LECTURE 4: DERIVATIVE OF POWER SERIES AND COMPLEX EXPONENTIAL

The reason of dealing with power series is that they provide examples of analytic functions.

Theorem 1. If $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R > 0, then the function $F(z) = \sum_{n=0}^{\infty} a_n z^n$ is differentiable on $S = \{z \in \mathbb{C} : |z| < R\}$, and the derivative is $f(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$.

Proof. (*) We will show that $|\frac{F(z+h)-F(z)}{h} - f(z)| \to 0$ as $h \to 0$ (in \mathbb{C}), whenever |z| < R. Using the binomial theorem $(z+h)^n = \sum_{k=0}^n \binom{n}{k} h^k z^{n-k}$ we get

$$\frac{F(z+h) - F(z)}{h} - f(z) = \sum_{n=0}^{\infty} a_n \frac{(z+h)^n - z^n - hnz^{n-1}}{h}$$

$$= \sum_{n=0}^{\infty} \frac{a_n}{h} (\sum_{k=2}^n \binom{n}{k} h^k z^{n-k})$$

$$= \sum_{n=0}^{\infty} a_n h (\sum_{k=2}^n \binom{n}{k} h^{k-2} z^{n-k})$$

$$= \sum_{n=0}^{\infty} a_n h (\sum_{j=0}^{n-2} \binom{n}{j+2} h^j z^{n-2-j}) \quad \text{(by putting } j = k-2)$$

By using the easily verifiable fact that $\binom{n}{j+2} \leq n(n-1)\binom{n-2}{j}$, we obtain

$$\begin{aligned} |\frac{F(z+h) - F(z)}{h} - f(z)| &\leq |h| \sum_{n=0}^{\infty} n(n-1) |a_n| (\sum_{j=0}^{n-2} {n-2 \choose j} |h|^j |z|^{n-2-j}) \\ &= |h| \sum_{n=0}^{\infty} n(n-1) |a_n| (|z|+|h|)^{n-2}. \end{aligned}$$

We already know that the series $\sum_{n=0}^{\infty} n(n-1)|a_n||z|^{n-2}$ converges for |z| < R. Now, for |z| < R and $h \to 0$ we have |z| + |h| < R eventually. It thus follows from above that $|\frac{F(z+h)-F(z)}{h} - f(z)| \to 0$ as $h \to 0$, whenever |z| < R.

We are now going to define the complex analogue of the exponential function, that is, e^x .

Definition 2. (Exponential function) We define $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ for all $z \in \mathbb{C}$.

Since $|\frac{a_{n+1}}{a_n}| = \frac{1}{(n+1)} \to 0$, the series converges for all $z \in \mathbb{C}$. The following theorem summarizes important properties of the exponential.

Theorem 3. The function $f(z) = e^z$ is analytic on \mathbb{C} and satisfies the following properties

i)
$$\frac{d}{dz}(e^z) = e^z \ ii$$
) $e^{z_1+z_2} = e^{z_1}e^{z_2} \ iii$) $e^{i\theta} = \cos\theta + i\sin\theta, \ \theta \in \mathbb{R}.$

Proof. By the previous result e^z is an analytic function on \mathbb{C} and

$$\frac{d}{dz}(e^z) = \sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1} = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} z^{n-1} = e^z.$$

We define $g(z) = e^z e^{z_1+z_2-z}$. Then g is analytic on \mathbb{C} and g'(z) = 0 for all $z \in \mathbb{C}$. It follows from CR equations that $g(z) = \alpha$ for some $\alpha \in \mathbb{C}$. Since $g(0) = \alpha = e^{z_1+z_2}$ we get that $e^z e^{z_1+z_2-z} = e^{z_1+z_2}$. By choosing $z = z_1$ the result follows.

For the last part we have,

$$e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \sum_{n=0}^{\infty} \left[\frac{1}{(2n)!} (i\theta)^{2n} + \frac{1}{(2n+1)!} (i\theta)^{2n+1} \right]$$
$$= \sum_{n=0}^{\infty} \left[\frac{\theta^{2n} (i^2)^n}{(2n)!} + i \frac{\theta^{2n+1} (i^2)^n}{(2n+1)!} \right] = \cos \theta + i \sin \theta.$$

We have the following observations to make.

- (1) Since $e^z e^{-z} = 1$ it follows that $e^z \neq 0$ for all $z \in \mathbb{C}$.
- (2) $e^z = e^{x+iy} = e^x(\cos y + i\sin y)$ and $\overline{e^z} = e^{\bar{z}} = e^x e^{-yi}$.
- (3) $e^{z+2n\pi i} = e^x(\cos(2n\pi + y) + i\sin(2n\pi + y)) = e^x(\cos y + i\sin y) = e^z$. Thus complex exponential is a periodic function with period $2\pi i$ and hence it is *not injective*, unlike the real exponential.
- (4) It follows now easily that $e^z = 1 \iff z = 2n\pi i$ for some $n \in \mathbb{Z}$ and hence $e^{z_1} = e^{z_2} \iff z_2 = z_1 + 2n\pi i$, for some $n \in \mathbb{Z}$.

Surjectivity of Exponential: We know that complex exponential is not an injective function however it is surjective from \mathbb{C} to $\mathbb{C}\setminus\{0\}$. If $w \in \mathbb{C}\setminus\{0\}$ then using polar coordinates we can write $w = |w|e^{i\theta}$ where $\theta \in (-\pi, \pi]$. If we define $z = \log |w| + i\theta$ then $e^z = e^{\log |w| + i\theta} = e^{\log |w|}e^{i\theta} = w$. In fact, by our previous observation, it follows

3

that $e^{\log |w|+i(\theta+2n\pi i)} = w$ (not surprising as exponential is not injective). Thus we have that $e^{\log |w|+i\operatorname{Arg}w} = w$.

It follows from the above discussion that if we restrict the domain of the exponential then it becomes injective. In fact, if $H = \{z = x + iy : -\pi < y \le \pi\}$ then $z \to e^z$ is a bijective function from H to $\mathbb{C} \setminus \{0\}$.

We can also understand now image of certain subsets of H under the exponential. For example, for a fixed $y_0 \in (-\pi, \pi]$ if $A = \{x + iy_0 : x \in \mathbb{R}\}$ (which is a line parallel to the real axis) then its image under exponential is $\{e^x e^{iy_0} : x \in \mathbb{R}\}$ which is a one sidded ray with angle y_0 . If for a fixed $x_0 \in \mathbb{R}$, $B = \{x_0 + iy : y \in (-\pi, \pi]\}$ (which is part of a line parallel to the imaginary axis) then its image under exponential is $\{e^{x_0}e^{iy} : y \in (-\pi, \pi]\}$ which is a circle about origin with radius e^{x_0} .