
LECTURE 3: ANALYTIC FUNCTIONS AND POWER SERIES

We are interested in a class of differentiable functions called analytic functions. But first let me

explain the notion of open sets.

Definition 1. A subset U ⊆ C is called open if for every z ∈ C there exist rz > 0 such that the

ball Brz
(z) ⊂ U.

For example, the sets C, C∗, {z ∈ C : |z| < 1} and {z ∈ C : Re (z) > 0} are open sets. But the

sets {z ∈ C : |z| ≤ 1} and {z ∈ C : Re (z) ≥ 0} are not open sets as, for example, in the first case

we cannot find balls with centers at |z| = 1 for any z which is contained in the set {z ∈ C : |z| ≤ 1}.

Similar is the case for the second one.

Definition 2. A function f is called analytic at a point z0 ∈ C if there exist r > 0 such that f is

differentiable at every point z ∈ Br(z0).

A function is called analytic in an open set U ⊆ C if it is analytic at each point U.

Example 3. Here are some examples

(1) For n ∈ N and complex numbers a0, . . . , an the polynomial f(z) =
∑n

k=0 akzk is an analytic

function for all z ∈ C.

(2) The function f(z) = 1
z is analytic for all z 6= 0. In fact, any rational function (functions

of the form p(z)
q(z) where p and q are polynomial functions) is analytic in their domain of

definition.

(3) The function f(z) = |z|2 is not analytic at any point (though it is differentiable at z = 0).

But how does one produce a large class of examples of analytic functions? It turns out that they

can be build out of polynomials, that is, they are actually given by power series (this is another

difference with the reals: if f : R → R is differentiable everywhere on R then it is not necessary

that f is given by a power series). So we need to develop the notion of power series.

A series of complex numbers is an infinite sum of the form
∑∞

n=0 zn where all the zns are

complex numbers (for example,
∑∞

n=1 in,
∑∞

n=1(
1
n + i

2n )). The notion of Convergence is defined

exactly as in the reals, that is,
∑∞

n=0 zn converges if the sequence of partial sums {sm =
∑m

n=0 zn}

converges to some complex number. The following are simple consequences of the definition:

(1) If
∑∞

n=0 zn converges then zn → 0 as n →∞ (as zn+1 = sn+1 − sn → 0 as n →∞).
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(2) If
∑∞

n=0 zn =
∑∞

n=0(xn + iyn) converges then
∑∞

n=0 xn,
∑∞

n=0 yn converges and we have∑∞
n=0 zn =

∑∞
n=0 xn + i

∑∞
n=0 yn.

For example,
∑∞

n=1
(−1)n+i

n2 converges but
∑∞

n=0(1 + i)n does not converge as |(1 + i)n| = (
√

2)n

does not converge to zero as n →∞.

Theorem 4. (Comparison test) If |zn| ≤ Mn for Mn ∈ R and
∑∞

n=0 Mn converges then
∑∞

n=0 |zn|

converges and hence so does
∑∞

n=0 zn.

Proof. It is clear that |xn| ≤ |zn| ≤ Mn and |yn| ≤ |zn| ≤ Mn. So
∑∞

n=0 xn,
∑∞

n=0 yn converges

absolutely and hence convergent. So
∑∞

n=0 zn converges.

�

Example 5. (1) It follows from the above theorem that
∑∞

n=1
(3+4i)n

5nn2 converges, as |3+4i| = 5

and
∑∞

n=1
1

n2 converges.

(2) The most fundamental series for us is the geometric series
∑∞

n=1 zn. By comparison with

its real counterpart it follows that the above series converges for |z| < 1 (to 1
1−z ) and

diverges for |z| ≥ 1 (as |zn| does not converge to 0 as n →∞).

We note that, like the series of real terms, we also have ratio test for the series of complex

numbers, which says: If limn→∞
|zn+1|
|zn| = L and L < 1 then

∑∞
n=0 zn converges. Similarly, we also

have analogue of the root test.

Definition 6. A series of the form
∑∞

n=0 an(z− z0)n, where an ∈ C and z0 ∈ C is called a power

series around the point z0..

To develop the theory, as in the real case, we are going to assume that z0 = 0. So, the geometric

series, given in the previous example, is a power series. The following theorem shows that a power

series is very good when it is good.

Theorem 7. If a power series
∑∞

n=0 anzn converges for some z0 ∈ C then it converges for all

z ∈ C such that |z| < |z0| (which is a disc without the boundary around the origin with radius |z0|.)

Proof. It follows from the hypothesis that there exist M ≥ 0 such that |anzn
0 | ≤ M for all n ∈

N. The proof now follows from the comparison theorem, behaviour of geometric series and the

observation

|anzn| = |anz0|n|
z

z0
|n ≤ M | z

z0
|n.

�
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Note that if the series
∑∞

n=0 anzn
0 diverges then so does the series

∑∞
n=0 anzn for |z| > |z0 by

the previous result.

Definition 8. (Radius of convergence) The radius of convergence of a power series
∑∞

n=0 anzn is

defined as

R = sup {|z| :
∞∑

n=0

anzn converges}.

It is clear that R ≥ 0 (however it is possible that R = 0) and if |z| < R (resp. |z| > R) then the

power series converges (resp. diverges).

Example 9. a) For
∑∞

n=0 n!zn, R = 0. b) For
∑∞

n=0 zn, R = 1. c) For
∑∞

n=1
zn

n , R = 1. d) For∑∞
n=1

zn

n! , R = ∞.

Remark: Note that no conclusion about convergence can be drawn if |z| = R. The power series

in c) above does not converge if z = 1 but converges if z = −1.

The formula for calculating R goes exacrly as in the case of reals, that is,

1
R

= lim
n→∞

|an|
1
n = lim

n→∞

|an+1|
|an|

,

whenever the above limits exist (with the supposition that division by ∞ (resp. 0) produces 0

(resp. ∞)).

To proceed further we need the following lemma which says that if we perform term by term

differentiation for a power series then the new power series has the same radius of convergence as

the old one.

Lemma 10. If
∑∞

n=0 anzn has radius of convergence R > 0 then the series
∑∞

n=1 nanzn−1 con-

verges for |z| < R.

Proof. Let |z| = r < R. We will show that
∑∞

n=1 nanzn−1 converges. Choose s such that r < s < R.

So
∑∞

n=0 ansn converges and hence there exist M > 0 such that |an| ≤ M
sn (why?). Thus

|nanzn−1| ≤ n
M

sn
rn−1 =

M

r

n

(s/r)n
.

As r < s it follows from root test that the series
∑∞

n=0
n

(s/r)n converges (as limn→∞ n1/n = 1).

The proof now follows from the comparison test.
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