Lecture 39: The Divergence Theorem

In the last few lectures we have been studying some results which relate an integral over a domain to another integral over the boundary of that domain. In this lecture we will study a result, called divergence theorem, which relates a triple integral to a surface integral where the surface is the boundary of the solid in which the triple integral is defined.

Divergence theorem is a direct extension of Green's theorem to solids in \mathbb{R}^{3}. We will now rewrite Green's theorem to a form which will be generalized to solids.

Let D be a plane region enclosed by a simple smooth closed curve C. Suppose $F(x, y)=$ $M(x, y) i+N(x, y) j$ is such that M and N satisfy the conditions given in Green's theorem. If the curve C is defined by $R(t)=x(t) i+y(t) j$ then the vector $\mathbf{n}=\frac{d y}{d s} i-\frac{d x}{d s} j$ is a unit normal to the curve C because the vector $T=\frac{d x}{d s} i+\frac{d y}{d s} j$ is a unit tangent to the curve C. By Green's theorem

$$
\oint_{C}(F \cdot \mathbf{n}) d s=\oint_{C} M d y-N d x=\iint_{D}\left(\frac{\partial M}{\partial x}-\left(-\frac{\partial N}{\partial y}\right)\right) d x d y=\iint_{D}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y .
$$

Since $\operatorname{div} F=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}$, Green's theorem takes the following form:

$$
\iint_{D} d i v F d x d y=\oint_{C}(F \cdot \mathbf{n}) d s
$$

We will now generalize this form of Green's theorem to a vector field F defined on a solid.
Theorem: Let D be a solid in \mathbb{R}^{3} bounded by piecewise smooth (orientable) surface S. Let $F(x, y, z)=P(x, y, z) i+Q(x, y, z) j+R(x, y, z) k$ be a vector field such that P, Q and R are continuous and have continuous first partial derivatives in an open set containing D. Suppose \mathbf{n} is the unit outward normal to the surface S. Then

$$
\iiint_{D} \operatorname{div} F d V=\iint_{S} F \cdot \mathbf{n} d \sigma .
$$

Remark: The divergence theorem can be extended to a solid that can be partitioned into a finite number of solids of the type given in the theorem. For example, the theorem can be applied to a solid D between two concentric spheres as follows. Split D by a plane and apply the theorem to each piece and add the resulting identities as we did in Green's theorem.

Example: Let D be the region bounded by the hemispehere : $x^{2}+y^{2}+(z-1)^{2}=9,1 \leq z \leq 4$ and the plane $z=1$ (see Figure 1). Let $F(x, y, z)=x i+y j+(z-1) k$. Let us evaluate the integrals given in the divergence theorem.

Triple integral: Note that $\operatorname{div} F=3$. Therefore,

$$
\iiint_{D} d i v F d V=\iiint_{D} 3 d V=3 \cdot \frac{2}{3} \pi 3^{3}=54 \pi .
$$

Surface integral: The solid D is bounded by a surface S consisting of two smooth surfaces S_{1} and S_{2} (see Figure 1). Therefore

$$
\iint_{S} F \cdot \mathbf{n} d \sigma=\iint_{S_{1}} F \cdot \mathbf{n}_{1} d \sigma+\iint_{S_{2}} F \cdot \mathbf{n}_{2} d \sigma .
$$

Surface integral over the hemisphere S_{1} : The surface S_{1} is given by:

$$
g(x, y, z)=x^{2}+y^{2}+(z-1)^{2}-9=0
$$

An unit normal is

$$
\mathbf{n}_{1}=\frac{\nabla g}{\|\nabla f\|}=\frac{x i+y j+(z-1 k}{\sqrt{x^{2}+y^{2}+(z-1)^{2}}}=\frac{x}{3} i+\frac{y}{3} j+\frac{(z-1)}{3} k
$$

This is expected because the position vector is a normal to the sphere. It is clear that the normal obtained is the outward normal. This implies that over S_{1},

$$
F \cdot \mathbf{n}_{1}=(x, y, z-1) \cdot\left(\frac{x}{3}, \frac{y}{3}, \frac{(z-1)}{3}\right)=3
$$

Therefore

$$
\iint_{S_{1}} F \cdot n_{1} d \sigma=3 \iint_{S_{1}} d \sigma=3 \cdot(\text { surface area })=3 \cdot 18 \pi=54 \pi
$$

Surface integral over the plane region S_{2} : Here the outward normal $\mathbf{n}_{2}=-k$. Therefore $F \cdot \mathbf{n}_{2}=$ $-z+1$. Since on $S_{2}, z=1$

$$
\iint_{S_{2}} F \cdot \mathbf{n}_{2} d \sigma=0
$$

Hence $\iint_{S} F \cdot \mathbf{n} d \sigma=54 \pi$.
Problem: Use the divergence theorem to evaluate the surface integral $\iint_{S} F \cdot n d \sigma$ where $F(x, y, z)=$ $\left(x+y, z^{2}, x^{2}\right)$ and S is the surface of the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z>0$ and \mathbf{n} is the outward normal to S.

Solution: First note that the surface is not closed. If we apply the divergence theorem to the solid $D:=x^{2}+y^{2}+z^{2} \leq 1, z>0$, we get

$$
\iiint_{D} \operatorname{div} F d V=\iint_{S} F \cdot \mathbf{n} d \sigma+\iint_{S_{1}} F \cdot \mathbf{n}_{1} d \sigma
$$

where $S_{1}:=x^{2}+y^{2}<1, z=0$ the base of the hemisphere (see Figure 2) and \mathbf{n}_{1} is the outward normal to S_{1} which is $-k$. Since $\operatorname{div} F=1$, the volume integral in the above equation is the volume of the hemisphere, $\frac{2 \pi}{3}$. Therefore

$$
\iint_{S} F \cdot \mathbf{n} d \sigma=\frac{2 \pi}{3}-\iint_{S_{1}} F \cdot-k d \sigma=\frac{2 \pi}{3}+\iint_{S_{1}} x^{2} d \sigma
$$

which is relatively easier to evaluate. To evaluate the surface integral over S_{1}, consider $S_{1}=$ $(\cos \theta, r \sin \theta), 0 \leq r<1,0 \leq \theta \leq 2 \pi$. Then

$$
\iint_{S_{1}} x^{2} d \sigma=\int_{0}^{1} \int_{0}^{2 \pi} r^{2} \cos ^{2} \theta r d \theta d r=\int_{0}^{1} r^{3} \pi d r=\frac{\pi}{4}
$$

Therefore the requied integral is

$$
\iint_{S} F \cdot \mathbf{n} d \sigma=\frac{2 \pi}{3}+\frac{\pi}{4}=\frac{11 \pi}{12}
$$

