Lecture 34 : Change of Variable in a Triple Integral; Area of a Parametric Surface

The change of variable formula for a double integral can be extended to triple integrals. We will straightaway present the formula.

Formula: $\iiint_{S} f(x, y, z) d x d y d z=\iiint_{T} f[X(u, v, w), Y(u, v, w), Z(u, v, w)]|J(u, v, w)| d u d v d w$ where the Jacobian determinant $J(u, v, w)$ is defined as follows:

$$
J(u, v, w)=\left|\begin{array}{lll}
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & \frac{\partial Z}{\partial u} \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & \frac{\partial Z}{\partial v} \\
\frac{\partial X}{\partial w} & \frac{\partial Y}{\partial w} & \frac{\partial Z}{\partial w}
\end{array}\right|
$$

The above formula is valid under some assumptions which are similar to the assumptions we had for the two dimensional case.

Special cases : 1. Cylindrical coordinates. In this case the variables x, y and z are changed to r, θ and z by the following three equations:

$$
x=X(r, \theta)=r \cos \theta, y=Y(r, \theta)=r \sin \theta \quad \text { and } \quad z=z
$$

We assume that $r>0$ and θ lies in $[0,2 \pi)$ or $\theta_{0} \leq \theta<\theta_{0}+2 \pi$ for some θ_{0} as in the double integral case. We have basically replaced x and y by their polar coordinates in the $x y$ plane and left z unchanged. The Jacobian is

$$
J(u, v, z)=\left|\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
$$

Therefore the change of variable formula is $\iiint_{S} f(x, y, z) d x d y d z=\iiint_{T} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z$.
Example 1: Let us evaluate $\iiint_{D}\left(z^{2} x^{2}+z^{2} y^{2}\right) d x d y d z$ where D is the region determined by $x^{2}+y^{2} \leq$ $1,-1 \leq z \leq 1$. Note that we can describe D in cylindrical coordinates: $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi,-1 \leq$ $z \leq 1$. Therefore,
$\iiint_{D}\left(z^{2} x^{2}+z^{2} y^{2}\right) d x d y d z=\int_{-1}^{1} \int_{0}^{2 \pi} \int_{0}^{1}\left(z^{2} r^{2}\right) r d r d \theta d z=\left.\int_{-1}^{1} \int_{0}^{2 \pi} z^{2} \frac{r^{4}}{4}\right|_{r=0} ^{1} d \theta d z=\int_{-1}^{1} \frac{2 \pi}{4} z^{2} d z=\frac{\pi}{3}$.
2 Spherical Coordinates: Suppose (x, y, z) be a point \mathbb{R}^{3}. We will represent this point in terms of spherical coordinates (ρ, θ, ϕ). The coordinates ρ, θ and ϕ are defined below.

Given a point (x, y, z), let $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ and ϕ is the angle that the position vector $x i+y j+z k$ makes with the (positive side of the) z-axis. The coordinate of z is given by $z=\rho \cos \phi$. To represent x and y in terms of spherical coordinates, represent x and y by polar coordinates in the $x y$-plane: $x=r \cos \theta$ and $y=r \sin \theta$. Since $r=\rho \sin \phi$, the point (x, y, z) is represented in terms of the spherical coordinates (ρ, θ, ϕ) as follows:

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

We keep $\rho>0,0 \leq \theta<2 \pi$ and $0 \leq \phi<\pi$ to get a one-one mapping. The Jacobian determinant is $J(\rho, \theta, \phi)=-\rho^{2} \sin \phi$. Since $\sin \phi \geq 0$, we have $|J(\rho, \theta, \phi)|=\rho^{2} \sin \phi$ and the change of variable formula is

$$
\iiint_{S} f(x, y, z) d x d y d z=\iiint_{T} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
$$

