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Lecture 6 : Rolle’s Theorem, Mean Value Theorem

The reader must be familiar with the classical maxima and minima problems from calculus. For
example, the graph of a differentiable function has a horizontal tangent at a maximum or minimum
point. This is not quite accurate as we will see.

Definition : Let f : I → R, I an interval. A point x0 ∈ I is a local maximum of f if there is
a δ > 0 such that f(x) ≤ f(x0) whenever x ∈ I ∩ (x0 − δ, x0 + δ). Similarly, we can define local
minimum.

Theorem 6.1 : Suppose f : [a, b] → R and suppose f has either a local maximum or a local
minimum at x0 ∈ (a, b). If f is differentiable at x0 then f ′(x0) = 0.

Proof: Suppose f has a local maximum at x0 ∈ (a, b). For small (enough) h, f(x0 + h) ≤ f(x0).
If h > 0 then

f(x0 + h)− f(x0)
h

≤ 0.

Similarly, if h < 0, then
f(x0 + h)− f(x0)

h
≥ 0.

By elementary properties of the limit, it follows that f ′(x0) = 0. ¤

We remark that the previous theorem is not valid if x0 is a or b. For example, if we consider the
function f : [0, 1] → R such that f(x) = x, then f has maximum at 1 but f ′(x) = 1 for all x ∈ [0, 1].

The following theorem is known as Rolle’s theorem which is an application of the previous
theorem.

Theorem 6.2 : Let f be continuous on [a, b], a < b, and differentiable on (a, b). Suppose f(a) =
f(b). Then there exists c such that c ∈ (a, b) and f ′(c) = 0.

Proof: If f is constant on [a, b] then f ′(c) = 0 for all c ∈ [a, b]. Suppose there exists x ∈ (a, b) such
that f(x) > f(a). (A similar argument can be given if f(x) < f(a)). Then there exists c ∈ (a, b)
such that f(c) is a maximum. Hence by the previous theorem, we have f ′(c) = 0. ¤

Problem 1 : Show that the equation x13 + 7x3 − 5 = 0 has exactly one (real) root.

Solution : Let f(x) = x13 + 7x3− 5. Then f(0) < 0 and f(1) > 0. By the IVP there is at least one
positive root of f(x) = 0. If there are two distinct positive roots, then by Rolle’s theorem there is
some x0 > 0 such that f ′(x0) = 0 which is not true. Moreover, observe that f(x) < 0 for x < 0.

Problem 2 : Let f and g be functions, continuous on [a, b], differentiable on (a, b) and let f(a) =
f(b) = 0. Prove that there is a point c ∈ (a, b) such that g′(c)f(c) + f ′(c) = 0.

Solution : Define h(x) = f(x)eg(x). Here, h(x) is continuous on [a, b] and differentiable on (a, b).
Since h(a) = h(b) = 0, by Rolle’s theorem, there exists c ∈ (a, b) such that h′(c) = 0.

Since h′(x) = [f ′(x)+g′(x)f(x)]eg(x) and eα 6= 0 for any α ∈ R, we see that f ′(c)+g′(c)f(c) = 0.

A geometric interpretation of the above theorem can be given as follows. If the values of a
differentiable function f at the end points a and b are equal then somewhere between a and b there
is a horizontal tangent. It is natural to ask the following question. If the value of f at the end
points a and b are not the same, is it true that there is some c ∈ [a, b] such that the tangent line
at c is parallel to the line connecting the endpoints of the curve? The answer is yes and this is
essentially the Mean Value Theorem.
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Theorem 6.3 : (Mean Value Theorem) Let f be continuous on [a, b] and differentiable on
(a, b). Then there exists c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Proof: Let
g(x) = f(x)− f(b)− f(a)

b− a
(x− a).

Then g(a) = g(b) = f(a). The result follows by applying Rolle’s Theorem to g. ¤

The mean value theorem is an important result in calculus and has some important applications
relating the behaviour of f and f ′. For example, if we have a property of f ′ and we want to see
the effect of this property on f , we usually try to apply the mean value theorem. Let us see some
examples.

Example 1 : Let f : [a, b] → R be differentiable. Then f is constant if and only if f ′(x) = 0 for
every x ∈ [a, b].

Proof : Suppose that f is constant, then from the definition of f ′(x) it is immediate that f ′(x) = 0
for every x ∈ [a, b].

To prove the converse, let a < x ≤ b. By the mean value theorem there exists c ∈ (a, x) such
that f(x)−f(a) = f ′(c)(x−a). Since f ′(c) = 0, we conclude that f(x) = f(a), that is f is constant.
(If we try to prove the converse directly from the definition of f ′(x) we will be in trouble.) ¤

Example 2 : Suppose f is continuous on [a, b] and differentiable on (a, b).

(i) If f ′(x) 6= 0 for all x ∈ (a, b), then f is one-one (i.e, f(x) 6= f(y) whenever x 6= y).

(ii) If f ′(x) ≥ 0 (resp. f ′(x) > 0) for all x ∈ (a, b) then f is increasing (resp. strictly increasing)
on [a, b]. (We have a similar result for decreasing functions.)

Proof : Apply the mean value theorem as we did in the previous example. (Note that f can be
one-one but f ′ can be 0 at some point, for example take f(x) = x3 and x = 0.)

Problem 3 : Use the mean value theorem to prove that | sinx− siny | ≤ | x−y | for all x, y ∈ R.

Solution : Let x, y ∈ R. By the mean value theorem sinx−siny = cosc (x−y) for some c between
x and y. Hence | sinx− siny | ≤ | x− y |.

Problem 4 : Let f be twice differentiable on [0, 2]. Show that if f(0) = 0, f(1) = 2 and f(2) = 4,
then there is x0 ∈ (0, 2) such that f ′′(x0) = 0.

Solution : By the mean value theorem there exist x1 ∈ (0, 1) and x2 ∈ (1, 2) such that

f ′(x1) = f(1)− f(0) = 2 and f ′(x2) = f(2)− f(1) = 2.

Apply Rolle’s theorem to f ′ on [x1, x2].

Problem 5 : Let a > 0 and f : [−a, a] → R be continuous. Suppose f ′(x) exists and f ′(x) ≤ 1 for
all x ∈ (−a, a). If f(a) = a and f(−a) = −a, then show that f(x) = x for every x ∈ (−a, a).

Solution : Let g(x) = f(x)−x on [−a, a]. Note that g′(x) ≤ 0 on (−a, a). Therefore, g is decreasing.
Since g(a) = g(−a) = 0, we have g = 0.

This problem can also be solved by applying the MVT for g on [−a, x] and [x, a].


