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Lecture 5 : Existence of Maxima, Intermediate Value Property, Differentiabilty

Let f be defined on a subset S of R. An element x0 ∈ S is called a maximum for f on S if
f(x0) ≥ f(x) for all x ∈ S and in this case f(x0) is the maximum value f . Similarly, x0 is called a
minimum for f on S if f(x0) ≤ f(x) for all x ∈ S.

The following theorem provides an existence criterion for maximum and minimum.

Theorem 5.1: Let f be continuous on [a, b]. Then there exist x0, y0 ∈ [a, b] such that x0 is a
maximum for f on [a, b] and y0 is a minimum for f on [a, b].

Proof (*): By Theorem 4.3, f is bounded on [a, b]. Let M be the least upper bound of f([a, b]) (:=
{f(x) : x ∈ [a, b]}). Then there exists a sequence {f(xn)} in f([a, b]) such that f(xn) → M . Since
{xn} is a bounded sequence in [a, b], it has a convergent subsequence, say xnk

→ x0 ∈ [a, b]. By
the continuity of f we have f(x0) = M . Hence x0 is a maximum for f on [a, b].

The proof for the existence of a minimum is similar. ¤

Consider a function f : [−1, 1] → R such that f is continuous and satisfies f(−1) < 0 and
f(1) > 0. Intuitively, we feel that the graph of f should cross the x-axis between −1 and 1; i.e.,
there is some x0 ∈ [−1, 1] such that f(x0) = 0. This motivates us to state the following theorem.

Theorem 5.2 (Intermediate Value Property) : Let f be continuous on [a, b], and let f(a) <
s < f(b) (s is a value which is intermediate between two values taken by f). Then there exists x
such that a < x < b and f(x) = s.

Proof (*): Let S = {x ∈ [a, b] : f(x) ≤ s}. Since a ∈ S, we have S 6= ∅ and S is bounded
above by b. Let c be the least upper bound of S. We claim that f(c) = s. Since c is the least
upper bound of S, there exists a sequence {xn} from S such that xn → c. By the continuity of f,
f(xn) → f(c). Since f(xn) ≤ s for all n, we have f(c) ≤ s. Note that b > c. Consider the sequence
yn = c + (b− c)/n. As yn → c, we get f(yn) → f(c). Since f(yn) > s for all n, we have f(c) ≥ s.
It follows that f(c) = s. ¤

Problem 1 : Show that the equation (1− x)cosx = sinx has at least one solution in (0, 1).

Solution: Set f(x) = (1−x)cosx−sinx. Then f(0) = 1 and f(1) = −sin1 < 0. By the intermediate
value property there is x0 ∈ (0, 1) such that f(x0) = 0.

Problem 2 : Let f : [0, 1] → [0, 1] be continuous. Show that f has a fixed point in [0, 1]; that is,
there exists x0 ∈ [0, 1] such that f(x0) = x0.

Solution: Define the function g(x) = f(x)−x on [0, 1]. Then f is continuous, g(0) ≥ 0 and g(1) ≤ 0.
Use the intermediate value property (IVP).

Problem 3 : Let f : [a, b] → R be a continuous function. Show that the range {f(x) : x ∈ [a, b]} is
a closed and bounded interval.

Solution: Since f is a continuous function, there exist x0, y0 ∈ [a, b] such that f(x0) = m = inff
and f(y0) = M = supf . Suppose x0 < y0. By the IVP, for every α ∈ [m,M ] there exists x ∈ [x0, y0]
such that f(x) = α. Hence f([a, b]) = [m,M ].

Problem 4 : Show that a polynomial of odd degree has at least one real root.

Solution: Let p(x) = anxn + an−1x
n−1 + · · · + a1x + a0, an 6= 0 and n be odd. Then p(x) =



2

xn(an + an−1

x + · · ·+ a1
xn−1 + a0

xn ). If an > 0, then p(x) →∞ as x →∞ and p(x) → −∞ as x → −∞.
Thus by the IVP, there exists x0 such that p(x0) = 0. Similar argument for an < 0.

Differentiation : We now deal with derivatives, an important concept of differential calculus. The
reader must be familiar with this from elementary calculus. For example, the geometric problem
of finding the tangent line to a curve at a given point leads to the notion of derivative.

Definition : Let I be an interval which is not a singleton and let f be a function defined on I. A
function f is said to be differentiable at x ∈ I if the limit

lim
h→0

f(x + h)− f(x)
h

exists.

It is understood that the limit is taken for x + h ∈ I; thus if x is a left end point of I then we
only consider h > 0. If the above limit exists, it is called the derivative of f at x and is denoted by
f ′(x). If f is differentiable at each x ∈ I, then f ′ is a function on I.

It is clear that if f is differentiable at c ∈ I, then

f ′(c) = lim
x→c

f(x)− f(c)
x− c

.

Now we prove that differentiability implies continuity.

Theorem 5.3 : Let f be defined on an interval I. If f is differentiable at a point c ∈ I, then f is
continuous at c.

Proof: As x → c, x 6= c, we have f(x)− f(c) = f(x)−f(c)
x−c (x− c) → f ′(x) · 0 = 0. ¤

Problem 5: Show that the function f(x) defined by f(x) = x2sin 1
x , when x 6= 0 and f(0) = 0 is

differentiable at all x ∈ R. Also show that the function f ′(x) is not continuous at x = 0.

Solution : Note that f ′(0) = limx→0
x2sin 1

x
x = 0. At other points the function is differentiable be-

cause the function is a product of two differentiable functions ( here note that sin 1
x is a composition

of two functions) and f ′(x) = 2x sin 1
x − cos 1

x , for x 6= 0. Since lim
h→0

cos 1
h does not exist, f ′(x) is

not continuous at 0.

Problem 6: If f : R→ R is differentiable at c ∈ R, show that f ′(c) = lim(n{f(c + 1/n)− f(c)}).
However, show by example that the existence of the limit of this sequence does not imply the existence
of f ′(c).

Solution : Since f ′(c) exists, by taking h = 1/n in the definition of the differentiability we get that
f ′(c) = lim(n{f(c + 1/n)− f(c)}).

Let f : R → R be defined by f(x) = x2 for x rational, f(x) = 1 for x irrational. Then the
function is not even continuous at 0; hence it cannot be differentiable at 0. However, lim(n{f(c +
1/n)− f(c)}) exists at c = 0.

Problem 7: Let f(0) = 0 and f ′(0) = 1. For a positive integer k, show that

lim
x→0

1
x

{
f(x) + f(

x

2
) + f(

x

3
) + ... + f(

x

k
)
}

= 1 +
1
2

+ ... +
1
k
.

Solution : lim
x→0

1
x(f(x) + f(x

2 ) + f(x
3 ) + · · ·+ f(x

k )) =

lim
x→0

(f(x)−f(0)
x + 1

2

f(x
2
)−f(0)
x
2

+ · · ·+ 1
k

f(x
k
)−f(0)
x
k

) = 1 + 1
2 + · · ·+ 1

k .


