<u>Lectures 26-27: Functions of Several Variables</u> (Continuity, Differentiability, Increment Theorem and Chain Rule)

The rest of the course is devoted to calculus of several variables in which we study continuity, differentiability and integration of functions from \mathbb{R}^n to \mathbb{R} , and their applications.

In calculus of single variable, we had seen that the concept of convergence of sequence played an important role, especially, in defining limit and continuity of a function, and deriving some properties of \mathbb{R} and properties of continuous functions. This motivates us to start with the notion of convergence of a sequence in \mathbb{R}^n . For simplicity, we consider only \mathbb{R}^2 or \mathbb{R}^3 . General case is entirely analogous.

Convergence of a sequence : Let $X_n = (x_{1,n}, x_{2,n}, x_{3,n}) \in \mathbb{R}^3$. We say that the sequence (X_n) is convergent if there exists $X_0 \in \mathbb{R}^3$ such that $||X_n - X_0|| \to 0$ as $n \to \infty$. In this case we say that X_n converges to X_0 and we write $X_n \to X_0$.

Note that corresponding to a sequence (X_n) , $X_n = (x_{1,n}, x_{2,n}, x_{3,n})$, there are three sequences $(x_{1,n})(x_{2,n})$ and $(x_{3,n})$ in \mathbb{R} , and vice-versa. Thus the properties of (X_n) can be completely understood in terms of the properties of the corresponding sequences $(x_{1,n})(x_{2,n})$ and $(x_{3,n})$ in \mathbb{R} . For example,

(i) $X_n \to X_0$ in $\mathbb{R}^3 \Leftrightarrow$ the coordinates $x_{i,n} \to x_{i,0}$ for every i = 1, 2, 3 in \mathbb{R} .

(ii) (X_n) is bounded (i.e., $\exists M$ such that $||X_n|| \leq M \forall n$) \Leftrightarrow each sequence $(x_{i,n}), i = 1, 2, 3$, is bounded.

Using the previous idea, we can prove the following results.

Problem 1: Every convergent sequence \mathbb{R}^3 is bounded.

Problem 2 (Bolzano-Weierstrass Theorem): Every bounded sequence in \mathbb{R}^3 has a convergent subsequence.

In case of a sequence in \mathbb{R} , to define the notion of convergence or boundedness, we use | | in place of || ||, hence it is clear how we generalized the concept of convergence or boundedness of a sequence in \mathbb{R}^1 to \mathbb{R}^3 . Moreover, it is also now clear how to define the concepts of limit and continuity of a function $f : \mathbb{R}^3 \to \mathbb{R}$ at some point $X_0 \in \mathbb{R}^3$.

Limit and Continuity : (i) We say that L is the limit of a function $f : \mathbb{R}^3 \to \mathbb{R}$ at $X_0 \in \mathbb{R}^3$ (and we write $\lim_{X\to X_0} f(X) = L$) if $f(X_n) \to L$ whenever a sequence (X_n) in \mathbb{R}^3 , $X_n \neq X_0$, converges to X_0 .

(ii) A function $f : \mathbb{R}^3 \to \mathbb{R}$ is continuous at $X_0 \in \mathbb{R}^3$ if $\lim_{X \to X_0} f(X) = f(X_0)$.

Examples 1: (i) Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$, where $f(x, y) = \frac{\sin^2(x-y)}{|x|+|y|}$ when $(x, y) \neq (0, 0)$ and f(0, 0) = 0. We will show that this function is continuous at (0, 0). Note that

$$|f(x,y) - f(0,0)| \le \frac{|x-y|^2}{|x|+|y|} \le |x|+|y| \text{ (or } |x-y|)$$

Therefore, whenever a sequence $(x_n, y_n) \to (0, 0)$, i.e., $x_n \to 0$ and $y_n \to 0$, we have $f(x_n, y_n) \to f(0, 0)$. Hence f is continuous at (0, 0). In fact, this function is continuous on the entire \mathbb{R}^2 .

(ii) Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$, where $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$ when $(x, y) \neq (0, 0)$ and f(0, 0) = 0. This function is continuous at (0, 0), because, $|\frac{xy}{\sqrt{x^2 + y^2}}| \le \frac{|x^2 + y^2|}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2} \to 0$, as $(x, y) \to 0$. (iii) Let $f(x,y) = \frac{2xy}{x^2+y^2}$, $(x,y) \neq (0,0)$. We will show that this function does not have a limit at (0,0). Note that $f(x,mx) \to \frac{2m}{1+m^2}$ as $x \to 0$ for any m. This shows that the function does not have a limit at (0,0).

(iv) Let $f(x,y) = \frac{x^2y}{x^4+y^2}$ when $(x,y) \neq (0,0)$ and f(0,0) = 0. Note that $f(x,mx) \to 0$ as $x \to 0$. But the function is not continuous at (0,0) because $f(x,x^2) \to \frac{1}{2}$ as $x \to 0$. Similarly we can show that the function f(x,y) defined by $f(x,y) = \frac{x^4-y^2}{x^4+y^2}$ when $(x,y) \neq (0,0)$ and f(0,0) = 0 is not continuous at (0,0) by taking $y = mx^2$ and allowing $x \to 0$.

