Lecture 22: Areas of surfaces of revolution, Pappus's Theorems

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and $f(x) \geq 0$. Consider the curve C given by the graph of the function f. Let S be the surface generated by revolving this curve about the x-axis. We will define the surface area of S in terms of an integral expression.

Consider a partition P : $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b$ and consider the points $P_{i}=$ $\left(x_{i}, f\left(x_{i}\right)\right), i=0,1,2, \ldots, n$. Join these points by straight lines as shown in Figure 1. Consider the segment $P_{i-1} P_{i}$. The area A of the surface generated by revolving this segment about the x -axis is $\pi\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right) \ell_{i}$ where ℓ_{i} is the length of the segment $P_{i-1} P_{i}$. This can be verified as follows. Note that the area $A=\pi f\left(x_{i}\right)\left(\ell+\ell_{i}\right)-\pi f\left(x_{i-1}\right) \ell$ (see Figure 2). Since

$$
\frac{\ell}{f\left(x_{i-1}\right)}=\frac{\ell+\ell_{i}}{f\left(x_{i}\right)}=\frac{\ell_{i}}{f\left(x_{i}\right)-f\left(x_{i-1}\right)}=\alpha
$$

for some α, the area
$A=\pi f\left(x_{i}\right) \alpha f\left(x_{i}\right)-\pi f\left(x_{i-1}\right) \alpha f\left(x_{i-1}\right)=\pi \alpha\left(f\left(x_{i}\right)+f\left(x_{i-1}\right)\right)\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)=\pi \ell_{i}\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right)$.
The sum of the areas of the surfaces generated by the line segments is

$$
\left.\left.\sum_{i=1}^{n} \pi\left(f\left(x_{i-1}\right)+f\left(x_{i}\right)\right) \ell_{i}=\sum_{i=1}^{n} \pi f\left(x_{i-1}\right) \sqrt{\left(\triangle x_{i}\right)^{2}+\left(\triangle y_{i}\right.}\right)^{2}+\sum_{i=1}^{n} \pi f\left(x_{i}\right) \sqrt{\left(\triangle x_{i}\right)^{2}+\left(\triangle y_{i}\right.}\right)^{2}
$$

where $\triangle y_{i}=f\left(x_{i}\right)-f\left(x_{i-1}\right)$. If f^{\prime} is continuous, one can show that each of the sum given in the RHS of the above equation converges to $\int_{a}^{b} \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$ as $\|P\| \rightarrow 0$. In view of this we define the surface area generated by revolving the curve about the x -axis to be

$$
\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

In case $f(x) \leq 0$, the formula for the area is $\int_{a}^{b} 2 \pi|f(x)| \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.

Example: Let us find the area of the surface generated by revolving the curve $y=\frac{1}{2}\left(x^{2}+1\right), 0 \leq$ $x \leq 1$ about the y-axis. Here the function y is increasing hence it is one-one and onto. Hence we can
write x in terms of $y: x=g(x)=\sqrt{2 y-1}$. In this case the formula is $\int_{a}^{b} 2 \pi|g(y)| \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y$ where $a=1 / 2$ and $b=1$.

Parametric case: If the curve is given in the parametric form $\{(x(t), y(t)): t \in[a, b]\}$, and x^{\prime} and y^{\prime} are continuous, then the surface area generated is

$$
\int_{a}^{b} 2 \pi \rho(t) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

where $\rho(t)$ is the distance between the axis of revolution and the curve.
Example : The curve $x=t+1, y=\frac{t^{2}}{2}+t, 0 \leq t \leq 4$ is rotated about the y-axis. Let us find the surface area generated. The surface area is $\int_{0}^{4} 2 \pi|t+1| \sqrt{1+(1+t)^{2}} d t$.

Polar case: If the curve is given in the polar form, the surface area generated by revolving the curve about the x -axis is

$$
\int_{a}^{b} 2 \pi y \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{a}^{b} 2 \pi r(\theta) \sin \theta \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Example : The lemniscate $r^{2}=2 a^{2} \cos 2 \theta$ is rotated about the x-axis. Let us find the area of the surface generated. A simple calculation shows that $\sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}}=\frac{2 a^{2}}{r}$. The curve is given in the notes of the previous lecture. The surface area is $2 \int_{0}^{\frac{\pi}{4}} 2 \pi r \sin \theta \frac{2 a^{2}}{r} d \theta=8 \pi a^{2}\left(1-\frac{1}{\sqrt{2}}\right)$.

Pappus's Theorems: There are two results of Pappus which relate the centroids to surfaces and solids of revolutions. The first result relates the centroid of a plane region with the volume of the solid of revolution generated by it.

Theorem: Let R be a plane region. Suppose R is revolved about the line L which does not cut through the interior of R, then the volume of the solid generated is

$$
V=2 \pi \rho A
$$

where ρ is the distance from the axis of revolution to the centroid and A is the area of the region R (see Figure 3).

Note that in the above formula $2 \pi \rho$ is the distance traveled by the centroid during the revolution. The second result relates the centroid of a plane curve with the area of the surface of revolution generated by the curve.

Theorem: Let C be a plane curve. Suppose C is revolved about the line L which does not cut through the interior of C, then the area of the surface generated is

$$
S=2 \pi \rho L
$$

where ρ is the distance from the axis of revolution to the centroid and L is the length of the curve C (see Figure 3).

Example: Use a theorem of Pappus to find the centroid of the semi circular arc $y=\sqrt{r^{2}-x^{2}},-r \leq$ $x \leq r$. If the arc is revolved about the line $y=r$, find the volume of the surface area generate.

Solution: We know the surface area generated by the curve $4 \pi r^{2}$ (see Figure 4). Let the centroid of the curve be $(0, \bar{y})$. By Pappus theorem $4 \pi r^{2}=2 \pi \bar{y} \pi r$ which implies that $\bar{y}=\frac{2 r}{\pi}$. Again by Pappus theorem, the area of the surface generated by revolving the curve around $y=r$ is $2 \pi(r-\bar{y}) \pi r=2 \pi r^{2}(\pi-2)$.

