
LECTURE 2: COMPLEX DIFFERENTIATION AND CAUCHY
RIEMANN EQUATIONS

We have seen in the first lecture that the complex derivative of a function f at a

point z0 is defined as the limit

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
,

whenever the limit exist. We have also seen two examples i) if f(z) = z2 then

f ′(z) = 2z, ii) the function f(z) = z is not a differentiable function. Now we will

go for a detail study.

Theorem 1. If f is differentiable at z0 then f is continuous at z0.

Proof. Since f ′(z0) = limz→z0

f(z)−f(z0)
z−z0

it follows that

lim
z→z0

f(z) = lim
z→z0

f(z)− f(z0)

z − z0

(z − z0) + f(z0) = f(z0).

�

The following results about derivatives follow exactly as in the case of reals:

(1) Derivative of a constant function is zero and d
dz

(zn) = nzn−1, n ∈ N.

(2) If α, β ∈ C then (αf + βg)′ = αf ′ + βg′.

(3) (Chain Rule) d
dz

f(g(z)) = f ′(g(z))g′(z) whenever all the terms make sense.

So much for similarity. To see the difference of complex derivatives and the

derivatives of functions of two real variables we look at the following example.

Example 2. Consider the function f : C → R given by f(z) = |z|2. Since z =

x + iy the function f can also be thought of as a function from R2 to R. From

this point of view the function f can also be written as f(x, y) = x2 + y2. Since the

partial derivatives of f are continuous throughout R2 it follows that f is differentiable

everywhere on R2. But what happens if we now view f as a function on C and think

about complex differentiability? it is clear that f is differentiable at zero as

lim
h→0

|h|2

h
= lim

(h1,h2)→(0,0)

h2
1 + h2

2

h1 + ih2

= lim
(h1,h2)→(0,0)

h2
1 + h2

2

h2
1 + h2

2

(h1 − ih2) = 0

(we have used the important fact that |z|2 = zz). On the other hand

limh→0
|z+h|2−|z|2

h
= limh→0

zh̄+z̄h
h

does not exist for z 6= 0 as limh→0
h
h

does not exist.
1
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So we need to find a necessary condition for differentiability of a function of a

complex variable z. These are called Cauchy- Riemann equations (CR equation for

short) given in the following theorem.

We need the following notation to express the theorem which deals with the real

part and imaginary part of a function of a complex variable. Let f : C → C be a

function then

f(z) = f(x, y) = u(x, y) + iv(x, y). The functions u and v can be thought of as real

valued functions defined on subsets of R2 and are called real and imaginary part of

f respectively (u=Re f, v=Im f).

Theorem 3. Suppose that f(z) = f(x + iy) = u(x, y) + iv(x, y) is differentiable at

z0 = x0 + iy0. Then the partial derivatives of u and v exist at the point z0 = (x0, y0)

and

f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

Thus equating the real and imaginary parts we get

ux = vy, uy = −vx, at z0 = x0 + iy0 (Cauchy Riemann equations).

Proof. Since f is differentiable at z0 we have by varying h over the set of real numbers

f ′(z0) = f ′(x0 + iy0) = lim
h→0

u(x0 + h, y0)− u(x0, y0) + i[v(x0 + h, y0)− v(x0, y0]

h
= ux(x0, y0) + ivx(x0, y0),

and

f ′(z0) = f ′(x0 + iy0)

= lim
h→0

u(x0, y0 + h)− u(x0, y0) + i[v(x0, y0 + h)− v(x0, y0)]

ih

= lim
h→0

v(x0, y0 + h)− v(x0, y0)

h
− i lim

h→0

u(x0, y0 + h)− u(x0, y0)

h
(as

1

i
= −i)

= vy(x0, y0)− iuy(x0, y0).

Now we can just compare the real and imaginary parts of f ′(z0). This completes the

proof. �

Note that the crux of the proof is to approach the point (0, 0) through real axis

(X-axis) and through imaginary axis (Y-axis) (it is the same way we have shown

that the function f(z) = z is not differentiable).

Now, CR equations has some magical consequences, some of which is mentioned

below.
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(1) If f : C → C is such that f ′(z) = 0 for all z ∈ C, then f is a constant

function. This is because, by CR equation ux = uy = vx = vy = 0. So by

MVT of two variable calculus u and v are constant function and hence so is

f.

(2) If f : C → C is differentiable everywhere and f(z) is real for all z ∈ C then

f is a constant function. This follows from CR equation as v(x, y) = 0 for

all x + iy ∈ C and hence all partial derivatives of v is also zero and hence

the same is true for u. Thus the function f(z) = |z|2 is not differentiable for

z 6= 0.

However CR equations do not give a sufficient criteria for differentiability.

Example 4. Let f(z) = z2/z, if z 6= 0 and f(0) = 0. It is easy to see that this

function is not differentiable at 0. By definition

lim
h→0

f(h)− f(0)

h
= lim

h→0

(h̄)2

h2
.

Now by choosing h to be real we get the limit to be 1 and replacing h by h + ih we

see that the limit is −1. But real and imaginary parts of f satisfies CR equations at

z = 0 (check this!).

If we add some more conditions on the partial derivatives of u and v along with

CR equations then one can conclude that the function is differentiable. We state a

theorem (without the proof) for the precise statement.

Theorem 5. (Converse of CR relations) f = u + iv be defined on Br(z0) such

that ux, uy, vx, vy exist on Br(z0) and are continuous at z0. If u and v satisfies CR

equations then f ′(z0) exist and f ′ = ux + ivx.

Example 6. Using the above result we can immediately check that the functions

(1) f(x + iy) = x3 − 3xy2 + i(3x2y − y3)

(2) f(x + iy) = e−y cos x + ie−y sin x

are differentiable everywhere in the complex plane.

CR equations can also be expressed in the polar coordinates.

Exercise: Using x = r cos θ, y = r sin θ and the chain rule ∂u
∂r

= ∂u
∂x

∂x
∂r

+ ∂u
∂y

∂y
∂r

prove

that the CR equation is equivalent to

ur =
1

r
vθ, vr = −1

r
uθ.
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As in the cartesian case, it can be proved that if ur, uθ, vr, vθ are continuous and

satisfies CR equations then the function is differentiable.