Partial derivatives : The partial derivative of f with respect to the first variable at $X_0 = (x_0, y_0, z_0)$ is defined by

$$\frac{\partial f}{\partial x}|_{X_0} = \lim_{h \to 0} \frac{f(x_0 + h, y_0, z_0) - f(x_0, y_0, z_0)}{h}$$

provided the limit exists. Similarly we define $\frac{\partial f}{\partial y}|_{X_0}$ and $\frac{\partial f}{\partial z}|_{X_0}$.

Example 2: The function f defined by $f(x,y) = \frac{2xy}{x^2+y^2}$ at $(x,y) \neq (0,0)$ and f(0,0) = 0 is not continuous at (0,0), however, the partial derivatives exist at (0,0).

Problem 3: Let f(x, y) be defined in $S = \{(x, y) \in \mathbb{R}^2 : a < x < b, c < y < d\}$. Suppose that the partial derivatives of f exist and are bounded in S. Then show that f is continuous in S.

Solution : Let $|f_x(x,y)| \leq M$ and $|f_y(x,y)| \leq M$ for all $(x,y) \in S$. Then

$$\begin{aligned} f(x+h,y+k) - f(x,y) &= f(x+h,y+k) - f(x+h,y) + f(x+h,y) - f(x,y) \\ &= kf_y(x+h,y+\theta_1k) + hf_x(x+\theta_2h,y), \text{ (for some } \theta_1,\theta_2 \in \mathbb{R}, \text{ by the MVT)}. \end{aligned}$$

Hence, $|f(x+h, y+k) - f(x, y)| \le M(|h|+|k|) \le 2M\sqrt{h^2 + k^2}$.

Hence, for $\epsilon > 0$, choose $\delta = \frac{\epsilon}{2M}$ or use the sequential argument to show that the function is continuous.

It is clear from the previous example that the concept of differentiability of a function of several variables should be stronger than mere existence of partial derivatives of the function.

Differentiability : When $f : \mathbb{R} \to \mathbb{R}, x \in \mathbb{R}$ we define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
(*)

provided the limit exists. In case $f : \mathbb{R}^3 \to \mathbb{R}$ and $X = (x_1, x_2, x_3) \in \mathbb{R}^3$ the above definition of the differentiability of functions of one variable (*) cannot be generalized as we cannot divide by an element of \mathbb{R}^3 . So, in order to define the concept of differentiability, what we do is that we rearrange the above definition (*) to a form which can be generalized.

Let $f : \mathbb{R} \to \mathbb{R}$. Then f is differentiable at x if and only if there exists $\alpha \in \mathbb{R}$ such that

$$\frac{\mid f(x+h) - f(x) - \alpha \cdot h \mid}{\mid h \mid} \to 0 \quad as \ h \to 0.$$

When f is differentiable at x, α has to be f'(x). We generalize this definition to the functions of several variables.

$$\varepsilon(H) = \frac{f(X+H) - f(X) - \alpha \cdot H}{\parallel H \parallel}$$

tends to 0 as $H \to 0$.

In the above definition $\alpha \cdot H$ is the scalar product. Note that the derivative $f'(X) = (\alpha_1, \alpha_2, \alpha_3)$. **Theorem 26.1:** Let $f : \mathbb{R}^3 \to \mathbb{R}, X \in \mathbb{R}^3$. If f is differentiable at X then f is continuous at X. **Proof** : Suppose f is differentiable at X. Then there exists $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{R}^3$ such that

$$|f(X+H) - f(X) - \alpha \cdot H| = ||H|| \varepsilon(H) \text{ and } \varepsilon(H) \to 0 \text{ as } H \to 0.$$

Hence

$$|f(X + H) - f(X)| \le ||H|| (\sum_{i=1}^{3} |\alpha_i|) + ||H|| \varepsilon(H)$$

and $\varepsilon(H) \to 0$ as $H \to 0$. Therefore $f(X+H) \to f(X)$ as $H \to 0$. This proves that f is continuous at X.

How do we verify that a given function is differentiable at a point in \mathbb{R}^3 ? The following result helps us to answer this question.

Theorem 26.2: Suppose f is differentiable at X. Then the partial derivatives $\frac{\partial f}{\partial x}\Big|_X, \frac{\partial f}{\partial y}\Big|_X$ and $\frac{\partial f}{\partial z}\Big|_X$ exist and the derivative

$$f'(X) = (\alpha_1, \alpha_2, \alpha_3) = (\frac{\partial f}{\partial x} \mid_X, \frac{\partial f}{\partial y} \mid_X, \frac{\partial f}{\partial z} \mid_X)$$

Proof: Suppose f is differentiable at X and $f'(X) = (\alpha_1, \alpha_2, \alpha_3)$. Then by taking H = (t, 0, 0), we have

$$\varepsilon(H) = \frac{f(X+H) - f(X) - \alpha_1 t}{|t|} \to 0 \quad as \quad t \to 0, \quad i.e., \quad \frac{f(X+H) - f(X) - \alpha_1 t}{t} \to 0$$

This implies that $\alpha_1 = \frac{\partial f}{\partial x} \mid_X$. Similarly we can show that $\alpha_2 = \frac{\partial f}{\partial y} \mid_X$ and $\alpha_3 = \frac{\partial f}{\partial x} \mid_X$.

