Lecture 3: Cauchy Criterion, Bolzano-Weierstrass Theorem

We have seen one criterion, called monotone criterion, for proving that a sequence converges without knowing its limit. We will now present another criterion.

Suppose that a sequence $\left(x_{n}\right)$ converges to x. Then for $\epsilon>0$, there exists an N such that $\left|x_{n}-x\right|<\epsilon / 2$ for all $n \geq N$. Hence for $n, m \geq N$ we have

$$
\left|x_{n}-x_{m}\right|=\left|x_{n}-x+x-x_{m}\right| \leq\left|x_{n}-x\right|+\left|x-x_{m}\right|<\epsilon
$$

Thus we arrive at the following conclusion:
If a sequence $\left(x_{n}\right)$ converges then it satisfies the Cauchy's criterion: for $\epsilon>0$, there exists N such that $\left|x_{n}-x_{m}\right|<\epsilon$ for all $n, m \geq N$.

If a sequence converges then the elements of the sequence get close to the limit as n increases. In case of a sequence satisfying Cauchy criterion the elements get close to each other as m, n increases.

We note that a sequence satisfying Cauchy criterion is a bounded sequence (verify!) with some additional property. Moreover, intuitively it seems as if it converges. We will show that a sequence satisfying Cauchy criterion does converge. We need some results to prove this.

Theorem 3.1: (Nested interval Theorem) For each n, let $I_{n}=\left[a_{n}, b_{n}\right]$ be a (nonempty) bounded interval of real numbers such that

$$
I_{1} \supset I_{2} \supset \cdots \supset I_{n} \supset I_{n+1} \supset \cdots
$$

and $\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=0$. Then $\bigcap_{n=1}^{\infty} I_{n}$ contains only one point.
Proof (*): Note that the sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are respectively increasing and decreasing sequences; moreover both are bounded. Hence both converge, say $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$. Then $a_{n} \leq a$ and $b \leq b_{n}$ for all $n \in N$. Since $b-a=\lim \left(b_{n}-a_{n}\right)=0, a=b$. Since $a_{n} \leq b_{n}$ for all n we have $a \in \bigcap_{n=1}^{\infty} I_{n}$. Clearly if $x \neq a$ then x does not belong to $\bigcap_{n=1}^{\infty} I_{n}$.

Subsequences : Let $\left(x_{n}\right)$ be a sequence and let $\left(n_{k}\right)$ be any sequence of positive integers such that $n_{1}<n_{2}<n_{3}<\ldots$. The sequence $\left(x_{n_{k}}\right)$ is called a subsequence. Note that here k varies from 1 to ∞.

A subsequence is formed by deleting some of the elements of the sequence and retaining the remaining in the same order. For example, $\left(\frac{1}{k^{2}}\right)$ and $\left(\frac{1}{2^{k}}\right)(k$ varies from 1 to $\infty)$ are subsequences of $\left(\frac{1}{n}\right)$, where $n_{k}=k^{2}$ and $n_{k}=2^{k}$.

Sequences $(1,1,1, \ldots)$ and $(0,0,0, \ldots)$ are both subsequences of $(1,0,1,0, \ldots)$. From this we see that a given sequence may have convergent subsequences though the sequence itself is not convergent. We note that every sequence is a subsequence of itself and if $x_{n} \rightarrow x$ then every subsequence of $\left(x_{n}\right)$ also converges to x.

The following theorem which is an important result in calculus, is a consequence of the nested interval theorem.

Theorem 3.2 (Bolzano-Weierstrass theorem): Every bounded sequence in \mathbb{R} has a convergent subsequence.

Proof $(*):($ Sketch $)$. Let $\left(x_{n}\right)$ be a bounded sequence such that the set $\left\{x_{1}, x_{2}, \cdots\right\} \subset[a, b]$. Divide this interval into two equal parts. Let I_{1} be that interval which contains an infinite number of elements (or say terms) of $\left(x_{n}\right)$. Let $x_{n_{1}}$ be one of the elements belonging to the interval I_{1}. Divide I_{1} into two equal parts and let I_{2} be that interval which contains an infinite number of elements. Choose a point $x_{n_{2}}$ in I_{2} such that $n_{2}>n_{1}$. Keep dividing the intervals I_{k}, to generate I_{k} 's and $x_{n_{k}}$'s. By nested interval theorem $\bigcap_{k=1}^{\infty} I_{k}=\{x\}$, for some $x \in[a, b]$. It is easy to see that the subsequence $\left(x_{n_{k}}\right)$ converges to x.

