In the next two lectures we will deal with the functions from \mathbb{R} to \mathbb{R}^{3}. Such functions are called vector valued functions. After two lectures we will deal with the functions of several variables, that is, functions from \mathbb{R}^{3} or \mathbb{R}^{n} to \mathbb{R}. Before discussing about the functions let us see some properties of \mathbb{R}^{3}. We first review some basic concepts from vector algebra.

Norm of a vector: If $X=(x, y, z)$, then the norm of X, denoted by $\|X\|$, is $\sqrt{x^{2}+y^{2}+z^{2}}$. $\|X-Y\|$ is the distance between the points X and Y.

Scalar product of two vectors: If $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$, then the scalar product of X and Y is $X \cdot Y=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$.

Projection of a vector: The projection of a vector A along the non-zero vector B is $\frac{A \cdot B}{B \cdot B} B$.
Angle between two vectors : If θ is the angle between two vectors A and B then $A \cdot B=$ $\|A\|\|B\| \cos \theta$.

Parametric and Cartesian equations of straight lines: The parametric representation of the straight line passing through P and parallel to a (non-zero) vector is $X-P=t A, t \in \mathbb{R}$. . If $\left.X=(x, y, z), P=x_{0}, y_{0}, z_{0}\right)$ and $A=(a, b, c)$, then the above equation becomes

$$
x=x_{0}+t a, y=y_{0}+t b \text { and } z=z_{0}+t c .
$$

In case $a, b, c \neq 0$, then the equation of the line is

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

If $a=0$, then the line is represented as $x=x_{0}$ and $\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$.
Equation of a plane (passing through a point and perpendicular to a vector): The set of points $\{X:(X-P) \cdot N\}=\{X: X \cdot N=P \cdot N\}$ in \mathbb{R}^{3} is the plane perpendicular to the vector N and passing the point P (see Figure 1). If $N=(a, b, c)$ and $P=\left(x_{0}, y_{0}, z_{0}\right)$ then the equation of the plane is

$$
(x, y, z) \cdot(a, b, c)=\left(x_{0}, y_{0}, z_{0}\right) \cdot(a, b, c),
$$

that is, $a x+b y+c z=a x_{0}+b y_{0}+c z_{0}$.

We can also derive equations of certain surfaces similar to the way we derived the equation of a plane.

Example: Find the equation of the right circular cone having vertex at the origin and passing through the circle $x^{2}+y^{2}=25, \quad y=4$..

Solution: Let (x, y, z) be any arbitrary point on the surface. Let L be the straight line passing through (x, y, z) and $(0,0,0)$. Let $\left(x_{0}, 4, z_{0}\right)$ be the point of intersection of the line and the circle (see Figure 2). The equation of the line L is $\frac{x}{x_{0}}=\frac{y}{4}=\frac{z}{z_{0}}$. This implies that $x_{0}=4 x / y$ and $z_{0}=4 z / y$. Since x_{0} and z_{0} satisfy the equation of the circle, we have $4^{2}\left(\frac{x}{y}\right)^{2}+4^{2}\left(\frac{z}{y}\right)^{2}=25$. This implies that $16\left(x^{2}+z^{2}\right)=25 y^{2}$.

Problem : Determine the equation of the cylinder generated by a line through the curve $(x-2)^{2}+$ $y^{2}=4, z=0$ moving parallel to the vector $\vec{i}+\vec{j}+\vec{k}$.

Solution: Any point on the curve is of the form $\left(x_{0}, y_{0}, 0\right)$. The equation of a line passing through $\left(x_{0}, y_{0}, 0\right)$ and parallel to $(1,1,1)$ is $\frac{x-x_{0}}{1}=\frac{y-y_{0}}{1}=\frac{z}{1}$. We get $x_{0}=x-z$ and $y_{0}=y-z$. Since $\left(x_{0}, y_{0}, 0\right)$ lies on the curve, we get the equation of the cylinder to be $(x-z-2)^{2}+(y-z)^{2}=4$.

Convergence of a sequence in \mathbb{R}^{3} : We will see that the concept of convergence of sequence in \mathbb{R}^{3} plays a role in studying about the vector valued functions and functions of several variables.

Let $X_{n}=\left(x_{1, n}, x_{2, n}, x_{3, n}\right) \in \mathbb{R}^{3}$. We say that the sequence $\left(X_{n}\right)$ is convergent if there exists $X_{0} \in \mathbb{R}^{3}$ such that $\left\|X_{n}-X_{0}\right\| \rightarrow 0$ as $n \rightarrow \infty$. In this case we say that X_{n} converges to X_{0} and we write $X_{n} \rightarrow X_{0}$.

Note that corresponding to a sequence $\left(X_{n}\right), X_{n}=\left(x_{1, n}, x_{2, n}, x_{3, n}\right)$, there are three sequences $\left(x_{1, n}\right)\left(x_{2, n}\right)$ and $\left(x_{3, n}\right)$ in \mathbb{R}, and vice-versa. We will see that the properties of $\left(X_{n}\right)$ can be completely understood in terms of the properties of the corresponding sequences $\left(x_{1, n}\right)\left(x_{2, n}\right)$ and $\left(x_{3, n}\right)$ in \mathbb{R}.

Theorem 1. $X_{n} \rightarrow X_{0}$ in $\mathbb{R}^{3} \Leftrightarrow$ the coordinates $x_{i, n} \rightarrow x_{i, 0}$ for every $i=1,2,3$ in \mathbb{R}.
Proof: This follows from the fact that $\sum_{i=1}^{3}\left|x_{i, n}-x_{i, 0}\right|^{2} \rightarrow 0 \Leftrightarrow\left|x_{i, n}-x_{i, 0}\right| \rightarrow 0, i=1,2,3$.
The proof of the following result is similar to the proof of the previous result.
Theorem 2. $\left(X_{n}\right)$ is bounded (i.e., $\exists M$ such that $\left.\left\|X_{n}\right\| \leq M \forall n\right) \Leftrightarrow$ each sequence $\left(x_{i, n}\right), i=$ $1,2,3$, is bounded.

Problem 1: Every convergent sequence in \mathbb{R}^{3} is bounded.
Proof: If $\left\|X_{n}-X_{0}\right\| \rightarrow 0$, then $\left(\left\|X_{n}-X_{0}\right\|\right)$ is bounded. This implies that $\left(\left\|X_{n}\right\|\right)$ is bounded and this proves the result.

Problem 2 (Bolzano-Weierstrass Theorem): Every bounded sequence in \mathbb{R}^{2} has a convergent subsequence.

Proof $\left(^{*}\right)$: Suppose $\left(x_{n}, y_{n}\right)$ be a bounded sequence. By Theorem 2 both $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are bounded. By B-W theorem $\left(x_{n}\right)$ has a convergent subsequence, say $x_{n_{k}} \rightarrow x_{0}$. Consider the sequence $\left(y_{n_{k}}\right)$ and note that this sequence is also bounded. Again by B-W theorem, this sequence has a convergent subsequence, say $y_{n_{k_{i}}} \rightarrow y_{0}$. It is clear that the subsequence $\left(y_{n_{k_{i}}}, y_{n_{k_{i}}}\right)$ of $\left(x_{n}, y_{n}\right)$ converges to $\left(x_{0}, y_{0}\right)$.

It is evident that the above theorem can also be extended to \mathbb{R}^{3}.