Example 3 : Let

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2} \quad at \quad (x,y) \neq (0,0)$$
$$= 0 \quad at \quad (0,0)$$

To verify that f is differentiable at (0,0), let us choose $\alpha = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)|_{(0,0)}$ and verify that $\epsilon(H) \to 0$ as $H = (h,k) \to 0$. In this case $\alpha = (0,0)$ and

$$|\varepsilon(H)| = |\frac{f(0+H) - f(0) - (0,0) \cdot H}{\parallel H \parallel}| \le |\frac{hk}{\sqrt{h^2 + k^2}}| \le \sqrt{h^2 + k^2} \to 0 \quad as \quad H \to 0.$$

Hence f is differentiable at (0, 0).

Example 2 illustrates that the partial derivatives of a function at a point may exist but the function need not be differentiable at that point. The previous theorem says that if the function is

differentiable at X then the derivative f'(X) can be expressed in terms of the partial derivatives of f at X. Since finding partial derivatives is easy because they are based on one variable and it is related to the derivative, one naturally asks the following question: Under what additional assumptions on the partial derivatives the function becomes differentiable. The following criterion answer this question.

Theorem 26.3: If $f : \mathbb{R}^3 \to \mathbb{R}$ is such that all its partial derivatives exist in a neighborhood of X_0 and continuous at X_0 then f is differentiable at X_0 .

We omit the proof of this result. We will see in a tutorial class that the converse of the previous result is not true.

Chain Rule: We have seen that the chain rule which deals with derivative of a function of a function is very useful in one variable calculus. In order to derive a similar rule for functions of several variables we need the following theorem called **Increment Theorem**. For simplicity we will state this theorem only for two variables.

We will employ the notation $f_x = \frac{\partial f}{\partial x}$ and $f_y = \frac{\partial f}{\partial x}$.

Theorem 26.4: Let f(x, y) be differentiable at (x_0, y_0) . Then we have

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + \varepsilon_1\Delta x + \varepsilon_2\Delta y$$

where $\varepsilon_1(\Delta x, \Delta y), \varepsilon_2(\Delta x, \Delta y) \to 0$ as $\Delta x \to 0$ and $\Delta y \to 0$.

Proof (*): Let $H = (\Delta x, \Delta y)$. Since the function is differentiable at (x_0, y_0) , we have $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + || H || \varepsilon(H), \varepsilon(H) \to 0$ as $H \to 0$. We have to show that $|| H || \varepsilon(H) = \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$ for some functions ε_1 and ε_2 . Note that

$$\varepsilon(H) \parallel H \parallel = \frac{\varepsilon(H)}{\parallel H \parallel} (\Delta x^2 + \Delta y^2) = (\Delta x \frac{\varepsilon(H)}{\parallel H \parallel}) \Delta x + (\Delta y \frac{\varepsilon(H)}{\parallel H \parallel}) \Delta y.$$

Define $\varepsilon_1(H) = \Delta x \frac{\varepsilon(H)}{\|H\|}$ and $\varepsilon_2(H) = \Delta y \frac{\varepsilon(H)}{\|H\|}$. Note that

$$|\varepsilon_1(H)| = |\Delta x \frac{\varepsilon(H)}{\|H\|}| \le |\varepsilon(H)| \to 0 \text{ as } H \to 0$$

Similarly we can show that $\varepsilon_2(H) \to 0$ as $H \to 0$. This proves the result.

In the next result we present the chain rule.

Theorem 26.5: Let f(x, y) be differentiable (or f has continuous partial derivatives) and if x = x(t), y = y(t) are differentiable functions on t, then the function w = f(x(t), y(t)) is differentiable at t and

$$\frac{df}{dt} = f_x(x(t), y(t))x'(t) + f_y(x(t), y(t))y'(t), \quad \text{i.e.,} \quad \frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Proof : By increment theorem we have

$$\Delta f = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y, \quad \varepsilon_1, \varepsilon_2 \to 0 \text{ as } \Delta x, \Delta y \to 0$$

This implies that

$$\frac{\Delta f}{\Delta t} = f_x \frac{\Delta x}{\Delta t} + f_y \frac{\Delta y}{\Delta t} + \varepsilon_1 \frac{\Delta x}{\Delta t} + \varepsilon_2 \frac{\Delta y}{\Delta t}.$$

Allow $\Delta t \to 0$, which implies that $\varepsilon_1, \varepsilon_2 \to 0$ because $\Delta x, \Delta y \to 0$. Therefore, we get $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.