
LECTURE 1:COMPLEX NUMBERS AND COMPLEX
DIFFERENTIATION

1. Introduction

The study of complex numbers began to find roots of the polynomial equation

x2+1 = 0. It turns out that this equation does not have any real root. Thus one needs

to go out of real numbers to get a solution of the above equation. Mathematicians

also realized quite early that the study of complex numbers can lead to evaluations of

certain integrals which are difficult to solve otherwise. For example, using complex

numbers one can prove that ∫ ∞

−∞

ex/2

1 + ex
dx = π.

To do all these, it turns out that one needs also to study functions defined on the

set of complex numbers. That is, we need to do calculus of functions (differential

calculus and integral calculus) defined on the set of complex numbers.

Complex numbers : A complex number denoted by z is an ordered pair (x, y)

with x ∈ R, y ∈ R. Where x is called real part of z and y is called the imaginary

part of z. In symbol x = Re z,y = Im z. We denote i = (0, 1) and hence z = x + iy

where the element x is identified with (x, 0). By C we denote the set of all complex

numbers, that is, C = {z : z = x + iy, x ∈ R, y ∈ R}.
Addition and subtraction of complex numbers is defined exactly as in R2, for

example, if

z = x + iy and z1 = x1 + iy1 then we define z + z1 = (x + x1) + i(y + y1).

Multiplication of complex numbers is something which makes it different from R2.

let z1 = x1 + iy1 and z2 = x2 + iy2 be two complex numbers then we define

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1).

Since i = (0, 1) it follows from above that i2 = −1.

We can define division of complex numbers also. If z 6= 0 then we define 1
z

=
1

x+iy
= x−iy

x2+y2 . From this we get

x1 + iy1

x2 + iy2

=
(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
=

(x1x2 + y1y2) + i(x2y1 − x1y2)

x2
2 + y2

2
.
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The following are easy to check directly from definitions:

(1) z1 + z2 = z2 + z1.

(2) z1z2 = z2z1.

(3) z1(z2 + z3) = z1z2 + z1z3.

There is another interesting operation on the set of complex numbers called conju-

gation.

If z = x + iy is a complex number then its conjugate is defined by z̄ = x − iy.

Conjugation has the following properties which follows easily from the definition:

(1) Re z = 1
2
(z + z̄) and Im z = 1

2i
(z − z̄).

(2) z1 + z2 = z̄1 + z̄2.

(3) z1z2 = z̄1z̄2 (note that it follows from this that if α ∈ R then αz = αz̄).

Polar form of complex numbers : Let z = x + iy be a complex number with

x and y both nonzero. Then there exist unique r ∈ (0,∞), and θ ∈ (−π, π] such

that z = reiθ where eiθ = cos θ + i sin θ. r and θ are related to z by the relations

r = |z| =
√

x2 + y2 and θ = tan−1(y/x), that is, r is the distance of z from the

origin and θ is the angle between z and the positive direction of the X−axis. θ is

called the principal argument of z and is usually written as θ = Arg z. The reason to

restrict θ in (−π, π] is to get the uniqueness of representation (because a 2π rotation

will not change the point after all). Thus Arg z = arg z + 2kπ So, if θ is argument

of z then so is θ + 2kπ. For example, arg i = 2kπ + π
2
, k ∈ Z.

Multiplication and division of complex numbers can also be represented in the

polar form: Let z1 = r1e
iθ1 , z2 = r2e

iθ2 then :

z1z2 = r1r2e
i(θ1+θ2), (upto a multiple of 2π) and as |eiθ| = 1 it follows that |z1z2| =

|z1||z2|. The above happens simply because (cos θ1 + i sin θ1)(cos θ2 + i sin θ2) =

cos(θ1 + θ2) + i sin(θ1 + θ2). Also arg (z1z2) = arg z1 + arg z2 (upto multiple of 2π).

Regarding multiplication of complex numbers written in polar form we have the

following theorem:

De Moiver’s formula:

zn = [r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ).

We put it into immediate use in the following important problem.

Problem: Given a nonzero complex number z0 and a natural number n ∈ N find

all distinct complex numbers w such that z0 = wn.
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Solution: First note that if w satisfies the above then |w| = |z0|
1
n . So, if z0 =

|z0|(cos θ + i sin θ) we try to find α such that

|z0|(cos θ + i sin θ) = [|z0|
1
n (cos α + i sin α)]n.

It then follows from De Moiver’s formula that cos θ = cos nα and sin θ = sin nα,

that is, nα = θ + 2kπ ⇒ α = θ
n

+ 2kπ
n

. Now we notice that the distinct values of

w is given by |z0|
1
n (cos θ+2kπ

n
+ i sin θ+2kπ

n
), for, k = 0, 1, 2, . . . , n− 1. That is, other

values of k will give complex numbers which is already obtained.

Note that the above complex roots are not written in polar coordinates as θ+2kπ
n

may not belong to (−π, π]. Note that the n many complex numbers we got lie on

the circle of radius |z0|
1
n about the origin and constitute the vertices of a regular

polygon of n sides.

Example 1. Let us find all complex numbers w such that w3 = −1. By the above the

solutions are cos π
3
+i sin π

3
, cos π+i sin π = −1, and cos 5π

3
+i sin 5π

3
= cos −π

3
+i sin −π

3

(polar representation). Thus the last one is the complex conjugate of the first one.

Next we discuss the notion of convergent sequences and continuous functions.

For sequences what we do is replace modulus of real numbers just by modulus of

complex numbers. Thus zn → z as n → ∞ if |zn − z| → 0 ( just by writing down

the definition of modulus it is not at all difficult to show that: zn → z as n → ∞
iff Re zn → Re z and Im zn → Im z as n → ∞). Thus the definitions of Cauchy

sequence, bounded sequence etc. are same as in the case of real numbers. Using

the notion of convergent sequences we can easily define the notion of continuity for

functions f : C → C.

Now we come to the notion of differentiabilty of functions f : C → C. The

definition looks same as in the case of functions f : R → R but has some fundamental

differences. We need some notation to start with. Given z0 ∈ C and r > 0 we denote

the ball of radius r around z0 by Br(z0) = {z ∈ C : |z − z0| < r}
Definition: Let A ⊂ C, Br(z0) ⊂ A and f : A → C. Then f is called differentiable

at z0 if the limit

lim
h→0

f(z0 + h)− f(z0)

h
exist finitely.

We observe that in the above definition h varies over the set of complex numbers.

As example let f(z) = z2. Then f(z+h)−f(z) = 2zh+h2 and hence the above limit
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is 2z which it should be (in analogy with the real case). Note that this calculation

does not use the fact that h varies over the set of complex numbers in any special

way.

To see what is really involved let us look at the function g(z) = z. As

g(z + h)− g(z)

h
=

h

h
,

we choose h = 1
n

and h = i
n
. Because of the conjugation in the numerator we

get different limits, 1 and −1 as n → ∞. Thus the function g is not differentiable

anywhere in C.


