In the previous lecture we defined unit tangent vectors to space curves. In this lecture we will define normal vectors.

Consider the following results.
Theorem: If F and G are differentiable vector valued functions then so is $F \cdot G$ and $(F \cdot G)^{\prime}=$ $F^{\prime} \cdot G+F \cdot G^{\prime}$.

Proof: Let $F=\left(f_{1}, f_{2}, f_{3}\right)$ and $G=\left(g_{1}, g_{2}, g_{3}\right)$. Then $(F \cdot G)^{\prime}=\left(f_{1} g_{1}+f_{2} g_{2}+f_{3} g_{3}\right)^{\prime}$. By simplifying this we get the result.

Theorem: Let I be an interval and F be a vector valued function on I such that $\|F(t)\|=\alpha$ for all $t \in I$. Then $F \cdot F^{\prime}=0$ on I, that is $F^{\prime}(t)$ is perpendicular to $F(t)$ for each $t \in I$.
Proof: Let $g(t)=\|F(t)\|^{2}=F(t) \cdot F(t)$. By assumption g is constant on I and therefore $g^{\prime}=0$ on I. By the previous theorem, $g^{\prime}=2 F \cdot F^{\prime}$. Therefore, $F \cdot F^{\prime}=0$.

Since the unit tangent vector T has constant length 1, by the previous theorem, T^{\prime} is perpendicular to T. In view of this, we define the principle normal to the curve

$$
N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|}
$$

whenever, $\left\|T^{\prime}(t)\right\| \neq 0$.
Geometric Interpretation: Let us consider a plane curve. Since T is a unit vector,

$$
T(t)=\cos \alpha(t) i+\sin \alpha(t) j
$$

where $\alpha(t)$ is the angle between the tangent vector and the positive x -axis (see the figure). From the previous equation, we get

$$
T^{\prime}(t)=-\sin \alpha(t) \alpha^{\prime}(t) i+\cos \alpha(t) \alpha^{\prime}(t) j=\alpha^{\prime}(t) u(t)
$$

where $u(t)=\cos \left(\alpha(t)+\frac{\pi}{2}\right) i+\sin \left(\alpha(t)+\frac{\pi}{2}\right) j$ which is a unit vector. When $\alpha^{\prime}(t)>0$, the angle is increasing and in this case $N(t)=u(t)$. Similarly, when $\alpha^{\prime}(t)<0$, the angle is decreasing and we have $N(t)=-u(t)$.

Curvature of a curve: Curvature is related to the rate of change of the unit tangent with respect to the arc length. The curvature of a curve is $\kappa=\left\|\frac{d T}{d s}\right\|$. Since $\frac{d T}{d s}=\frac{d T}{d t} \frac{d t}{d s}=\frac{T^{\prime}(t)}{\left\|\frac{d R}{d t}\right\|}$, the curvature is given by the following formula:

$$
\kappa(t)=\frac{\left\|T^{\prime}(t)\right\|}{\left\|\frac{d R}{d t}\right\|}
$$

Example 1: Suppose C is a circle of radius a defined by $R(t)=a \cos t i+a \sin t j$. This implies that $R^{\prime}(t)=-a \sin t i+a \cos t j, T(t)=-\sin t i+\cos t j$ and $T^{\prime}(t)=-\cos t i-\sin t j$. Since $\left\|R^{\prime}(t)\right\|=a$ and $\left\|T^{\prime}(t)\right\|=1$, we have $\kappa=\frac{1}{a}$. So the circle has the constant curvature and the curvature is the reciprocal of the radius of the circle.

Example 2: Sometimes the curvature of a plane curve is defined to be the rate of change of the angle between the tangent vector and the positive x -axis. We will see that our definition coincides with this. For a plane curve, we have shown that $\left\|T^{\prime}(t)\right\|=\left|\alpha^{\prime}(t)\right|$, when $T(t)=$ $\cos \alpha(t) i+\sin \alpha(t) j$. By the chain rule, $\frac{d \alpha}{d t}=\frac{d \alpha}{d s} \frac{d s}{d t}=\left\|\frac{d R}{d t}\right\| \frac{d \alpha}{d s}$. From the formula of curvature, we get

$$
\kappa(t)=\left|\frac{d \alpha}{d s}\right|
$$

The formula given in the following theorem provides a simpler method for determining the curvature.

Theorem: Let $v(t)$ and $a(t)$ denote the velocity and the acceleration vectors of a motion of a particle on a curve defined by $R(t)$. Then

$$
\kappa(t)=\frac{\|a(t) \times v(t)\|}{\|v(t)\|^{3}}
$$

We will not prove the previous theorem but we will use it.
Problem 1: If a plane curve has the Cartesian equation $y=f(x)$ where f is a twice differentiable function, then show that the curvature at the point $(x, f(x))$ is $\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+f^{\prime}(x)^{2}\right]^{3 / 2}}$.

Solution: The graph of f can be considered as a parametric curve $R(t)=t i+f(t) j$. Then $v(t)=R^{\prime}(t)=i+f^{\prime}(x) j$ and $a(t)=R^{\prime \prime}(t)=f^{\prime \prime}(t) j$. This implies that $v(t) \times a(t)=f^{\prime \prime}(t) k$. Therefore, $\|v(t) \times a(t)\|=\left|f^{\prime \prime}(t)\right|$ and $\|v(t)\|=\sqrt{1+f^{\prime}(t)^{2}}$. Substituting these values in the formula of $\kappa(t)$, we get the final expression.

Problem 2: For the curve $R(t)=t \vec{i}+t^{2} \vec{j}+\frac{2}{3} t^{3} \vec{k}$ find the equations of the tangent, principal normal and binormal at $t=1$. Also calculate the curvature of the curve.

Solution : Differentiating $R(t)$ we get, $R^{\prime}(t)=i+2 t j+2 t^{2} k$. The unit tangent vector is given by

$$
T(t)=\frac{R^{\prime}(t)}{\left\|R^{\prime}(t)\right\|}=\frac{i+2 t j+2 t^{2} k}{1+2 t^{2}}
$$

Differentiating, we get

$$
T^{\prime}(t)=\frac{-4 t i+\left(2-4 t^{2}\right) j+4 t k}{\left(1+2 t^{2}\right)^{2}}
$$

and this is the direction of the normal. At $t=1$, the unit tangent vector is $T=\frac{i+2 j+2 k}{3}$ and a normal vector is $\frac{-4 i-2 j+4 k}{9}$. Therefore, the equation of the tangent is : $(x, y, z)=\left(1,1, \frac{2}{3}\right)+t(1,2,2)$ and the equation of the principal normal is : $(x, y, z)=\left(1,1, \frac{2}{3}\right)+t(-2,-1,2)$. The direction of the binormal is defined to $b=T \times N$. Simple calculation will lead to the equation of the binormal.

To evaluate the curvature we can use the formula $\kappa(t)=\frac{\left\|T^{\prime}(t)\right\|}{\left\|\frac{d R}{d t}\right\|}$ as we have already evaluated $T^{\prime}(t)$ or the formula given in the previous theorem. In any way, we get $\kappa(t)=\frac{2}{\left(1+2 t^{2}\right)^{2}}$.

