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Lecture 33 : Change of Variable in a Double Integral; Triple Integral

We used Fubini’s theorem for calculating the double integrals. We have also noticed that
Fubini’s theorem can be applied if the domain is in a particular form. In this lecture, we will see
that in some cases even if the domain is not in that particular form, using some change of variables,
we can transform the original double integral into another double integral over a new region where
we can apply Fubini’s theorem. This idea is analogous to the method of substitution in single
variable: ∫ b

a f(x)dx =
∫ d
c f [g(t)]g′(t)dt, (1)

where a = g(c) and b = g(d).

Change of Variable: Here we deal with the problem of transforming an integral
∫∫

S f(x, y)dxdy
defined over a region S in the xy-plane, into another integral

∫∫
T F (x, y)dudv defined over a new

region T in the uv-plane. Instead of the one function g given in (1), here we have two functions
X and Y connecting x, y with u, v as follows: x = X(u, v) and y = Y (u, v). Note that a set of
points in the uv-plane is mapped into another set of points in the xy-plane by the maps defined in
the above equations.

Basic assumptions: We assume that the mapping from the domain T in the uv-plane to the domain
S in the xy-plane is one-one. The functions X and Y are continuous and have continuous partial
derivatives ∂X

∂u , ∂X
∂v , ∂y

∂u and ∂Y
∂v . The Jacobian J(u, v) defined below is never zero. The Jacobian is

defined as follows:

J(u, v) =
∣∣∣∣

∂X
∂u

∂Y
∂u

∂X
∂v

∂Y
∂v

∣∣∣∣
The formula:

∫∫
S

f(x, y)dxdy =
∫∫
T

f [X(u, v), Y (u, v)] | J(u, v) | dudv

We note that the Jacobian defined in the previous equation and the function g′(t) defined in
(1) play similar roles in their respective equations. The proof of the change of variable formula is
not easy and so we will not present it here.

Example: Let us find the area of the region S bounded by the hyperbolas xy = 1 and xy = 2,
and the curves xy2 = 3 and xy2 = 4. Note that the area of S is

∫∫
S dxdy. Put u = xy and v = xy2,

then x = u2

v and y = v
u . The region T is: 1 ≤ u ≤ 2 and 3 ≤ v ≤ 4. The Jacobian J(u, v) = 1

v .

Therefore by the change of variable formula the area of S =
∫∫

S dxdy =
∫∫

T
1
vdudv =

4∫
3

2∫
1

1
vdudv.

Special case (Polar coordinate): In this case the variables x and y are changed to r and θ by
the following two equations: x = X(r, θ) = r cos θ and y = Y (r, θ) = r sin θ. We assume that
r > 0 and θ lies in [0, 2π) or θ0 ≤ θ < θ0 + 2π for some θ0 so that the mapping involved in the
change of variable is one-one. The Jacobian is

J(u, v) =
∣∣∣∣

∂X
∂r

∂Y
∂r

∂X
∂θ

∂Y
∂θ

∣∣∣∣ =
∣∣∣∣

cos θ sin θ
−r sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r.

Hence the change of variable formula in this case is :
∫∫
S

f(x, y)dxdy =
∫∫
T

f(r cos θ, r sin θ) rdrdθ.

Example: Let us find the volume of the sphere of radius a. The volume is

V = 2
∫∫
S

√
a2 − x2 − y2dxdy where S = {(x, y) : x2 + y2 ≤ a2}.

If we use the rectangular coordinates, V = 4
a∫
−a

√
a2−x2∫
0

√
a2 − x2 − y2dydx which is complicated to

calculate. Let use use the polar coordinates. In polar coordinate
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V = 2
∫∫
T

√
a2 − r2rdrdθ where T = [0, a]× [0, 2π].

By Fubini’s theorem, V = 2
a∫
0

2π∫
0

√
a2 − r2rdθdr = 4π

a∫
0

r
√

a2 − r2dr = 4π (a2−r2)
3
2

−3 |
a

0
= 4πa3

3 .

Triple integrals: In the previous lecture, we extended the concept of integrals for functions defined
on [a, b]× [c, d]. The same can be extended to functions defined on Q = [a, b]× [c, d]× [e, f ]. The
definition of integral of such a function is entirely analogous to the definition of double integrals.
Every partition P of Q is of the form P = P1 × P2 × P3 where P1, P2 and P3 are partitions of
[a, b], [b, c] and [e, f ] respectively. For a given partition P and a bounded function defined on Q
we can define L(P, f), U(P, f), lower integral, upper integral and integral of f as we defined in the
double integral case. If a function f on Q is integrable then the integral, called triple integral, is
denoted by

∫∫∫
Q f(x, y, z)dxdydz or

∫∫∫
Q f(x, y, z)dV.

As we did in the double integral case, the definition of triple integral can be extended to any
bounded region in R3. One can also prove that every continuous function on Q is integrable.

Remark: In the double integral case, the integral of positive function f is the volume of the
region below the surface z = f(x, y). In the triple integral case we do not have any such geometric
interpretation, except the fact that

∫∫∫
D dxdydz is considered to be the volume of the region D.

The concept of double integrals can be used in applications, for example, to define the center of
mass and moments of inertia of a two dimensional object (see the text book). Similarly, the triple
integrals are used in applications which we are not going to see. In this lecture we will see how to
evaluate the triple integrals.

There is a Fubini’s theorem to evaluate the triple integrals.

Fubini’s theorem: Let D be a bounded domain in R3 described as follows:

D = {(x, y, z) : (x, y) ∈ R and f1(x, y) ≤ z ≤ f2(x, y)}.

That is, D is bounded above by the surface z = f1(x, y), bounded below by the surface z = f2(x, y)
and on the side by the cylinder generated by a line moving parallel to the z-axis along the boundary
of R. The projection of D on the xy-plane is the region R. For example, consider

D = {(x, y, z) : 0 ≤ x2 + y2 ≤ 2, x2 + y2 ≤ z ≤ 2}.
Here R is a circular region and D is bounded below by the paraboloid z = x2 + y2 and above by
the plane z = 2. The following theorem converts a triple integral into iterated integrals of one and
two dimensions.

Theorem: If f is continuous on D and f1, f2 are continuous on R then
∫∫∫

D
f(x, y, z)dV =

∫∫

R

(∫ f2(x,y)

f1(x,y)
f(x, y, z)dz

)
dA.

Example: Let us compute
∫∫∫

D xdxdydz where D is the region in space bounded by x = 0, y =
0, z = 2 and the surface z = x2 + y2. Note that D = {(x, y, z) : (x, y) ∈ R, x2 + y2 ≤ z ≤ 2} where
R = {(x, y) : 0 ≤ x ≤ √

2, 0 ≤ y ≤ √
2− x2}. Therefore by the previous theorem,

∫∫∫

D
xdxdydz =

∫∫

R

(∫ 2

x2+y2

xdz

)
dA =

∫ √
2

0

∫ √
2−x2

0

∫ 2

x2+y2

x dzdydx =
8
√

2
15

.


