Uniform Continuity

Let us first review the notion of continuity of a function. Let $A \subset \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ be continuous. Then for each $x_{0} \in A$ and for given $\varepsilon>0$, there exists a $\delta\left(\varepsilon, x_{0}\right)>0$ such that $x \epsilon A$ and $\left|x-x_{0}\right|<\delta$ imply $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. We emphasize that δ depends, in general, on ϵ as well as the point x_{0}. Intuitively this is clear because the function f may change its values rapidly near certain points and slowly near other points.

For example consider $f(x)=1 / x$. The following two figures explain that for a given ε - neighbourhood about each of $f(2)=1 / 2$ and $f(1 / 2)=2$, the corresponding maximum values of δ for the points 2 and $1 / 2$ are seen to be different.

We also see that as x_{0} tends to 0 , the permissible values of δ tends to 0 .
Example 1: Consider the function $f: I R \rightarrow I R$ defined by $f(x)=x^{2}$ for all $x \in \mathbb{R}$. Suppose $\varepsilon=2$ and $x_{0}=1$. Then $f(x)-f\left(x_{0}\right)=x^{2}-1$. If $|x-1|<1 / 2$ then $1 / 2<x<3 / 2$ and so $-3 / 4<x^{2}-1<5 / 4$. Therefore with $\varepsilon=2$ and $x_{0}=1$, we have $\left|x-x_{0}\right|<1 / 2$ imply $\left|f(x)-f\left(x_{0}\right)\right|<2$. So $\delta=1 / 2$ works in this case.

We will now illustrate that the previous statement is not true for $x_{0}=10$. For, when $x_{0}=10$ we have $f(x)-f\left(x_{0}\right)=x^{2}-100$. If $x=10+1 / 4$ then $\left|x-x_{0}\right|<1 / 2$ but $f(x)-f\left(x_{0}\right)=(10+1 / 4)^{2}-10^{2}>2$. This shows that even though f is continuous at the point 10 as well at the point 1 , for $\varepsilon=2$ the number $\delta=1 / 2$ works for $x_{0}=1$ but not for $x_{0}=10$.

One may ask that for this f, corresponding to $\varepsilon=2$, there might be some δ (possibly depending on ε) that will work for all $x \in I R$. We will show that the answer to this question is negative. Suppose there is a $\delta>0$ such that for every $x \in I R$, we have:

$$
|x-y|<\delta \text { imply }|f(x)-f(y)|<2 .
$$

Let $x \in I R$ and choose $y=x+\delta / 2$. Since $|x-y|<\delta$, by assumption, we have

$$
\begin{aligned}
|f(x)-f(y)| & =|x-y||x+y| \\
& =\delta / 2|2 x+\delta / 2| \\
& =\left|\delta x+\delta^{2} / 4\right|<2
\end{aligned}
$$

This implies that $\delta x<2$ for all $x \in \mathbb{R}^{+}$, the set of positive real numbers. This is clearly false.

The next example shows that it is not always the case that δ is dependent upon $x_{0} \epsilon A$.
Example 2: Let $A=\{x \in I R: x \geq 0\}=[0, \infty) \subset I R$ and $f: A \rightarrow I R$ be defined by

$$
f(x)=\sqrt{x} .
$$

It is easy to verify that for all $x, y \in A,|f(x)-f(y)|=|\sqrt{x}-\sqrt{y}| \leq \sqrt{|x-y|}$. Therefore for given $\varepsilon>0$ if we choose $\delta=\varepsilon^{2}$. We have :

$$
x, y \in A \text { and }|x-y|<\delta \text { imply }|f(x)-f(y)|<\varepsilon .
$$

The preceding discussion motivates the following definition.
Definition: A function $f: A \rightarrow \mathbb{R}$, where $A \subset \mathbb{R}$ is said to be uniformly continuous on A if given $\varepsilon>0$, there exists $\delta>0$ such that whenever $x, y \in A$ and $|x-y|<\delta$, we have $|f(x)-f(y)|<\varepsilon$

Clearly uniform continuity implies continuity but the converse is not always true as seen from Example 1.