Example 2: Let $D=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 4 a^{2}, z \geq a\right\}$. Let us evaluate $\iiint_{D} \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d V$. We will use the spherical coordinates to solve this problem. If we allow ϕ to vary independently,
then ϕ varies from 0 to $\frac{\pi}{3}$ (see Figure 2). If we fix ϕ and allow θ to vary from 0 to 2π then we obtain a surface of a cone (see Figure 1). Since only a part of the cone is lying in the given region, for a fixed ϕ and θ, ρ varies from $a \sec \phi$ to $2 a$ (see Figure 1). Therefore the integral is

$$
\int_{0}^{\frac{\pi}{3}} \int_{0}^{2 \pi} \int_{a \sec \phi}^{2 a} \frac{\cos \phi}{\rho^{2}}|J(\rho, \theta, \phi)| d \rho d \theta d \phi=2 \pi \int_{0}^{\frac{\pi}{3}}(2 a \sin \phi \cos \phi-a \sin \phi) d \phi=\frac{\pi a}{2} .
$$

Parametric Surfaces: We defined a parametric curve in terms of a continuous vector valued function of one variable. We will see that a continuous vector valued function of two variables is associated with a surface, called parametric surface.

Let T be a region in \mathbb{R}^{2} and $r(u, v)=X(u, v) i+Y(u, v) j+Z(u, v) k$ be a continuous function on T. The range of $r,\{r(u, v):(u, v) \in T\}$ is called a parametric surface (with the parameter domain T and the parameters u and v). We assume that the map r is one-one in the interior of T so that the surface does not cross itself. Sometimes the surface defined by $r(u, v)$ is also expressed as

$$
x=X(u, v), y=Y(u, v), z=Z(u, v) \quad \text { where } \quad(u, v) \in T
$$

and the above equations are called parametric equations of the surface.
Examples: 1. For a constant $a>0,0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$ the equations $x=a \sin \phi \cos \theta, y=$ $a \sin \phi \sin \theta, \quad z=a \cos \phi$ represent a sphere. Here the parameters are θ and ϕ.
2. For a fixed $a, \infty<t<\infty, 0 \leq \theta \leq 2 \pi$, the equations $x=a \cos \theta, y=a \sin \theta, z=t$ represent a cylinder. Here the parameters are t and θ.
3. A cone is represented by $r(u, v)=\rho \sin \alpha \cos \theta i+\rho \sin \alpha \sin \theta j+\rho \cos \alpha k$ where $\rho \geq 0,0 \leq \theta \leq 2 \pi$ and α is fixed. Here the parameters are ρ and θ.

Area of a Parametric Surface: Let $S=r(u, v)$ be a parametric surface defined on a parameter domain T. Suppose r_{u} and r_{v} are continuous on T and $r_{u} \times r_{v}$ is never zero on T. Then the area of S, denoted by $a(S)$, is defined by the double integral

$$
a(S)=\iint_{T}\left\|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\| d u d v
$$

The formula can be justified as follows. Consider a small rectangle $\triangle A$ in T with the sides on the lines $u=u_{0}, u=u_{0}+\triangle u, v=v_{0}$ and $v=v_{0}+\Delta v$. Consider the corresponding patch in S, that is $r(\triangle A)$. Note that the sides of $\triangle A$ are mapped to the boundary curves of the patch $r(\triangle A)$ by the map r. The vectors $r_{u}\left(u_{0}, v_{0}\right)$ and $r_{v}\left(u_{0}, v_{0}\right)$ are tangents to the boundary curves of $r(\triangle A)$ meeting at $r\left(u_{0}, v_{0}\right)$. We now approximate the surface patch $r(\triangle A)$ by the parallelogram whose sites are determined by the vectors $\triangle u r_{u}$ and $\triangle v r_{v}$. The area of this parallelogram is $\left|r_{u} \times r_{v}\right| \triangle u \Delta v$. This will lead to the Riemann sum corresponding to the double integral $\iint_{T}\left\|\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right\| d u d v$.

