Practice Problems 5: Existence of maxima/minima, Intermediate Value Property

- 1. Let $f:[a,b]\to\mathbb{R}$ be continuous and f(x)>0 for all $x\in[a,b]$. Show that there exists $\alpha>0$ such that $f(x)\geq\alpha$ for all $x\in[a,b]$.
- 2. Let $f:[0,1]\to(0,1)$ be an on-to function. Show that f is not continuous on [0,1].
- 3. Give an example of a function f on [0,1] which is not continuous but it satisfies the IVP (We say that f has the property IVP if for every $x,y \in [0,1]$ and α satisfying $f(x) < \alpha < f(y)$ or $f(x) > \alpha > f(y)$ there exists $x_0 \in [x,y]$ such that $f(x_0) = \alpha$).
- 4. Show that the polynomial $x^4 + 6x^3 8$ has at least two real roots.
- 5. Show that there exists at least one positive real solution to the equation $|x^{31}+x^8+20|=x^{32}$.
- 6. Let $f:[0,1]\to\mathbb{R}$ be continuous. Show that there exists an $x_0\in[0,1]$ such that $f(x_0)=\frac{1}{3}(f(\frac{1}{4})+f(\frac{1}{2})+f(\frac{3}{4}))$.
- 7. Let $f(x) = x^{2n} + a_{2n-1}x^{2n-1} + ... + a_1x + a_0$ where $n \in \mathbb{N}$ and $a_i's$ are in \mathbb{R} . Show that f attains its infimum on \mathbb{R} .
- 8. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ where n > 0 and $a'_i s$ are in \mathbb{R} . If n is even and $a_n = 1$ and $a_0 = -1$, show that f(x) has at least two real roots.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that f is a constant function if
 - (a) f(x) is rational for each $x \in \mathbb{R}$.
 - (b) f(x) is an integer for each $x \in \mathbb{Q}$.
- 10. Let $f:[0,1] \to R$. Suppose that f(x) is rational for irrational x and that f(x) is irrational for rational x. Show that f cannot be continuous.
- 11. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(x+2\pi) = f(x)$ for all $x \in \mathbb{R}$. Show that there exists $x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) = f(x_0)$.
- 12. Let $f:[0,1] \to \mathbb{R}$ be continuous such that f(0)=f(1). Show that there exists $x_0 \in [0,\frac{1}{2}]$ such that $f(x_0)=f(x_0+\frac{1}{2})$.
- 13. Let $f, g : [0,1] \to \mathbb{R}$ be continuous such that $\inf\{f(x) : x \in [0,1]\} = \inf\{g(x) : x \in [0,1]\}$. Show that there exists $x_0 \in [0,1]$ such that $f(x_0) = g(x_0)$.
- 14. A cross country runner runs continuously a eight kilometers course in 40 minutes without taking rest. Show that, somewhere along the course, the runner must have covered a distance of one kilometer in exactly 5 minutes.
- 15. (*) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous one-one map. Show that f is either strictly increasing or strictly decreasing.
- 16. (*) Let $f: \mathbb{R} \to [0, \infty)$ be a bijective map. Show that f is not continuous on \mathbb{R} .
- 17. (*) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function.
 - (a) Suppose f attains each of its values exactly two times. Let $f(x_1) = f(x_2) = \alpha$ for some $\alpha \in \mathbb{R}$ and $f(x) > \alpha$ for some $x \in [x_1, x_2]$. Show that f attains its maximum in $[x_1, x_2]$ exactly at one point.
 - (b) Using (a) show that f cannot attain each of its values exactly two times.

