{1}^{2} u_{2}}{t^{2} u_{1}^{4}+u_{2}^{2}}=0, \text { if } u_{2}=0 \text { and } \frac{u_{1}^{2}}{u_{2}}, \text { if } u_{2} \neq 0
$$

Therefore, $D_{0} f\left(\left(u_{1}, 0\right)\right)=0$ and $D_{0} f\left(\left(u_{1}, u_{2}\right)\right)=\frac{u_{1}^{2}}{u_{2}}$ when $u_{2} \neq 0$.
(ii) In this example we will see that the directional derivative at a point with respect to some vector may exist and with respect to some other vector may not exist.

Consider the function $f(x, y)=\frac{x}{y}$ if $y \neq 0$ and 0 if $y=0$. Let $U=\left(u_{1}, u_{2}\right)$ and $\|U\|=1$. It is clear that if $u_{1}=0$ or $u_{2}=0$, then $D_{0} f(U)$ exists and is equal to 0 . If $u_{1} u_{2} \neq 0$ then

$$
\lim _{t \rightarrow 0} \frac{f(\mathbf{0}+t U)-f(\mathbf{0})}{t}=\lim _{t \rightarrow 0} \frac{u_{1}}{t u_{2}}
$$

does not exist. So, only the partial derivatives of the function at $\mathbf{0}$ exist. Note that this function can not be differentiable at 0 (Why ?).

Problem 1: $\operatorname{Let} f(x, y)=\frac{y}{|y|} \sqrt{x^{2}+y^{2}}$ if $y \neq 0$ and $f(x, y)=0$ if $y=0$. Show that f is continuous at $(0,0)$, it has all directional derivatives at $(0,0)$ but it is not differentiable at $(0,0)$.

Solution : Note that $|f(x, y)-f(0,0)|=\sqrt{x^{2}+y^{2}}$. Hence the function is continuous.

For $\left\|\left(u_{1}, u_{2}\right)\right\|=1, \quad \lim _{t \rightarrow 0} \frac{f\left(t u_{1}, t u_{2}\right)}{t}=0$ if $u_{2}=0$ and $\frac{u_{2}}{\left|u_{2}\right|}$ if $u_{2} \neq 0$. Therefore directional derivatives in all directions exist.

Note that $f_{x}(0,0)=0$ and $f_{y}(0,0)=1$. If f is differentiable at $(0,0)$ then $f^{\prime}(0,0)=\alpha=(0,1)$. Note that

$$
\epsilon(h, k)=\frac{\frac{k}{|k|} \sqrt{h^{2}+k^{2}}-k}{\sqrt{h^{2}+k^{2}}} \nrightarrow 0 \quad \text { as }(h, k) \rightarrow(0,0) .
$$

For example, $h=k$ gives $(\sqrt{2}-1) \frac{k}{|k|} \nrightarrow 0$ as $k \rightarrow 0$. Therefore the function is not differentiable at $(0,0)$.

The vector $\left(f_{x}\left(X_{0}\right), f_{y}\left(X_{0}\right), f_{z}\left(X_{0}\right)\right)$ is called gradient of f at X_{0} and is denoted by $\nabla f\left(X_{0}\right)$.
An Application : Let us see an application of Theorem 1. Suppose f is differentiable at X_{0}. Then $f^{\prime}\left(X_{0}\right)=\nabla f\left(X_{0}\right)$ and $D_{X_{0}} f(U)=\nabla f\left(X_{0}\right) \cdot U=\left\|\nabla f\left(X_{0}\right)\right\| \cos \theta$ where $\theta \in[0, \pi]$ is the angle between the gradient and U. Suppose $\nabla f\left(X_{0}\right) \neq 0$. Then $D_{X_{0}} f(U)$ is maximum when $\theta=0$ and minimum $\theta=\pi$. That is, f increases (respectively, decreases) most rapidly around X_{0} in the direction $U=\frac{\nabla f\left(X_{0}\right)}{\left\|\nabla f\left(X_{0}\right)\right\|}$ (respectively, $\left.\mathrm{U}=-\frac{\nabla f\left(X_{0}\right)}{\left\|\nabla f\left(X_{0}\right)\right\|}\right)$.

Example: Suppose the temperature of a metallic sheet is given as $f(x, y)=20-4 x^{2}-y^{2}$. We will start from the point $(2,1)$ and find a path i.e., a plane curve, $r(t)=x(t) i+y(t) j$ which is a path of maximum increase in the temperature. Note that the direction of the path is $r^{\prime}(t)$. This direction should coincide with that of the maximum increase of f. Therefore, $\alpha r^{\prime}(t)=\nabla f$ for some α. This implies that $\alpha x^{\prime}(t)=-8 x$ and $\alpha y^{\prime}(t)=-2 y$. By chain rule we have $\frac{d y}{d x}=\frac{2 y}{8 x}=\frac{y}{4 x}$. Since the curve passes through $(2,1)$, we get $x=2 y^{4}$.

We will now see a geometric interpretation of the derivative i.e, gradient.
Tangent Plane: Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable and $c \in \mathbb{R}$. Consider the surface $S=$ $\{(x, y, z): f(x, y, z)=c\}$. This surface is called a level surface at the height c. (For example if $f(x, y, z)=x^{2}+y^{2}+z^{2}$ and $c=1$, then S is the unit sphere.) Let $P=\left(x_{0}, y_{0}, z_{0}\right)$ be a point on S and $R(t)=(x(t), y(t), z(t))$ be a differentiable (i.e., smooth) curve lying on S. With these assumptions we prove the following result.

Theorem 28.2: If T is the tangent vector to $R(t)$ at P then $\nabla f(P) \cdot T=0$.
Proof : Since $R(t)$ lies on $S, f(x(t), y(t), z(t))=c$. Hence $\frac{d f}{d t}=0$. By chain rule,

$$
\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t}=0 \quad \text { i.e., } \nabla f \cdot \frac{d R}{d t}=0 \quad \text { i.e., } \nabla f \cdot T=0 \text { at } P .
$$

From the previous theorem we conclude the following. Note that the gradient $\nabla f(P)$ is perpendicular to the tangent vector to every smooth curve $R(t)$ on S passing through P. That is, all these tangent vectors lie on a plane which is perpendicular to $\nabla f(P)$. That is, $\nabla f(P)$, when $\nabla f(P) \neq 0$, is the normal to the surface at P. Therefore, the plane through P with normal $\nabla f(P)$ defined by

$$
f_{x}(P)\left(x-x_{0}\right)+f_{y}(P)\left(y-y_{0}\right)+f_{z}(P)\left(z-z_{0}\right)=0
$$

is called the tangent plane to the surface S at $P=\left(x_{0}, y_{0}, z_{0}\right)$.
Suppose the surface is given as a graph of $f(x, y)$, i.e., $S=\left\{(x, y, f(x, y)):(x, y) \in D \subseteq \mathbb{R}^{2}\right\}$. Then it can be considered as a level surface $S=\{(x, y, z): F(x, y, z)=0\}$ where $F(x, y, z)=$ $f(x, y)-z$. Let $X_{0}=\left(x_{0}, y_{0}\right), z_{0}=f\left(x_{0}, y_{0}\right)$ and $P=\left(x_{0}, y_{0}, z_{0}\right)$. Then the equation of the tangent plane is $f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0$ i.e.,

$$
z=f\left(X_{0}\right)+f^{\prime}\left(X_{0}\right)\left(X-X_{0}\right), \quad X=(x, y) \in \mathbb{R}^{2}
$$

