MTH102N
 ASSIGNMENT-LA 6

(1) Describe all 2×2 orthogonal matrices. Prove that action of any orthogonal matrix on a vector $v \in \mathbb{R}^{2}$, is either a rotation or a reflection about a line.
(2) Let $v, w \in \mathbb{R}^{n}, n \geq 2$, with $\|v\|=\|w\|=1$. Prove that there exist an orthogonal matrix A such that $A(v)=w$. Prove also that A can be chosen such that $\operatorname{det}(A)=$ 1.
(This is why orthogonal matrices with determinant one are called rotations))
(3) Let a be a $m \times n$ matrix, that is, as a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let $N(A)=$ Kernel of $A, C(A)=$ Column space of A and $R(A)=$ Row space of A. Prove that:
i) $N(A) \perp R(A)$,
ii) $N(A) \oplus R(A)=\mathbb{R}^{n}$.
(4) Let A be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Show that $\operatorname{det}(A)=\lambda_{1} \ldots \lambda_{n}$ and $\operatorname{tr} A=\lambda_{1}+\cdots+\lambda_{n}$. Further show that A is invertible if and only if its all eigenvalues are non-zero.
(5) Let A be an $n \times n$ invertible matrix. Show that eigenvalues of A^{-1} are reciprocal of the eigenvalues of A and A and A^{-1} have the same eigenvectors.
(6) Let A be an $n \times n$ matrix and α be a scalar. Find the eigenvalues of $A-\alpha I$ in terms of eigenvalues of A. Further show that A and $A-\alpha I$ have the same eigenvectors.
(7) Let A be an $n \times n$ matrix. Show that A^{t} and A have the same eigenvalues. Do they have the same eigenvectors?
(8) Let A be an $n \times n$ matrix. Show that:
(a) If A is idempotent $\left(A^{2}=A\right)$ then eigenvalues of A are either 0 or 1 .
(b) If A is nilpotent ($A^{m}=0$ for some $m \geq 1$) then all eigenvalues of A are 0 .
(9) Find the eigenvalues and corresponding eigenvectors of matrices
(a) $\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]$ (b) $\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6\end{array}\right]$
(10) Construct a basis of \mathbb{R}^{3} consisting of eigenvectors of the following matrices
(a) $\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 3\end{array}\right]$ (b) $\left[\begin{array}{rrr}1 & 1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right]$.
(11) Show that $A=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 3\end{array}\right)$ is diagonalizable. Find a matrix Q such that $Q^{-1} A Q$ is a diagonal matrix.
(12) Let $A=\left(\begin{array}{ccc}7 & -5 & 15 \\ 6 & -4 & 15 \\ 0 & 0 & 1\end{array}\right)$. Find a matrix Q such that $Q^{-1} A Q$ is a diagonal matrix and hence calculate A^{6}.

