Intuitively, we think of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ as continuous if it has a continuous curve. The term continuous curve means that the graph of f can be drawn without jumps, i.e., the graph can be drawn with a continuous motion of the pencil without leaving the paper.

Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a discontinuous graph as shown in the following figure.

Figure 1: Discontinuous Graph
The graph is broken at the point $\left(x_{0}, f\left(x_{0}\right)\right)$, i.e., the function f is discontinuous at x_{0}. Hence whenever x is close to x_{0} from the right, $f(x)$ does not get close to $f\left(x_{0}\right)$. (The idea of getting close has already been discussed while dealing with convergent sequences). As shown in the figure, we can choose a neighbourhood $\left(f\left(x_{0}\right)-\epsilon_{0}, f\left(x_{0}\right)+\epsilon_{0}\right), \epsilon_{0}>0$, at $f\left(x_{0}\right)$ such that if we take any neighbourhood $\left(x_{0}-\delta, x_{0}+\delta\right), \delta>0$, then the image of the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ does not lie inside $\left(f\left(x_{0}\right)-\epsilon_{0}, f\left(x_{0}\right)+\epsilon_{0}\right)$. In formal terms, there exists $\epsilon>0$ such that for all $\delta>0$, $\left|x-x_{0}\right|<\delta \nRightarrow \mid f(x)-f\left(x_{0}\right)<\epsilon$. Hence if a function f is not continuous at x_{0}, we have the above condition.

We will now give the formal definition of continuity of a function at a point (in the " $\epsilon-\delta$ language").

Definition A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be continuous at a point $x_{0} \in \mathbb{R}$ if for every $\epsilon>0$, there is a $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ whenever $\left|x-x_{o}\right|<\delta$.

Using the (visible) discontinuity in the above example, we were able to find some ϵ for which it was not possible to find any δ as in the definition. Roughly, f is continuous at x_{0} if whenever x approaches $x_{0}, f(x)$ approaches $f\left(x_{0}\right)$. In some cases when f is not continuous at x_{0}, there may be a number A such that whenever x approaches $x_{0}, f(x)$ approaches A. In this case we call such a number A the limit of f at x_{0}. Formally, we have:

Definition : A number A is called the limit of a function f at a point x_{0} if for every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-A|<\epsilon$ whenever $0<\left|x-x_{0}\right|<\delta$. If such a number A exists then it is unique.

In this case we write $\lim _{x \rightarrow x_{0}} f(x)=A$. It is clear that $f\left(x_{0}\right)$ is the limit of f at x_{0} if f is
continuous at x_{0}.
The reader is advised to see the strong analogy between the definition of limit point and the definition of convergence of sequence. Let us now characterize the continuity of a function at a point in terms of sequences.

Theorem 4.1: A real valued function f is continuous at $x_{0} \in \mathbb{R}$ if and only if whenever a sequence of real numbers $\left(x_{n}\right)$ converges to x_{0}, then the sequence $\left(f\left(x_{n}\right)\right)$ converges to $f\left(x_{0}\right)$.

Proof: Suppose f is continuous at x_{0} and $x_{n} \rightarrow x_{0}$. Let us show that $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. Let $\epsilon>0$ be given. We must find N such that $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right|<\epsilon$ for all $n \geq N$. Since f is continuous at x_{0}, there exists $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ whenever $\left|x-x_{0}\right|<\delta$. Since $x_{n} \rightarrow x_{0}$, there exists N such that $\left|x_{n}-x_{0}\right|<\delta$ for all $n \geq N$. This N serves our purpose.

To prove the converse, let us assume the contrary that f is not continuous at x_{0}. Then for some $\epsilon>0$ and for each n, there is an element x_{n} such that $\left|x_{n}-x_{0}\right|<\frac{1}{n}$ but $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \geq \epsilon$. This contradicts the fact that $x_{n} \rightarrow x_{0}$ implies $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.

Remark : To define the continuity of a function f at a point x_{0}, the function f has to be defined at x_{0}. But even if the function is not defined at x_{0}, one can define the limit of a function at x_{0}.

The proof of the following theorem is similar to the proof of the previous theorem.
Theorem 4.2: $\lim _{x \rightarrow x_{0}} f(x)=A$ if and only if whenever a sequence of real numbers $\left(x_{n}\right)$ converges to $x_{0}, x_{n} \neq x_{0}$ for all n, then the sequence $\left(f\left(x_{n}\right)\right)$ converges to A.

Examples : 1. Define a function $f(x)$ such that $f(x)=2 x \sin \left(\frac{1}{x}\right)$ when $x \neq 0$ and $f(0)=0$. We will show that f is continuous at 0 using first by the $\varepsilon-\delta$ definition and then by the sequential characterization.

