We have seen one criterion, called monotone criterion, for proving that a sequence converges without knowing its limit. We will now present another criterion.

Suppose that a sequence (x_n) converges to x. Then for $\epsilon > 0$, there exists an N such that $|x_n - x| < \epsilon/2$ for all $n \ge N$. Hence for $n, m \ge N$ we have

$$|x_n - x_m| = |x_n - x + x - x_m| \le |x_n - x| + |x - x_m| < \epsilon.$$

Thus we arrive at the following conclusion:

If a sequence (x_n) converges then it satisfies the **Cauchy's criterion:** for $\epsilon > 0$, there exists N such that $|x_n - x_m| < \epsilon$ for all $n, m \ge N$.

If a sequence converges then the elements of the sequence get close to the limit as n increases. In case of a sequence satisfying Cauchy criterion the elements get close to each other as m, n increases.

We note that a sequence satisfying Cauchy criterion is a bounded sequence (verify!) with some additional property. Moreover, intuitively it seems as if it converges. We will show that a sequence satisfying Cauchy criterion does converge. We need some results to prove this.

Theorem 3.1: (Nested interval Theorem) For each n, let $I_n = [a_n, b_n]$ be a (nonempty) bounded interval of real numbers such that

$$I_1 \supset I_2 \supset \cdots \supset I_n \supset I_{n+1} \supset \cdots$$

and $\lim_{n \to \infty} (b_n - a_n) = 0$. Then $\bigcap_{n=1}^{\infty} I_n$ contains only one point.

Proof (*): Note that the sequences (a_n) and (b_n) are respectively increasing and decreasing sequences; moreover both are bounded. Hence both converge, say $a_n \to a$ and $b_n \to b$. Then $a_n \leq a$ and $b \leq b_n$ for all $n \in N$. Since $b - a = \lim(b_n - a_n) = 0$, a = b. Since $a_n \leq b_n$ for all n we have $a \in \bigcap_{n=1}^{\infty} I_n$. Clearly if $x \neq a$ then x does not belong to $\bigcap_{n=1}^{\infty} I_n$.

Subsequences : Let (x_n) be a sequence and let (n_k) be any sequence of positive integers such that $n_1 < n_2 < n_3 < \ldots$ The sequence (x_{n_k}) is called a subsequence. Note that here k varies from 1 to ∞ .

A subsequence is formed by deleting some of the elements of the sequence and retaining the remaining in the same order. For example, $(\frac{1}{k^2})$ and $(\frac{1}{2^k})$ (k varies from 1 to ∞) are subsequences of $(\frac{1}{n})$, where $n_k = k^2$ and $n_k = 2^k$.

Sequences (1, 1, 1, ...) and (0, 0, 0, ...) are both subsequences of (1, 0, 1, 0, ...). From this we see that a given sequence may have convergent subsequences though the sequence itself is not convergent. We note that every sequence is a subsequence of itself and if $x_n \to x$ then every subsequence of (x_n) also converges to x.

The following theorem which is an important result in calculus, is a consequence of the nested interval theorem.

Theorem 3.2 (Bolzano-Weierstrass theorem): Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof (*): (Sketch). Let (x_n) be a bounded sequence such that the set $\{x_1, x_2, \dots\} \subset [a, b]$. Divide this interval into two equal parts. Let I_1 be that interval which contains an infinite number of elements (or say terms) of (x_n) . Let x_{n_1} be one of the elements belonging to the interval I_1 . Divide I_1 into two equal parts and let I_2 be that interval which contains an infinite number of elements. Choose a point x_{n_2} in I_2 such that $n_2 > n_1$. Keep dividing the intervals I_k , to generate I_k 's and x_{n_k} 's. By nested interval theorem $\bigcap_{k=1}^{\infty} I_k = \{x\}$, for some $x \in [a, b]$. It is easy to see that the subsequence (x_{n_k}) converges to x.

Theorem 3.3: If a sequence (x_n) satisfies the Cauchy criterion then (x_n) converges.

Proof (*): Let (x_n) satisfy the Cauchy criterion. Since (x_n) is bounded, by the previous theorem there exists a subsequence (x_{n_k}) convergent to some x_0 . We now show that $x_n \to x_0$. Let $\epsilon > 0$. Since (x_n) satisfies the Cauchy criterion,

there exists
$$N_1$$
 s.t. $|x_n - x_m| \leq \epsilon/2$ for all $n, m \geq N_1$ (1)

Since $x_{n_k} \to x_0$,

there exists
$$N_2$$
 s.t. $|x_{n_k} - x_0| \leq \epsilon/2$ for all $n_k \geq N_2$ (2)

Let $N = max\{N_1, N_2\}$. For $n \ge N$, choose some $n_k \ge N$, then by (1) and (2) we have

$$|x_n - x_0| \le |x_n - x_{n_k}| + |x_{n_k} - x_0| \le \epsilon/2 + \epsilon/2 = \epsilon$$

This proves that $x_n \to 0$.

Checking the Cauchy criterion directly from the definition is very difficult. The following result will help us to check the Cauchy criterion.

Problem 3.4: Suppose $0 < \alpha < 1$ and (x_n) is a sequence satisfying the contractive condition:

$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n| \qquad n = 1, 2, 3, \dots$$

Then show that (x_n) satisfies the Cauchy criterion.

Solution: Note that
$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n| \le \alpha^2 |x_n - x_{n-1}| \le \dots \le \alpha^n |x_2 - x_1|$$
.
For $n > m$, $|x_n - x_m| \le (\alpha^{n-2} + \alpha^{n-3} + \dots + \alpha^{m-1})|x_2 - x_1| \le \frac{\alpha^m}{1-\alpha}|x_2 - x_1| \to 0$ as $m \to \infty$.

Thus (x_n) satisfies the Cauchy criterion.

Examples 3.5: 1. Let $x_1 = 1$ and $x_{n+1} = \frac{1}{2+x_n}$. Then

$$|x_{n+2} - x_{n+1}| = \frac{1}{(2+x_{n+1})(2+x_n)} |x_n - x_{n+1}| < \frac{1}{4} |x_n - x_{n+1}|.$$

Therefore (x_n) satisfies the contractive condition with $\alpha = 1/4$ and hence it satisfies the Cauchy criterion. Therefore it converges. Suppose $x_n \to l$. Then $l = \frac{1}{2+l}$. Find l !.

Remark : Whenever we use the result given in the above exercise, we have to show that the number α that we get, satisfies $0 < \alpha < 1$.

2. If $x_1 = 2$ and $x_{n+1} = 2 + \frac{1}{x_n}$ then $|x_{n+2} - x_{n+1}| < \frac{1}{4} |x_n - x_{n+1}|$ (verify !). Therefore the sequence (x_n) converges.