Practice problems 1: The Real Number System - 1. Let $x_0 \in \mathbb{R}$ and $x_0 \geq 0$. If $x_0 < \epsilon$ for every positive real number ϵ , show that $x_0 = 0$. - 2. Prove Bernoulli's inequality: for x > -1, $(1+x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$. - 3. Let E be a non-empty bounded above subset of \mathbb{R} . If α and β are supremums of E, show that $\alpha = \beta$. - 4. Suppose that α and β are any two real numbers satisfying $\alpha < \beta$. Show that there exists $n \in \mathbb{N}$ such that $\alpha < \alpha + \frac{1}{n} < \beta$. Similarly, show that for any two real numbers s and t satisfying s < t, there exists $n \in \mathbb{N}$ such that $s < t \frac{1}{n} < t$. - 5. Let A be a non-empty subset of \mathbb{R} and $\alpha \in \mathbb{R}$ be an upper bound of A. Suppose for every $n \in \mathbb{N}$, there exists $a_n \in A$ such that $a_n \geq \alpha \frac{1}{n}$. Show that α is the supremum of A. - 6. Find the supremum and infimum of the set $\left\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\right\}$. - 7. Let E be a non-empty bounded above subset of \mathbb{R} . If $\alpha \in \mathbb{R}$ is an upper bound of E and $\alpha \in E$, show that α is the l.u.b. of E. - 8. Let $x \in \mathbb{R}$. Show that there exists an integer m such that $m \le x < m+1$ and an integer l such that $x < l \le x+1$. - 9. Let A be a non empty subset of \mathbb{R} and $x \in \mathbb{R}$. Define the distance d(x, A) between x and A by $d(x, A) = \inf\{|x a| : a \in A\}$. If $\alpha \in \mathbb{R}$ is the l.u.b. of A, show that $d(\alpha, A) = 0$. - 10. (*) - (a) Let $x \in \mathbb{Q}$ and x > 0. If $x^2 < 2$, show that there exists $n \in \mathbb{N}$ such that $(x + \frac{1}{n})^2 < 2$. Similarly, if $x^2 > 2$, show that there exists $n \in \mathbb{N}$ such that $(x \frac{1}{n})^2 > 2$. - (b) Show that the set $A = \{r \in \mathbb{Q} : r > 0, \ r^2 < 2\}$ is bounded above in \mathbb{Q} but it does not have the l.u.b. in \mathbb{Q} . - (c) From (b), conclude that \mathbb{Q} does not posses the l.u.b. property. - (d) Let A be the set defined in (b) and $\alpha \in \mathbb{R}$ such that $\alpha = \sup A$. Show that $\alpha^2 = 2$. - 11. (*) For a subset A of \mathbb{R} , define $-A = \{-x : x \in A\}$. Suppose that S is a nonempty bounded above subset of \mathbb{R} . - (a) Show that -S is bounded below. - (b) Show that $\inf(-S) = -\sup(S)$. - (c) From (b) conclude that the l.u.b. property of \mathbb{R} implies the g.l.b. property of \mathbb{R} and vice versa. - 12. (*) Let k be a positive integer and $x = \sqrt{k}$. Suppose x is rational and $x = \frac{m}{n}$ such that $m \in \mathbb{Z}$ and n is the least positive integer such that nx is an integer. Define n' = n(x [x]) where [x] is the integer part of x. - (a) Show that $0 \le n' < n$ and n'x is an integer. - (b) Show that n' = 0. - (c) From (a) and (b) conclude that \sqrt{k} is either a positive integer or irrational. ## Hints/Solutions - 1. Suppose $x_0 \neq 0$. Then for $\epsilon_0 = \frac{x_0}{2}$, $x_0 > \epsilon_0 > 0$ which is a contradiction. - 2. Use Mathematical induction. - 3. Since α is a l.u.b. of E and β is an u.b. of E, $\alpha \leq \beta$. Similarly $\beta \leq \alpha$. - 4. Since $\beta \alpha > 0$, by Archimedian property, there exists $n \in \mathbb{N}$ such that $n > \frac{1}{\beta \alpha}$. - 5. If α is not the l.u.b then there exists an u.b. β of A such that $\beta < \alpha$. Find $n \in \mathbb{N}$ such that $\beta < \alpha \frac{1}{n}$. Since $\exists a_n \in A$ such that $\alpha \frac{1}{n} < a_n$, β is not an u.b. which is a contradiction. - 6. $\sup = 1 \text{ and } \inf = -1.$ - 7. If α is not the l.u.b. of E, then there exists an u.b. β of E such that $\beta < \alpha$. But $\alpha \in E$ which contradicts the fact that β is an u.b. of E. - 8. Using the Archimedian property, find $m, n \in \mathbb{N}$ such that -m < x < n. Let [x] be the largest integer between -m and n such that $[x] \le x$. So, $[x] \le x < [x] + 1$. This implies that $x < [x] + 1 \le x + 1$. Take l = [x] + 1. ([x] is called the integer part of x). - 9. If $d(\alpha, A) > 0$, then find $\epsilon \in \mathbb{R}$ such that $0 < \epsilon < d(\alpha, A)$. So $\alpha a > \epsilon$ for all $a \in A$. That is $a < \alpha \epsilon$ for all $a \in A$. Hence $\alpha \epsilon$ is an u.b. of A which is contradiction. - 10. (a) Suppose $x^2 < 2$. Observe that $(x + \frac{1}{n})^2 < x^2 + \frac{1}{n} + \frac{2x}{n}$ for any $n \in \mathbb{N}$. Using the Archimedian property, find n such that $x^2 + \frac{1}{n} + \frac{2x}{n} < 2$. This n will do. - (b) Note that 2 is an u.b. of A. If $m \in \mathbb{Q}$ such that $m = \sup A$, then there are three possibilities: i. $m^2 < 2$ ii. $m^2 = 2$ iii. $m^2 > 2$. Using (a) show that this is not possible. - (c) The set A defined in (b) is bounded above in \mathbb{Q} but does not have the l.u.b. in \mathbb{Q} . - (d) Using (a), justify that the following cases cannot occur: (i) $\alpha^2 < 2$ and (ii) $\alpha^2 > 2$. - 11. (a) Trivial. - (b) Let $\alpha = \sup S$. We claim that $-\alpha = \inf(-S)$. Since $\alpha = \sup S$, $a \leq \alpha$ for all $a \in S$. This implies that $-a \geq -\alpha$ for all $a \in S$. Hence $-\alpha$ is a l.b. of -S. If $-\alpha$ is not the g.l.b.of -S then there exists a lower bound β of A such that $-\alpha < \beta$. Verify that $-\beta$ is an u.b. of S and $-\beta < \alpha$ which is a contradiction. - (c) Assume that \mathbb{R} has the l.u.b. property and S is a non empty bounded below set. Then from (b) or the proof of (b), we conclude that inf S exists and is equal to $-\sup(-S)$. - 12. Trivial.