Theorem 3.3: If a sequence $\left(x_{n}\right)$ satisfies the Cauchy criterion then $\left(x_{n}\right)$ converges.
Proof $\left(^{*}\right)$: Let $\left(x_{n}\right)$ satisfy the Cauchy criterion. Since $\left(x_{n}\right)$ is bounded, by the previous theorem there exists a subsequence $\left(x_{n_{k}}\right)$ convergent to some x_{0}. We now show that $x_{n} \rightarrow x_{0}$. Let $\epsilon>0$. Since $\left(x_{n}\right)$ satisfies the Cauchy criterion,

$$
\begin{equation*}
\text { there exists } N_{1} \text { s.t. }\left|x_{n}-x_{m}\right| \leq \epsilon / 2 \quad \text { for all } n, m \geq N_{1} \tag{1}
\end{equation*}
$$

Since $x_{n_{k}} \rightarrow x_{0}$,

$$
\begin{equation*}
\text { there exists } N_{2} \text { s.t. }\left|x_{n_{k}}-x_{0}\right| \leq \epsilon / 2 \text { for all } n_{k} \geq N_{2} \tag{2}
\end{equation*}
$$

Let $N=\max \left\{N_{1}, N_{2}\right\}$. For $n \geq N$, choose some $n_{k} \geq N$, then by (1) and (2) we have

$$
\left|x_{n}-x_{0}\right| \leq\left|x_{n}-x_{n_{k}}\right|+\left|x_{n_{k}}-x_{0}\right| \leq \epsilon / 2+\epsilon / 2=\epsilon
$$

This proves that $x_{n} \rightarrow 0$.
Checking the Cauchy criterion directly from the definition is very difficult. The following result will help us to check the Cauchy criterion.

Problem 3.4: Suppose $0<\alpha<1$ and $\left(x_{n}\right)$ is a sequence satisfying the contractive condition:

$$
\left|x_{n+2}-x_{n+1}\right| \leq \alpha\left|x_{n+1}-x_{n}\right| \quad n=1,2,3, \ldots
$$

Then show that $\left(x_{n}\right)$ satisfies the Cauchy criterion.
Solution : Note that $\left|x_{n+2}-x_{n+1}\right| \leq \alpha\left|x_{n+1}-x_{n}\right| \leq \alpha^{2}\left|x_{n}-x_{n-1}\right| \leq \cdots \leq \alpha^{n}\left|x_{2}-x_{1}\right|$.
For $n>m,\left|x_{n}-x_{m}\right| \leq\left(\alpha^{n-2}+\alpha^{n-3}+\cdots+\alpha^{m-1}\right)\left|x_{2}-x_{1}\right| \leq \frac{\alpha^{m}}{1-\alpha}\left|x_{2}-x_{1}\right| \rightarrow 0$ as $m \rightarrow \infty$.
Thus $\left(x_{n}\right)$ satisfies the Cauchy criterion.
Examples 3.5: 1. Let $x_{1}=1$ and $x_{n+1}=\frac{1}{2+x_{n}}$. Then

$$
\left|x_{n+2}-x_{n+1}\right|=\frac{1}{\left(2+x_{n+1}\right)\left(2+x_{n}\right)}\left|x_{n}-x_{n+1}\right|<\frac{1}{4}\left|x_{n}-x_{n+1}\right|
$$

Therefore $\left(x_{n}\right)$ satisfies the contractive condition with $\alpha=1 / 4$ and hence it satisfies the Cauchy criterion. Therefore it converges. Suppose $x_{n} \rightarrow l$. Then $l=\frac{1}{2+l}$. Find l !.

Remark : Whenever we use the result given in the above exercise, we have to show that the number α that we get, satisfies $0<\alpha<1$.
2. If $x_{1}=2$ and $x_{n+1}=2+\frac{1}{x_{n}}$ then $\left|x_{n+2}-x_{n+1}\right|<\frac{1}{4}\left|x_{n}-x_{n+1}\right|$ (verify !). Therefore the sequence $\left(x_{n}\right)$ converges.

