The reader must be familiar with the classical maxima and minima problems from calculus. For example, the graph of a differentiable function has a horizontal tangent at a maximum or minimum point. This is not quite accurate as we will see.

Definition : Let $f: I \rightarrow \mathbb{R}, I$ an interval. A point $x_{0} \in I$ is a local maximum of f if there is a $\delta>0$ such that $f(x) \leq f\left(x_{0}\right)$ whenever $x \in I \cap\left(x_{0}-\delta, x_{0}+\delta\right)$. Similarly, we can define local minimum.

Theorem 6.1 : Suppose $f:[a, b] \rightarrow \mathbb{R}$ and suppose f has either a local maximum or a local minimum at $x_{0} \in(a, b)$. If f is differentiable at x_{0} then $f^{\prime}\left(x_{0}\right)=0$.

Proof: Suppose f has a local maximum at $x_{0} \in(a, b)$. For small (enough) $h, f\left(x_{0}+h\right) \leq f\left(x_{0}\right)$. If $h>0$ then

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \leq 0 .
$$

Similarly, if $h<0$, then

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \geq 0 .
$$

By elementary properties of the limit, it follows that $f^{\prime}\left(x_{0}\right)=0$.
We remark that the previous theorem is not valid if x_{0} is a or b. For example, if we consider the function $f:[0,1] \rightarrow \mathbb{R}$ such that $f(x)=x$, then f has maximum at 1 but $f^{\prime}(x)=1$ for all $x \in[0,1]$.

The following theorem is known as Rolle's theorem which is an application of the previous theorem.

Theorem 6.2: Let f be continuous on $[a, b], a<b$, and differentiable on (a, b). Suppose $f(a)=$ $f(b)$. Then there exists c such that $c \in(a, b)$ and $f^{\prime}(c)=0$.

Proof: If f is constant on $[a, b]$ then $f^{\prime}(c)=0$ for all $c \in[a, b]$. Suppose there exists $x \in(a, b)$ such that $f(x)>f(a)$. (A similar argument can be given if $f(x)<f(a))$. Then there exists $c \in(a, b)$ such that $f(c)$ is a maximum. Hence by the previous theorem, we have $f^{\prime}(c)=0$.

Problem 1: Show that the equation $x^{13}+7 x^{3}-5=0$ has exactly one (real) root.
Solution : Let $f(x)=x^{13}+7 x^{3}-5$. Then $f(0)<0$ and $f(1)>0$. By the IVP there is at least one positive root of $f(x)=0$. If there are two distinct positive roots, then by Rolle's theorem there is some $x_{0}>0$ such that $f^{\prime}\left(x_{0}\right)=0$ which is not true. Moreover, observe that $f(x)<0$ for $x<0$.

Problem 2: Let f and g be functions, continuous on $[a, b]$, differentiable on (a, b) and let $f(a)=$ $f(b)=0$. Prove that there is a point $c \in(a, b)$ such that $g^{\prime}(c) f(c)+f^{\prime}(c)=0$.

Solution : Define $h(x)=f(x) e^{g(x)}$. Here, $h(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Since $h(a)=h(b)=0$, by Rolle's theorem, there exists $c \in(a, b)$ such that $h^{\prime}(c)=0$.

Since $h^{\prime}(x)=\left[f^{\prime}(x)+g^{\prime}(x) f(x)\right] e^{g(x)}$ and $e^{\alpha} \neq 0$ for any $\alpha \in \mathbb{R}$, we see that $f^{\prime}(c)+g^{\prime}(c) f(c)=0$.
A geometric interpretation of the above theorem can be given as follows. If the values of a differentiable function f at the end points a and b are equal then somewhere between a and b there is a horizontal tangent. It is natural to ask the following question. If the value of f at the end points a and b are not the same, is it true that there is some $c \in[a, b]$ such that the tangent line at c is parallel to the line connecting the endpoints of the curve? The answer is yes and this is essentially the Mean Value Theorem.

Theorem 6.3: (Mean Value Theorem) Let f be continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Proof: Let

$$
g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)
$$

Then $g(a)=g(b)=f(a)$. The result follows by applying Rolle's Theorem to g.
The mean value theorem is an important result in calculus and has some important applications relating the behaviour of f and f^{\prime}. For example, if we have a property of f^{\prime} and we want to see the effect of this property on f, we usually try to apply the mean value theorem. Let us see some examples.

Example 1 : Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. Then f is constant if and only if $f^{\prime}(x)=0$ for every $x \in[a, b]$.

Proof : Suppose that f is constant, then from the definition of $f^{\prime}(x)$ it is immediate that $f^{\prime}(x)=0$ for every $x \in[a, b]$.

To prove the converse, let $a<x \leq b$. By the mean value theorem there exists $c \in(a, x)$ such that $f(x)-f(a)=f^{\prime}(c)(x-a)$. Since $f^{\prime}(c)=0$, we conclude that $f(x)=f(a)$, that is f is constant. (If we try to prove the converse directly from the definition of $f^{\prime}(x)$ we will be in trouble.)

Example 2 : Suppose f is continuous on $[a, b]$ and differentiable on (a, b).
(i) If $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then f is one-one (i.e, $f(x) \neq f(y)$ whenever $\left.x \neq y\right)$.
(ii) If $f^{\prime}(x) \geq 0$ (resp. $f^{\prime}(x)>0$) for all $x \in(a, b)$ then f is increasing (resp. strictly increasing) on $[a, b]$. (We have a similar result for decreasing functions.)

Proof : Apply the mean value theorem as we did in the previous example. (Note that f can be one-one but f^{\prime} can be 0 at some point, for example take $f(x)=x^{3}$ and $x=0$.)

Problem 3: Use the mean value theorem to prove that $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$.
Solution : Let $x, y \in \mathbb{R}$. By the mean value theorem $\sin x-\sin y=\operatorname{cosc}(x-y)$ for some c between x and y. Hence $|\sin x-\sin y| \leq|x-y|$.

Problem 4 : Let f be twice differentiable on $[0,2]$. Show that if $f(0)=0, f(1)=2$ and $f(2)=4$, then there is $x_{0} \in(0,2)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.

Solution : By the mean value theorem there exist $x_{1} \in(0,1)$ and $x_{2} \in(1,2)$ such that

$$
f^{\prime}\left(x_{1}\right)=f(1)-f(0)=2 \quad \text { and } \quad f^{\prime}\left(x_{2}\right)=f(2)-f(1)=2
$$

Apply Rolle's theorem to f^{\prime} on $\left[x_{1}, x_{2}\right]$.
Problem 5 : Let $a>0$ and $f:[-a, a] \rightarrow \mathbb{R}$ be continuous. Suppose $f^{\prime}(x)$ exists and $f^{\prime}(x) \leq 1$ for all $x \in(-a, a)$. If $f(a)=a$ and $f(-a)=-a$, then show that $f(x)=x$ for every $x \in(-a, a)$.

Solution : Let $g(x)=f(x)-x$ on $[-a, a]$. Note that $g^{\prime}(x) \leq 0$ on $(-a, a)$. Therefore, g is decreasing. Since $g(a)=g(-a)=0$, we have $g=0$.

This problem can also be solved by applying the MVT for g on $[-a, x]$ and $[x, a]$.

