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Lecture 37: Green’s Theorem (contd.); Curl; Divergence

We stated Green’s theorem for a region enclosed by a simple closed curve. We will see that Green’s
theorem can be generalized to apply to annular regions.

Suppose C1 and C2 are two circles as given in Figure 1. Consider the annular region (the region
between the two circles) D. Introduce the crosscuts AB and CD as shown in Figure 1. Consider
the simple closed curve C1 consisting of the upper half of C2, the upper half of C1, and the segments
AB and CD as shown in Figure 1. Similarly, consider the simple closed curve C2 consisting of the
lower half of C2, the lower half of C1, and the segments AB and CD. Let D1 and D2 be the regions
enclosed by C1 and C2.

Suppose we are given two continuously differentiable scalar valued functions M and N on an
open set containing the annular region D. Let us now apply Green’s theorem to each of the regions
D1 and D2 and add the two identities obtained from Green’s theorem. Since the line integrals
along the crosscuts cancel, we obtain

∫∫
D

(
∂N
∂x − ∂M

∂y

)
dxdy =

∮
C1

(Mdx + Ndy)− ∮
C2

(Mdx + Ndy). (1)

In the above equation, the line integrals are taken around the curves in the counterclockwise
directions. Note that when we apply Green’s theorem on D1, the line integral on the part of C2 is
taken along the clockwise direction. So a minus sign appears in the above equation.

We note that using the idea given above we can generalize Green’s theorem to apply to regions
enclosed by two or more simple closed curves similar to the one given in Figure 2.

Example 1: Let G be the region outside the unit circle which is bounded on left by the parabola
y2 = 2(x + 2) and on the right by the line x = 2. Use Green’s theorem to evaluate

∫
C1

xdy−ydx
x2+y2

where C1 is the outer boundary of G oriented counterclockwise.
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Solution: Let C2 be the unit circle (see Figure 3). If we take M = − y

x2 + y2
and N =

x

x2 + y2
,

then a simple calculation shows that Nx−My = 0. Therefore
∫∫

G(Nx−My)dx dy = 0. By applying
Green’s theorem on G (as we did above to obtain (1)), we get

∮
C1

(Mdx + Ndy) =
∮
C2

(Mdx + Ndy)

where the line integrals around both the curves are taken in the counterclockwise directions. We
have already seen in Problem 1 of the previous lecture that

∮
C2

(Mdx + Ndy) = 2π. ¤

Remark: If we take C2 be any circle centered at (0, 0) and C1 be any (piecewise smooth) simple
closed curve such that C2 lies in the interior of C1 as shown in Figure 4, by repeating the argument
given in the above solution, we can show that

∮
C1

(Mdx + Ndy) = 2π where M and N are given in
the previous example.

Problem: Evaluate
∫
C

xdy−ydx
x2+y2 along any simple closed curve C in the xy plane not passing through

the origin. Distinguish the cases where the region D enclosed by C: (a) includes the origin (b) does
not include the origin.

Solution: (a) First note that if we take M = − y

x2 + y2
and N =

x

x2 + y2
, then the functions are

not defined in the region D, hence one cannot apply Green’s theorem. Choose a circle Cr of radius
r centered at (0, 0) and Cr lies in the interior of C. Now one can apply Green’s theorem on the
region between these two curves. By the above remark, the value of the line integral is 2π.

(b) In this region we can apply Green’s theorem. Therefore
∫
C

Mdx+Ndy =
∫∫
D

(Nx−My)dx dy = 0.

Curl and divergence: In the previous two lectures we discussed Green’s theorem which expresses
a double integral (of certain type of function) over a plane region D as a line integral over the
boundary of D. We have also noted that this is a two dimensional analog of the second FTC. In
the next two lectures we will see two generalizations of Green’s theorem involving surface integrals
and triple integrals. These results are known as Stokes theorem and divergence theorem respectively.
They are also, essentially, analogs of the second FTC.

We first rewrite Green’s theorem into two different forms involving the concepts curl and di-
vergence and then generalize these forms to surface integrals and triple integrals. Let us define the
concepts curl and divergence.

Let F : R3 → R3 and F (x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k. Such functions are
called vector field.

Curl: The curl of F is another vector field denoted by curlF and defined by

curlF =
(

∂R
∂y − ∂Q

∂z

)
i +

(
∂P
∂z − ∂R

∂x

)
j +

(
∂Q
∂x − ∂P

∂y

)
k.

We rewrite the curl as follows: curlF =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
= ∇ × f. These expressions can be

easily remembered. However, while expanding the determinant it is understood that ∂
∂x times Q is

to be interpreted as ∂Q
∂x and the symbol ∇ has to be treated as if it is vector ∇ = ∂

∂x i + ∂
∂y j + ∂

∂zk.

Divergence: The divergence of F is a scalar valued function denoted by divF and is defined by

divF = ∂P
∂x + ∂Q

∂y + ∂R
∂z .

We can rewrite the div F as follows : divF = ∇ · F . Note that we interpret ∂
∂x times Q as ∂Q

∂x .


