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Lecture 35 : Surface Area; Surface Integrals

In the previous lecture we defined the surface area a(S) of the parametric surface S, defined by
r(u, v) on T , by the double integral

a(S) =
∫∫
T

‖ ru × rv ‖ dudv. (1)

We will now drive a formula for the area of a surface defined by the graph of a function.

Area of a surface defined by a graph: Suppose a surface S is given by z = f(x, y), (x, y) ∈ T ,
that is, S is the graph of the function f(x, y). (For example, S is the unit hemisphere defined by
z =

√
1− x2 − y2 where (x, y) lies in the circular region T : x2+y2 ≤ 1.) Then S can be considered

as a parametric surface defined by:

r(x, y) = xi + yj + f(x, y)k, (x, y) ∈ T.

In this case the surface area becomes

a(S) =
∫∫
T

√
1 + f2

x + f2
y dxdy. (2)

because ‖ ru × rv ‖ = ‖ −fxi− fyj + k ‖ =
√

1 + f2
x + f2

y .

Example 1: Let us find the area of the surface of the portion of the sphere x2 + y2 + z2 = 4a2

that lies inside the cylinder x2 + y2 = 2ax. Note that the sphere can be considered as a union of
two graphs: z = ±

√
4a2 − x2 − y2. We will use the formula given in (2) to evaluate the surface

area. Let z = f(x, y) =
√

4a2 − x2 − y2. Then

fx = −x√
4a2−x2−y2

, fy = −y√
4a2−x2−y2

and
√

1 + f2
x + f2

y =
√

4a2

4a2−x2−y2 .

Let T be the projection of the surface z = f(x, y) on the xy-plane (see Figure 1). Then, because
of the symmetry, the surface area is

a(S) = 2
∫∫
T

√
4a2

4a2−x2−y2 dxdy = 2× 2
π
2∫
0

2a cos θ∫
0

2ardrdθ√
4a2−r2

.

Remark: Since

‖ ru × rv ‖2 = ‖ ru ‖2‖ rv ‖2 sin2 θ = ‖ ru ‖2‖ rv ‖2 (1− cos2 θ) = ‖ ru ‖2‖ rv ‖2 −(ru · rv)2,

the formula given in (1) can be written as
a(S) =

∫∫
T

√
EG− F 2dudv (3)

where E = ru · ru, G = rv · rv and F = ru · rv.
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Example 2: Let us compute the area of the torus

x = (a + b cosφ) cos θ, y = (a + b cosφ) sin θ, z = b sinφ

where 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π, and a and b are constants such that 0 < b < a. Since the surface is
given in the parametric form with the parameters θ and φ, we can either use the formula given in
(1) or (3) and find the surface area. We do not have to know how the surface looks like. However
the surface is given in Figure 2 for understanding. Note that

rθ = −(a + b cosφ) sin θi + (a + b cosφ) cos θj + 0k, rv = −b sinφ cos θi− b sinφ sin θj + b cosφk.

This implies that E = ru ·ru = (a+ b cosφ)2, F = 0, G = b2 and hence
√

EG− F 2 = b(a+ b cosϕ).
Therefore, by (3), the surface area is

a(S) =
∫∫
T

b(a + b cosϕ)dθdφ =
∫ 2π
0

∫ 2π
0 b(a + b cosϕ)dθdφ = 4π2ab.

Note that this problem can also be solved using the Pappus theorem : a(S) = 2πρL = 2π · a · 2πb.

Surface Integrals: We will define the concept of integrals, called surface integrals, to the scalar
functions defined on parametric surfaces. Surface integrals are used to define center of mass and
moment of inertia of surfaces, and the surface integrals occur in several applications. We will not
get in to the applications of the surface integrals in this course. We will define the surface integrals
and see how to evaluate them.

Let S be a parametric surface defined by r(u, v), (u, v) ∈ T . Suppose ru and rv are continuous.
Let g : S → R be bounded. The surface integral of g over S, denoted by

∫∫
S

gdσ, is defined by

∫∫
S

g dσ =
∫∫
T

g(r(u, v)) ‖ ru × rv ‖ dudv =
∫∫
T

g(r(u, v))
√

EG− F 2 dudv (4)

provided the RHS double integral exists. If S is defined by z = f(x, y), then

∫∫
S

g dσ =
∫∫
T

g[x, y, f(x, y)]
√

1 + f2
x + f2

y dxdy. (5)

where T is the projection of the surface S over the xy-plane.

Example 3: Let S be the hemispherical surface z = (a2−x2−y2)1/2. Let us evaluate
∫∫
S

dσ
[x2+y2+(z+a)2]1/2 .

We first parameterize the surface S as follows:

S := r(θ, φ) = (a sinφ cos θ, a sinφ sin θ, a cosφ), 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

Simple calculation shows that
√

EG− F 2 = a2 sinφ and [x2+y2+(z+a)2]1/2 = 2a cos φ
2 . Therefore,

by equation (4), the surface integral is
∫∫
S

dσ
[x2+y2+(z+a)2]1/2 =

∫ 2π
0

∫ π/2
0

a2 sin φ

2a cos φ
2

dφdθ.

Example 4: Let us evaluate the surface integral
∫∫

S g dσ where g(x, y, z) = x+y+z and the surface
S is described by z = 2x+3y, x ≥ 0, y ≥ 0 and x+y ≤ 2. We use the formula given in (5) to evaluate
the surface integral. Note that the projection T of the surface is {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 2}.
The surface integral is

∫∫
S

g dσ =
∫∫
T

(x + y + z)
√

1 + f2
x + f2

y dxdy =
∫ 2
0

∫ 2−y
0 (x + y + 2x + 3y)

√
14 dxdy.

Remark: Under certain general conditions (we deal with surfaces satisfying such conditions) the
value of the surface integral is independent of the representation.


