MTH102N ASSIGNMENT-LA 6

- (1) Describe all 2×2 orthogonal matrices. Prove that action of any orthogonal matrix on a vector $v \in \mathbb{R}^2$, is either a rotation or a reflection about a line.
- (2) Let $v, w \in \mathbb{R}^n$, $n \ge 2$, with ||v|| = ||w|| = 1. Prove that there exist an orthogonal matrix A such that A(v) = w. Prove also that A can be chosen such that $\det(A) = 1$.

(This is why orthogonal matrices with determinant one are called rotations))

(3) Let a be a $m \times n$ matrix, that is, as a linear map $A : \mathbb{R}^n \to \mathbb{R}^m$. Let N(A) =Kernel of A, C(A) =Column space of A and R(A) =Row space of A. Prove that:

i)
$$N(A) \perp R(A)$$
, ii) $N(A) \oplus R(A) = \mathbb{R}^n$.

- (4) Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Show that $\det(A) = \lambda_1 \ldots \lambda_n$ and tr $A = \lambda_1 + \cdots + \lambda_n$. Further show that A is invertible if and only if its all eigenvalues are non-zero.
- (5) Let A be an $n \times n$ invertible matrix. Show that eigenvalues of A^{-1} are reciprocal of the eigenvalues of A and A and A^{-1} have the same eigenvectors.
- (6) Let A be an $n \times n$ matrix and α be a scalar. Find the eigenvalues of $A \alpha I$ in terms of eigenvalues of A. Further show that A and $A \alpha I$ have the same eigenvectors.
- (7) Let A be an $n \times n$ matrix. Show that A^t and A have the same eigenvalues. Do they have the same eigenvectors?
- (8) Let A be an $n \times n$ matrix. Show that:
 - (a) If A is idempotent $(A^2 = A)$ then eigenvalues of A are either 0 or 1.
 - (b) If A is nilpotent $(A^m = 0 \text{ for some } m \ge 1)$ then all eigenvalues of A are 0.
- (9) Find the eigenvalues and corresponding eigenvectors of matrices

(a)
$$\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 & 2 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6 \end{bmatrix}$

- (10) Construct a basis of \mathbb{R}^3 consisting of eigenvectors of the following matrices
 - (a) $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$.

(11) Show that
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 3 \end{pmatrix}$$
 is diagonalizable. Find a matrix Q such that $Q^{-1}AQ$ is a diagonal matrix.
(12) Let $A = \begin{pmatrix} 7 & -5 & 15 \\ 6 & -4 & 15 \\ 0 & 0 & 1 \end{pmatrix}$. Find a matrix Q such that $Q^{-1}AQ$ is a diagonal matrix and hence calculate A^6 .