Practice Problems 5: Hints/Solutions

- 1. Observe that f attains its minimum on [a, b]. Take $\alpha = \inf\{f(x) : x \in [a, b]\}$.
- 2. The minimum value of f is 0 which is not attained by f.
- 3. Consider f(0) = 0 and $f(x) = \sin \frac{1}{x}$ for $x \neq 0$.
- 4. Note that f(0) < 0, f(2) > 0 and f(-8) > 0. Use IVP.
- 5. Let $f(x) = \frac{1}{x^{32}}|x^{31} + x^8 + 20| 1$. Then $f(x) \to \infty$ as $x \to 0$ and $f(x) \to -1$ as $x \to \infty$. By IVP, there exists $x_0 \in (0, \infty)$ such that $f(x_0) = 0$.
- 6. Let $x_1, x_2 \in [0, 1]$ be such that $f(x_1) = \inf\{f(x) : x \in [0, 1]\}$ and $f(x_2) = \sup\{f(x) : x \in [0, 1]\}$. Note that $f(x_1) \leq \frac{1}{3}(f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4})) \leq f(x_2)$. Apply IVP.
- 7. Note that $f(x) \to \infty$ as $x \to \infty$ or $x \to -\infty$. Let M > 0 be such that M > f(0) or f(y) for some $y \in \mathbb{R}$. Then there exists p such that f(x) > M for all |x| > p. Since f is continuous there exists x_0 such that $f(x_0) = \inf\{f(x) : x \in [-p, p]\} = \inf\{f(x) : x \in \mathbb{R}\}$
- 8. Note that f(0) = -1 and $f(x) \to \infty$ as $x \to \infty$ or $x \to -\infty$. Apply IVP.
- 9. (a) Suppose f(x) ≠ f(y) for some x, y ∈ ℝ. Find an irrational number α between f(x) and f(y). By IVP, there exists z ∈ (x, y) such that f(z) = α which is a contradiction.
 (b) Let α be irrational. Find r_n ∈ ℚ such that r_n → α. By continuity f(r_n) → f(α). Since f(r_n)'s are integers, (f(r_n)) has to be eventually a constant sequence and hence f(α) is an

integer. So f takes only integer value for each $x \in \mathbb{R}$. By IVP, f(x) has to be constant.

- 10. Let g be defined by $g(x) = f(x) x \ \forall \ x \in [0,1]$. Then g(x) irrational for all $x \in [0,1]$. Because of IVP, g cannot be continuous and hence f cannot be continuous.
- 11. Consider the function $g(x) = f(x+\pi) f(x)$ and the values g(0) and $g(\pi)$. Apply IVP.
- 12. Consider the function $g(x) = f(x) f(x + \frac{1}{2})$ and the values g(0) and $g(\frac{1}{2})$. Apply IVP.
- 13. Let $x_1, x_2 \in [0, 1]$ be such that $f(x_1) = \inf\{f(x) : x \in [0, 1]\}$ and $g(x_2) = \inf\{g(x) : x \in [0, 1]\}$. Note that $f(x_1) \leq g(x_1)$ and $f(x_2) \geq g(x_2)$. Let $\varphi(x) = f(x) g(x)$. Apply IVP to φ .
- 14. Let x denote the distance, in kilometers, along the course. Let $f:[0,7] \to \mathbb{R}$, where f(x) =time taken in minutes to cover the distance from x to x+1. Observe that $\sum_{i=0}^{7} f(i) = 40$. Hence f(i) < 5 or f(i) > 5 is not possible for all i = 0 to 7. Therefore, there exists $i, j \in [0,7]$ such that $f(i) \le 5 \le f(j)$. By IVP there exists $c \in (i,j)$ such that f(c) = 5.
- 15. Suppose f is neither strictly increasing nor strictly decreasing. Then we can assume that there exists x_1, x_2 and x_3 such that $x_1 < x_2 < x_3$ and $f(x_1) > f(x_2)$ and $f(x_2) < f(x_3)$. Let α be such that $f(x_2) < \alpha < \min\{f(x_1), f(x_3)\}$. By IVP, there exist $u_1 \in (x_1, x_2)$ and $u_2 \in (x_2, x_3)$ such that $f(u_1) = \alpha = f(u_2)$. Since f is one-one, $u_1 = u_2$ which is a contradiction.
- 16. If f is continuous, by Problem 15, f is either is strictly increasing or strictly decreasing. Suppose f is strictly increasing. Since f is on-to, there exists x_0 such that $f(x_0) = 0$. Then $f(x) < f(x_0)$ for all $x < x_0$ which is a contradiction.

- 17. (a) Let $\beta = max\{f(x) : x \in [x_1, x_2]\}$. If f attains β on $[x_1, x_2]$ at more than one point, then there exists $\gamma \in (\alpha, \beta)$ such that f attains γ more than twice which is a contradiction.
 - (b) Suppose f attains each of its values exactly two times. Let x_1, x_2, α and β be as in (a). Since f attains β exactly once in $[x_1, x_2]$, there exits x_0 lying outside $[x_1, x_2]$ such that $f(x_0) = \beta > \alpha$. Then, by IVP, every number in (α, β) is attained by f more than twice which is a contradiction.