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Lecture 10 : Taylor’s Theorem

In the last few lectures we discussed the mean value theorem (which basically relates a function
and its derivative) and its applications. We will now discuss a result called Taylor’s Theorem which
relates a function, its derivative and its higher derivatives. We will see that Taylor’s Theorem is
an extension of the mean value theorem. Though Taylor’s Theorem has applications in numerical
methods, inequalities and local maxima and minima, it basically deals with approximation of
functions by polynomials. To understand this type of approximation let us start with the linear
approximation or tangent line approximation.

Linear Approximation : Let f be a function, differentiable at x0 ∈ R. Then the linear polynomial

P1(x) = f(x0) + f ′(x0)(x− x0)

is the natural linear approximation to f(x) near x0. Geometrically, this is clear because we approx-
imate the curve near (x0, f(x0)) by the tangent line at (x0, f(x0)). The following result provides
an estimation of the size of the error E1(x) = f(x)− P1(x).

Theorem 10.1: (Extended Mean Value Theorem) If f and f ′ are continuous on [a, b] and
f ′ is differentiable on (a, b) then there exists c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b− a) +
f ′′(c)

2
(b− a)2.

Proof (*): This result is a particular case of Taylor’s Theorem whose proof is given below.

If we take b = x and a = x0 in the previous result, we obtain that

| E1(x) | = | f(x)− P1(x) | ≤ M

2
(x− x0)2

where M = sup{| f ′′(t) |: t ∈ [x0, x]}. The above estimate gives an idea “how good the approxima-
tion is i.e., how fast the error E1(x) goes to 0 as x → x0”.

Naturally, one asks the question: Can we get a better estimate for the error if we use approx-
imation by higher order polynomials. The answer is yes and this is what Taylor’s theorem talks
about.

There might be several ways to approximate a given function by a polynomial of degree ≥ 2,
however, Taylor’s theorem deals with the polynomial which agrees with f and some of its derivatives
at a given point x0 as P1(x) does in case of the linear approximation.

The polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2 + ... +

f (n)(x0)
n!

(x− x0)n

has the property that Pn(x0) = f(x0) and P (k)(x0) = f (k)(x0) for all k = 1, 2, .., n where f (k)(x0)
denotes the k th derivative of f at x0. This polynomial is called Taylor’s polynomial of degree n
(with respect to f and x0).

The following theorem called Taylor’s Theorem provides an estimate for the error function
En(x) = f(x)− Pn(x).

Theorem 10.2: Let f : [a, b] → R, f, f ′, f ′′, ..., f (n−1) be continuous on [a, b] and suppose f (n)

exists on (a, b). Then there exists c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b− a) +
f ′′(a)

2!
(b− a)2 + ... +

f (n−1)(a)
(n− 1)!

(b− a)n−1 +
f (n)(c)

n!
(b− a)n.
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Proof (*): Define

F (x) = f(b)− f(x)− f ′(x)(b− x)− f ′′(x)
2!

(b− x)2 − ...− f (n−1)(x)
(n− 1)!

(b− x)n−1.

We will show that F (a) = (b−a)n

n! f (n)(c) for some c ∈ (a, b), which will prove the theorem. Note
that

F ′(x) = − f (n)(x)
(n− 1)!

(b− x)n−1. (1)

Define g(x) = F (x) − ( b−x
b−a )nF (a). It is easy to check that g(a) = g(b) = 0 and hence by Rolle’s

theorem there exists some c ∈ (a, b) such that

g′(c) = F ′(c) +
n(b− c)n−1

(b− a)n
F (a) = 0. (2)

From (1) and (2) we obtain that f (n)(c)
(n−1)! (b − c)n−1 = n(b−c)n−1

(b−a)n F (a). This implies that F (a) =
(b−a)n

n! f (n)(c). This proves the theorem. ¤

Let us see some applications.

Problem 1 : Show that 1− 1
2x2 ≤ cosx for all x ∈ R.

Solution : Take f(x) = cosx and x0 = 0 in Taylor’s Theorem. Then there exists c between 0 and
x such that

cosx = 1− 1
2
x2 +

sinc

6
x3.

Verify that the term sinc
6 x3 ≥ 0 when | x |≤ π. If | x | ≥ π then 1− 1

2x2 < −3 ≤ cosx. Therefore
the inequality holds for all x ∈ R.

Problem 2 : Let x0 ∈ (a, b) and n ≥ 2. Suppose f ′, f ′′, .., f (n) are continuous on (a, b) and
f ′(x0) = .. = f (n−1)(x0) = 0. Then, if n is even and f (n)(x0) > 0, then f has a local minimum at
x0. Similarly, if n is even and f (n)(x0) < 0, then f has a local maximum at x0.

Solution : By Taylor’s theorem, for x ∈ (a, b) there exists a c between x and x0 such that

f(x) = f(x0) +
f (n)(c)

n!
(x− x0)n. (3)

Let f (n)(x0) > 0 and n is even. Then by the continuity of f (n) there exists a neighborhood U of x0

such that f (n)(x) > 0 for all x ∈ U . This implies that f (n)(c)
n! (x− x0)n ≥ 0 whenever c ∈ U . Hence

by equation (3), f(x) ≥ f(x0) for all x ∈ U which implies that x0 is a local minimum.

Problem 3 : Using Taylor’s theorem, for any k ∈ N and for all x > 0, show that

x− 1
2
x2 + · · ·+ 1

2k
x2k < log(1 + x) < x− 1

2
x2 + · · ·+ 1

2k + 1
x2k+1.

Solution : By Taylor’s theorem, there exists c ∈ (0, x) s.t.

log(1 + x) = x− 1
2
x2 + ... +

(−1)n−1

n
xn +

(−1)n

n + 1
xn+1

(1 + c)n+1
.

Note that, for any x > 0, (−1)n

n+1
xn+1

(1+c)n+1 > 0 if n = 2k and < 0 if n = 2k + 1.


