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Lecture 4 : Continuity and limits

Intuitively, we think of a function f : R→ R as continuous if it has a continuous curve. The term
continuous curve means that the graph of f can be drawn without jumps, i.e., the graph can be
drawn with a continuous motion of the pencil without leaving the paper.

Suppose a function f : R→ R has a discontinuous graph as shown in the following figure.
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Figure 1: Discontinuous Graph

The graph is broken at the point (x0, f(x0)), i.e., the function f is discontinuous at x0. Hence
whenever x is close to x0 from the right, f(x) does not get close to f(x0). (The idea of getting
close has already been discussed while dealing with convergent sequences). As shown in the figure,
we can choose a neighbourhood (f(x0)− ε0, f(x0) + ε0), ε0 > 0, at f(x0) such that if we take any
neighbourhood (x0 − δ, x0 + δ), δ > 0, then the image of the interval (x0 − δ, x0 + δ) does not lie
inside (f(x0) − ε0, f(x0) + ε0). In formal terms, there exists ε > 0 such that for all δ > 0,
|x− x0| < δ 6⇒ |f(x)− f(x0) < ε. Hence if a function f is not continuous at x0, we have the above
condition.

We will now give the formal definition of continuity of a function at a point (in the “ε-δ lan-
guage”).

Definition A function f : R → R is said to be continuous at a point x0 ∈ R if for every ε > 0,
there is a δ > 0 such that |f(x)− f(x0)| < ε whenever |x− xo| < δ.

Using the (visible) discontinuity in the above example, we were able to find some ε for which
it was not possible to find any δ as in the definition. Roughly, f is continuous at x0 if whenever x
approaches x0, f(x) approaches f(x0). In some cases when f is not continuous at x0, there may
be a number A such that whenever x approaches x0, f(x) approaches A. In this case we call such
a number A the limit of f at x0. Formally, we have:

Definition : A number A is called the limit of a function f at a point x0 if for every ε > 0, there
exists δ > 0 such that |f(x)−A| < ε whenever 0 < |x− x0| < δ. If such a number A exists then it
is unique.

In this case we write lim
x→x0

f(x) = A. It is clear that f(x0) is the limit of f at x0 if f is
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continuous at x0.

The reader is advised to see the strong analogy between the definition of limit point and the
definition of convergence of sequence. Let us now characterize the continuity of a function at a
point in terms of sequences.

Theorem 4.1 : A real valued function f is continuous at x0 ∈ R if and only if whenever a sequence
of real numbers (xn) converges to x0, then the sequence (f(xn)) converges to f(x0).

Proof: Suppose f is continuous at x0 and xn → x0. Let us show that f(xn) → f(x0). Let ε > 0
be given. We must find N such that |f(xn)− f(x0)| < ε for all n ≥ N . Since f is continuous at x0,
there exists δ > 0 such that |f(x)− f(x0)| < ε whenever |x− x0| < δ. Since xn → x0, there exists
N such that |xn − x0| < δ for all n ≥ N . This N serves our purpose.

To prove the converse, let us assume the contrary that f is not continuous at x0. Then for some
ε > 0 and for each n, there is an element xn such that |xn − x0| < 1

n but |f(xn)− f(x0)| ≥ ε. This
contradicts the fact that xn → x0 implies f(xn) → f(x0). ¤

Remark : To define the continuity of a function f at a point x0, the function f has to be defined
at x0. But even if the function is not defined at x0, one can define the limit of a function at x0.

The proof of the following theorem is similar to the proof of the previous theorem.

Theorem 4.2: lim
x→x0

f(x) = A if and only if whenever a sequence of real numbers (xn) converges

to x0, xn 6= x0 for all n, then the sequence (f(xn)) converges to A.

Examples : 1. Define a function f(x) such that f(x) = 2xsin( 1
x) when x 6= 0 and f(0) = 0. We

will show that f is continuous at 0 using first by the ε − δ definition and then by the sequential
characterization.

Using the ε− δ definition : Remember that for a given ε > 0, we have to find a δ > 0 (not the
other way!). Note that here x0 = 0 and

| f(x)− f(x0) | = | 2xsin(
1
x

)− 0 | ≤ | 2x | = 2 | x− x0 | .

Suppose that ε is given. Choose any δ > 0 such that δ ≤ ε
2 . Then we have

| f(x)− f(x0) |< ε whenever | x− x0 |< δ.