Using the $\varepsilon-\delta$ definition : Remember that for a given $\varepsilon>0$, we have to find a $\delta>0$ (not the other way!). Note that here $x_{0}=0$ and

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|2 x \sin \left(\frac{1}{x}\right)-0\right| \leq|2 x|=2\left|x-x_{0}\right|
$$

Suppose that ε is given. Choose any $\delta>0$ such that $\delta \leq \frac{\varepsilon}{2}$. Then we have

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon \text { whenever } \quad\left|x-x_{0}\right|<\delta
$$

This shows that f is continuous at $x_{0}=0$.
Using the sequential characterization: Note that $|f(x)| \leq 2|x|$. Therefore, $f\left(x_{n}\right) \rightarrow f(0)$ whenever $x_{n} \rightarrow 0$. This proves that f is continuous at 0 .
2. The function $f(x)=\sin (1 / x)$ is defined for all $x \neq 0$. This function has no limit as $x \rightarrow 0$ because if we take $x_{n}=2 /\{\pi(2 n+1)\}$ for $n=1,2, \ldots$, then $x_{n} \rightarrow 0$ but $f\left(x_{n}\right)=(-1)^{n}$ which does not tend to any limit as $n \rightarrow \infty$.
3. Let $f(x)=0$ when x is rational and $f(x)=x$ when x is irrational. We will see that this function is continuous only at $x=0$. Let $\left(x_{n}\right)$ be any sequence such that $x_{n} \rightarrow 0$. Because, $\left|f\left(x_{n}\right)\right| \leq\left|x_{n}\right|$, $f\left(x_{n}\right) \rightarrow f(0)$. Therefore f is continuous at 0 .

Suppose $x_{0} \neq 0$ and it is rational. We will show that f is not continuous at x_{0}. Choose $\left(x_{n}\right)$ such that $x_{n} \rightarrow x_{0}$ and all $x_{n}^{\prime} s$ are irrational numbers. Then $f\left(x_{n}\right)=x_{n} \rightarrow x_{0} \neq f\left(x_{0}\right)$.This proves that f is not continuous at x_{0}. When x_{0} is irrational, the proof is similar.

Remark : In order to show that a function is not continuous at a point x_{0} it is sufficient to produce one sequence $\left(x_{n}\right)$ such that $x_{n} \rightarrow x_{0}$ but $f\left(x_{n}\right) \nrightarrow f\left(x_{0}\right)$. However, to show a function is continuous at x_{0}, we have to show that $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ whenever $x_{n} \rightarrow x_{0}$ i.e, for every $\left(x_{n}\right)$ such that $x_{n} \rightarrow x_{0}$.

Continuous function on a subset of \mathbb{R} : Let S be a subset of \mathbb{R} and $x_{0} \in S$, we say that f is continuous at x_{0}, if for every $\epsilon>0$, there exists a $\delta>0$ such that whenever $x \in S$ with $\left|x-x_{0}\right|<\delta$ we have $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. Moreover, if f is continuous at each $x \in S$, then we say that f is continuous on S.

Limits at Infinity : Let $f: \mathbb{R} \rightarrow \mathbb{R}$. We say that $\lim _{x \rightarrow \infty} f(x)=A$ if for every $\epsilon>0$, there exist $N>0$ such that whenever $x \geq N$, we have $|f(x)-A|<\epsilon$.

Let $x_{0} \in \mathbb{R}$. We say that $\lim _{x \rightarrow x_{0}} f(x)=\infty$ if for every M, there exists $\delta>0$ such that whenever $\left|x-x_{0}\right|<\delta$ we have $f(x)>M$.

Problem 1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that for every $x, y \in \mathbb{R},|f(x)-f(y)| \leq|x-y|$. Show that f is continuous.

Solution: Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. Since $\left|f\left(x_{n}\right)-f\left(x_{0}\right)\right| \leq\left|x_{n}-x_{0}\right|, f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$. Therefore f is continuous at x_{0}. Since x_{0} is arbitrary, f is continuous everywhere.

Problem 2: Let $f:(-1,1) \rightarrow \mathbb{R}$ be a continuous function such that in every neighborhood of 0 , there exists a point where f takes the value 0 . Show that $f(0)=0$.

Solution : For every n, there exists $x_{n} \in\left(-\frac{1}{n}, \frac{1}{n}\right)$ such that $f\left(x_{n}\right)=0$. Since f is continuous at 0 and $x_{n} \rightarrow 0$, we have $f\left(x_{n}\right) \rightarrow f(0)$. Therefore, $f(0)=0$.

Problem 3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at 0 , show that f is continuous at every point $c \in \mathbb{R}$.

Solution : First note that $f(0)=0, f(-x)=-f(x)$ and $f(x-y)=f(x)-f(y)$. Let $x_{0} \in \mathbb{R}$ and $x_{n} \rightarrow x_{0}$. Then $f\left(x_{n}\right)-f\left(x_{0}\right)=f\left(x_{n}-x_{0}\right) \rightarrow f(0)=0$ as f is continuous at 0 and $x_{n}-x_{0} \rightarrow 0$.

Properties of Continuous Functions on a Closed Interval :

Definition : Let $S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$. We say that f is bounded on S if the set $f(S):=\{f(x)$: $x \in S\}$ is a bounded subset of \mathbb{R}.

We will now see some properties of continuous functions on a closed interval.
Theorem 4.3: If a function f is continuous on $[a, b]$ then it is bounded on $[a, b]$.
Proof: Suppose that f is not bounded on $[a, b]$. Then for each natural number n there is a point $x_{n} \in[a, b]$ such that $\left|f\left(x_{n}\right)\right|>n$. Since $\left(x_{n}\right)$ is a bounded sequence, by Bolzano-Weierstrass theorem it has a convergent subsequence, say $x_{n_{k}} \rightarrow x_{0} \in[a, b]$. By the continuity of f, we have $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{0}\right)$. This contradicts the assumption that $\left|f\left(x_{n}\right)\right|>n$ for all n. Hence f is bounded on $[a, b]$.

We remark that if a function is continuous on an open interval (a, b) or on a semi-open interval of the type $(a, b]$ or $[a, b)$, then it is not necessary that the function has to be bounded. For example, consider the continuous function $\frac{1}{x}$ on $(0,1]$.

