LECTURE 4: DERIVATIVE OF POWER SERIES AND COMPLEX EXPONENTIAL

The reason of dealing with power series is that they provide examples of analytic functions.

Theorem 1. If $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence $R>0$, then the function $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is differentiable on $S=\{z \in \mathbb{C}:|z|<R\}$, and the derivative is $f(z)=\sum_{n=0}^{\infty} n a_{n} z^{n-1}$.

Proof. (*) We will show that $\left|\frac{F(z+h)-F(z)}{h}-f(z)\right| \rightarrow 0$ as $h \rightarrow 0$ (in \mathbb{C}), whenever $|z|<R$. Using the binomial theorem $(z+h)^{n}=\sum_{k=0}^{n}\binom{n}{k} h^{k} z^{n-k}$ we get

$$
\begin{aligned}
\frac{F(z+h)-F(z)}{h}-f(z) & =\sum_{n=0}^{\infty} a_{n} \frac{(z+h)^{n}-z^{n}-h n z^{n-1}}{h} \\
& =\sum_{n=0}^{\infty} \frac{a_{n}}{h}\left(\sum_{k=2}^{n}\binom{n}{k} h^{k} z^{n-k}\right) \\
& =\sum_{n=0}^{\infty} a_{n} h\left(\sum_{k=2}^{n}\binom{n}{k} h^{k-2} z^{n-k}\right) \\
& =\sum_{n=0}^{\infty} a_{n} h\left(\sum_{j=0}^{n-2}\binom{n}{j+2} h^{j} z^{n-2-j}\right) \quad(\text { by putting } j=k-2) .
\end{aligned}
$$

By using the easily verifiable fact that $\binom{n}{j+2} \leq n(n-1)\binom{n-2}{j}$, we obtain

$$
\begin{aligned}
\left|\frac{F(z+h)-F(z)}{h}-f(z)\right| & \leq|h| \sum_{n=0}^{\infty} n(n-1)\left|a_{n}\right|\left(\sum_{j=0}^{n-2}\binom{n-2}{j}|h|^{j}|z|^{n-2-j}\right) \\
& =|h| \sum_{n=0}^{\infty} n(n-1)\left|a_{n}\right|(|z|+|h|)^{n-2}
\end{aligned}
$$

We already know that the series $\sum_{n=0}^{\infty} n(n-1)\left|a_{n}\right||z|^{n-2}$ converges for $|z|<R$. Now, for $|z|<R$ and $h \rightarrow 0$ we have $|z|+|h|<R$ eventually. It thus follows from above that $\left|\frac{F(z+h)-F(z)}{h}-f(z)\right| \rightarrow 0$ as $h \rightarrow 0$, whenever $|z|<R$.

We are now going to define the complex analogue of the exponential function, that is, e^{x}.

Definition 2. (Exponential function) We define $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ for all $z \in \mathbb{C}$.
Since $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{(n+1)} \rightarrow 0$, the series converges for all $z \in \mathbb{C}$. The following theorem summarizes important properties of the exponential.

Theorem 3. The function $f(z)=e^{z}$ is analytic on \mathbb{C} and satisfies the following properties

$$
\text { i) } \frac{d}{d z}\left(e^{z}\right)=e^{z} \text { ii) } e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}} \text { iii) } e^{i \theta}=\cos \theta+i \sin \theta, \theta \in \mathbb{R} .
$$

Proof. By the previous result e^{z} is an analytic function on \mathbb{C} and

$$
\frac{d}{d z}\left(e^{z}\right)=\sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1}=\sum_{n=1}^{\infty} \frac{1}{(n-1)!} z^{n-1}=e^{z}
$$

We define $g(z)=e^{z} e^{z_{1}+z_{2}-z}$. Then g is analytic on \mathbb{C} and $g^{\prime}(z)=0$ for all $z \in \mathbb{C}$. It follows from CR equations that $g(z)=\alpha$ for some $\alpha \in \mathbb{C}$. Since $g(0)=\alpha=e^{z_{1}+z_{2}}$ we get that $e^{z} e^{z_{1}+z_{2}-z}=e^{z_{1}+z_{2}}$. By choosing $z=z_{1}$ the result follows.

For the last part we have,

$$
\begin{aligned}
e^{i \theta}=\sum_{n=0}^{\infty} \frac{(i \theta)^{n}}{n!} & =\sum_{n=0}^{\infty}\left[\frac{1}{(2 n)!}(i \theta)^{2 n}+\frac{1}{(2 n+1)!}(i \theta)^{2 n+1}\right] \\
& =\sum_{n=0}^{\infty}\left[\frac{\theta^{2 n}\left(i^{2}\right)^{n}}{(2 n)!}+i \frac{\theta^{2 n+1}\left(i^{2}\right)^{n}}{(2 n+1)!}\right]=\cos \theta+i \sin \theta
\end{aligned}
$$

We have the following observations to make.
(1) Since $e^{z} e^{-z}=1$ it follows that $e^{z} \neq 0$ for all $z \in \mathbb{C}$.
(2) $e^{z}=e^{x+i y}=e^{x}(\cos y+i \sin y)$ and $\overline{e^{z}}=e^{\bar{z}}=e^{x} e^{-y i}$.
(3) $e^{z+2 n \pi i}=e^{x}(\cos (2 n \pi+y)+i \sin (2 n \pi+y))=e^{x}(\cos y+i \sin y)=e^{z}$. Thus complex exponential is a periodic function with period $2 \pi i$ and hence it is not injective, unlike the real exponential.
(4) It follows now easily that $e^{z}=1 \Longleftrightarrow z=2 n \pi i$ for some $n \in \mathbb{Z}$ and hence $e^{z_{1}}=e^{z_{2}} \Longleftrightarrow z_{2}=z_{1}+2 n \pi i$, for some $n \in \mathbb{Z}$.

Surjectivity of Exponential: We know that complex exponential is not an injective function however it is surjective from \mathbb{C} to $\mathbb{C} \backslash\{0\}$. If $w \in \mathbb{C} \backslash\{0\}$ then using polar coordinates we can write $w=|w| e^{i \theta}$ where $\theta \in(-\pi, \pi]$. If we define $z=\log |w|+i \theta$ then $e^{z}=e^{\log |w|+i \theta}=e^{\log |w|} e^{i \theta}=w$. In fact, by our previous observation, it follows
that $e^{\log |w|+i(\theta+2 n \pi i)}=w$ (not surprising as exponential is not injective). Thus we have that $e^{\log |w|+i \operatorname{Arg} w}=w$.

It follows from the above discussion that if we restrict the domain of the exponential then it becomes injective. In fact, if $H=\{z=x+i y:-\pi<y \leq \pi\}$ then $z \rightarrow e^{z}$ is a bijective function from H to $\mathbb{C} \backslash\{0\}$.

We can also understand now image of certain subsets of H under the exponential. For example, for a fixed $y_{0} \in(-\pi, \pi]$ if $A=\left\{x+i y_{0}: x \in \mathbb{R}\right\}$ (which is a line parallel to the real axis) then its image under exponential is $\left\{e^{x} e^{i y_{0}}: x \in \mathbb{R}\right\}$ which is a one sidded ray with angle y_{0}. If for a fixed $x_{0} \in \mathbb{R}, B=\left\{x_{0}+i y: y \in(-\pi, \pi]\right\}$ (which is part of a line parallel to the imaginary axis) then its image under exponential is $\left\{e^{x_{0}} e^{i y}: y \in(-\pi, \pi]\right\}$ which is a circle about origin with radius $e^{x_{0}}$.