This shows that f is continuous at x0 = 0.

Using the sequential characterization : Note that | f(x) |≤ 2 | x | . Therefore, f(xn) → f(0)
whenever xn → 0. This proves that f is continuous at 0.

2. The function f(x) = sin(1/x) is defined for all x 6= 0. This function has no limit as x → 0
because if we take xn = 2/{π(2n+1)} for n = 1, 2, . . ., then xn → 0 but f(xn) = (−1)n which does
not tend to any limit as n →∞.

3. Let f(x) = 0 when x is rational and f(x) = x when x is irrational. We will see that this function
is continuous only at x = 0. Let (xn) be any sequence such that xn → 0. Because, | f(xn) | ≤ | xn |,
f(xn) → f(0). Therefore f is continuous at 0.

Suppose x0 6= 0 and it is rational. We will show that f is not continuous at x0. Choose (xn)
such that xn → x0 and all x′ns are irrational numbers. Then f(xn) = xn → x0 6= f(x0).This proves
that f is not continuous at x0. When x0 is irrational, the proof is similar.
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Remark : In order to show that a function is not continuous at a point x0 it is sufficient to
produce one sequence (xn) such that xn → x0 but f(xn) 9 f(x0). However, to show a function is
continuous at x0, we have to show that f(xn) → f(x0) whenever xn → x0 i.e, for every (xn) such
that xn → x0.

Continuous function on a subset of R: Let S be a subset of R and x0 ∈ S, we say that f is
continuous at x0, if for every ε > 0, there exists a δ > 0 such that whenever x ∈ S with |x−x0| < δ
we have |f(x) − f(x0)| < ε. Moreover, if f is continuous at each x ∈ S, then we say that f is
continuous on S.

Limits at Infinity : Let f : R → R. We say that lim
x→∞ f(x) = A if for every ε > 0, there exist

N > 0 such that whenever x ≥ N , we have |f(x)−A| < ε.

Let x0 ∈ R. We say that lim
x→x0

f(x) = ∞ if for every M, there exists δ > 0 such that whenever

|x− x0| < δ we have f(x) > M .

Problem 1: Let f : R→ R be such that for every x, y ∈ R, | f(x)− f(y) | ≤ | x− y | . Show that
f is continuous.

Solution : Let x0 ∈ R and xn → x0. Since | f(xn)−f(x0) | ≤ | xn−x0 |, f(xn) → f(x0). Therefore
f is continuous at x0. Since x0 is arbitrary, f is continuous everywhere.

Problem 2: Let f : (−1, 1) → R be a continuous function such that in every neighborhood of 0,
there exists a point where f takes the value 0. Show that f(0) = 0.

Solution : For every n, there exists xn ∈ (− 1
n , 1

n) such that f(xn) = 0. Since f is continuous at 0
and xn → 0, we have f(xn) → f(0). Therefore, f(0) = 0.

Problem 3: Let f : R→ R satisfy f(x + y) = f(x) + f(y) for all x, y ∈ R. If f is continuous at
0, show that f is continuous at every point c ∈ R.

Solution : First note that f(0) = 0, f(−x) = −f(x) and f(x − y) = f(x) − f(y). Let x0 ∈ R and
xn → x0. Then f(xn)− f(x0) = f(xn − x0) → f(0) = 0 as f is continuous at 0 and xn − x0 → 0.

Properties of Continuous Functions on a Closed Interval :

Definition : Let S ⊆ R and f : S → R. We say that f is bounded on S if the set f(S) := {f(x) :
x ∈ S} is a bounded subset of R.

We will now see some properties of continuous functions on a closed interval.

Theorem 4.3 : If a function f is continuous on [a, b] then it is bounded on [a, b].

Proof: Suppose that f is not bounded on [a, b]. Then for each natural number n there is a point
xn ∈ [a, b] such that |f(xn)| > n. Since (xn) is a bounded sequence, by Bolzano-Weierstrass
theorem it has a convergent subsequence, say xnk

→ x0 ∈ [a, b]. By the continuity of f , we have
f(xnk

) → f(x0). This contradicts the assumption that |f(xn)| > n for all n. Hence f is bounded
on [a, b]. ¤

We remark that if a function is continuous on an open interval (a, b) or on a semi-open interval
of the type (a, b] or [a, b), then it is not necessary that the function has to be bounded. For example,
consider the continuous function 1

x on (0, 1].