In the previous definition we also emphasise that the uniform continuity of f is dependent upon the function f and on the set A. For example, we had seen in Example 1 that the function defined by $f(x)=x^{2}$ is not uniformly continuous on $I R$ or (a, ∞) for all $a \in \mathbb{R}$. Let $A=[a, b], a>0$ and $\varepsilon>0$. Then

$$
|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|x-y||x+y| \leq 2 b|x-y|
$$

Hence for $\delta=\frac{\varepsilon}{2 b}$. We have

$$
x, y \in I R,|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon
$$

Therefore f is uniformly continuous on $[a, b]$.
Infact we illustrate that every continuous function on any closed bounded interval is uniformly continuous.

Let us formulate an equivalent condition to saying that f is not uniformly continuous on A.

Let $A \subset \mathbb{R}$ and let $f: A \rightarrow \mathbb{R}$. Then the following conditions are equivalent.
(i) f is not uniformly condtion on A.
(ii) There exists an $\epsilon_{0}>0$ such that for every $\delta>0$ there are points x, y in A such that $|x-y|<\delta$ and $|f(x)-f(y)| \geq \varepsilon_{0}$.
(iii) There exist an $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in A such that $\lim \left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0}$ for all $n \in N$.

Example 3: We can apply this result to show that $g(x):=\frac{1}{x}$ is not uniformly continuous on $A:=\{x \in \mathbb{R}: x>0\}$. For if $x_{n}:=\frac{1}{n}$ and $y_{n}:=\frac{1}{n+1}$, then we have $\lim \left(x_{n}-y_{n}\right)=0$ but $\left|g\left(x_{n}\right)-g\left(y_{n}\right)\right|=1$ for all $n \in N$.

As an immediate consequence of the previous observation, we have the following result which provides us with a sequential criterion for uniform continuity.

Prososition 1: A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on a set $A \subset I R$ if and only if whenever sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ of points A are such that the sequence $\left(x_{n}-y_{n}\right)$ converges to 0 , the sequence $f\left(x_{n}\right)-f\left(y_{n}\right)$ converges to 0 .

Theorem 2: Let $a<b$ and $f:[a, b] \rightarrow I R$ be continuous. Then f is uniformly continuous.
Proof: Assume the contrary that f is not uniformly continuous. Hence there exist an $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in $[a, b]$ such that $x_{n}-y_{n} \rightarrow 0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon_{0}$ for all $n \in N$. Since $\left(x_{n}\right)$ is in $[a, b]$, by Theorem 2.8, there exists a subsequence $\left(x_{n i}\right)$ of $\left(x_{n}\right)$ such that $x_{n i} \rightarrow x_{0} \in[a, b]$. Hence $y_{n i} \rightarrow x_{0}$. By continuity of f, it follows that $f\left(x_{n i}\right) \rightarrow f\left(x_{0}\right)$ and $f\left(y_{n i}\right) \rightarrow f\left(x_{0}\right)$. Therefore $\left|f\left(x_{n i}\right)-f\left(y_{n i}\right)\right| \rightarrow 0$. This contradicts the fact that $\left|f\left(x_{n i}\right)-f\left(y_{n_{i}}\right)\right| \geq \varepsilon_{0}$. Therefore f is uniformly continuous.

Problems :

1. Let $A \subset \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ be uniformly continuous on A. Show that if $\left(x_{n}\right)$ is a Cauchy sequence in A then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in $I R$.
2. Using the previous problem show that the following functions are not uniformly continuous.
(i) $f(x)=\frac{1}{x^{2}}, x \in(0,1)$
(ii) $\quad f(x)=\tan x, x \in\left[0, \frac{\pi}{2}\right)$
