
LECTURE 4: DERIVATIVE OF POWER SERIES AND COMPLEX
EXPONENTIAL

The reason of dealing with power series is that they provide examples of analytic

functions.

Theorem 1. If
∑∞

n=0 anzn has radius of convergence R > 0, then the function

F (z) =
∑∞

n=0 anz
n is differentiable on S = {z ∈ C : |z| < R}, and the derivative is

f(z) =
∑∞

n=0 nanz
n−1.

Proof. (∗) We will show that |F (z+h)−F (z)
h

− f(z)| → 0 as h → 0 (in C), whenever

|z| < R. Using the binomial theorem (z + h)n =
∑n

k=0

(
n
k

)
hkzn−k we get

F (z + h)− F (z)

h
− f(z) =

∞∑
n=0

an
(z + h)n − zn − hnzn−1

h

=
∞∑

n=0

an

h
(

n∑

k=2

(
n

k

)
hkzn−k)

=
∞∑

n=0

anh(
n∑

k=2

(
n

k

)
hk−2zn−k)

=
∞∑

n=0

anh(
n−2∑
j=0

(
n

j + 2

)
hjzn−2−j) (by putting j = k − 2).

By using the easily verifiable fact that
(

n
j+2

) ≤ n(n− 1)
(

n−2
j

)
, we obtain

|F (z + h)− F (z)

h
− f(z)| ≤ |h|

∞∑
n=0

n(n− 1)|an|(
n−2∑
j=0

(
n− 2

j

)
|h|j|z|n−2−j)

= |h|
∞∑

n=0

n(n− 1)|an|(|z|+ |h|)n−2.

We already know that the series
∑∞

n=0 n(n − 1)|an||z|n−2 converges for |z| < R.

Now, for |z| < R and h → 0 we have |z| + |h| < R eventually. It thus follows from

above that |F (z+h)−F (z)
h

− f(z)| → 0 as h → 0, whenever |z| < R. ¤

We are now going to define the complex analogue of the exponential function,

that is, ex.
1
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Definition 2. (Exponential function) We define ez =
∑∞

n=0
zn

n!
for all z ∈ C.

Since |an+1

an
| = 1

(n+1)
→ 0, the series converges for all z ∈ C. The following theorem

summarizes important properties of the exponential.

Theorem 3. The function f(z) = ez is analytic on C and satisfies the following

properties

i)
d

dz
(ez) = ez ii) ez1+z2 = ez1ez2 iii) eiθ = cos θ + i sin θ, θ ∈ R.

Proof. By the previous result ez is an analytic function on C and

d

dz
(ez) =

∞∑
n=1

n

n!
zn−1 =

∞∑
n=1

1

(n− 1)!
zn−1 = ez.

We define g(z) = ezez1+z2−z. Then g is analytic on C and g′(z) = 0 for all z ∈ C.

It follows from CR equations that g(z) = α for some α ∈ C. Since g(0) = α = ez1+z2

we get that ezez1+z2−z = ez1+z2 . By choosing z = z1 the result follows.

For the last part we have,

eiθ =
∞∑

n=0

(iθ)n

n!
=

∞∑
n=0

[
1

(2n)!
(iθ)2n +

1

(2n + 1)!
(iθ)2n+1]

=
∞∑

n=0

[
θ2n(i2)n

(2n)!
+ i

θ2n+1(i2)n

(2n + 1)!
] = cos θ + i sin θ.

¤

We have the following observations to make.

(1) Since eze−z = 1 it follows that ez 6= 0 for all z ∈ C.

(2) ez = ex+iy = ex(cos y + i sin y) and ez = ez̄ = exe−yi.

(3) ez+2nπi = ex(cos(2nπ + y) + i sin(2nπ + y)) = ex(cos y + i sin y) = ez. Thus

complex exponential is a periodic function with period 2πi and hence it is

not injective, unlike the real exponential.

(4) It follows now easily that ez = 1 ⇐⇒ z = 2nπi for some n ∈ Z and hence

ez1 = ez2 ⇐⇒ z2 = z1 + 2nπi, for some n ∈ Z.

Surjectivity of Exponential: We know that complex exponential is not an injec-

tive function however it is surjective from C to C\{0}. If w ∈ C\{0} then using polar

coordinates we can write w = |w|eiθ where θ ∈ (−π, π]. If we define z = log |w|+ iθ

then ez = elog |w|+iθ = elog |w|eiθ = w. In fact, by our previous observation, it follows
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that elog |w|+i(θ+2nπi) = w (not surprising as exponential is not injective). Thus we

have that elog |w|+iArgw = w.

It follows from the above discussion that if we restrict the domain of the expo-

nential then it becomes injective. In fact, if H = {z = x + iy : −π < y ≤ π} then

z → ez is a bijective function from H to C \ {0}.
We can also understand now image of certain subsets of H under the exponential.

For example, for a fixed y0 ∈ (−π, π] if A = {x+iy0 : x ∈ R} (which is a line parallel

to the real axis) then its image under exponential is {exeiy0 : x ∈ R} which is a one

sidded ray with angle y0. If for a fixed x0 ∈ R, B = {x0 + iy : y ∈ (−π, π]} (which

is part of a line parallel to the imaginary axis) then its image under exponential is

{ex0eiy : y ∈ (−π, π]} which is a circle about origin with radius ex0 .


