LECTURE 4: DERIVATIVE OF POWER SERIES AND COMPLEX
EXPONENTIAL

The reason of dealing with power series is that they provide examples of analytic

functions.

Theorem 1. If Y >  a,z" has radius of convergence R > 0, then the function
F(z) =" a,2" is differentiable on S = {z € C : |z| < R}, and the derivative is
f(z) =322 ynayz""1.

Proof. (x) We will show that |M — f(2)] = 0as h — 0 (in C), whenever
2| < R. Using the binomial theorem (z + h)" = Y} (7)h*¥2"* we get
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By using the easily verifiable fact that ( ,) <n(n 1)(”j 2) we obtain
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2) hz ) (by putting j = k — 2).
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We already know that the series Y - n(n — 1)|a,||z|"~? converges for |z] < R.
Now, for |z] < R and h — 0 we have |z| + |h| < R eventually. It thus follows from
above that |w — f(2)| — 0 as h — 0, whenever |z| < R. O

We are now going to define the complex analogue of the exponential function,
that is, e”.
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Definition 2. (Ezponential function) We define e* =Y 2% for all z € C.
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Since | — 0, the series converges for all z € C. The following theorem

1
(n+1)
summarizes important properties of the exponential.

Theorem 3. The function f(z) = €* is analytic on C and satisfies the following

properties

d

i) @(ez) = e” ii) "7 = e7e™ iii) ¢ = cos +isinf, § € R.

Proof. By the previous result e* is an analytic function on C and
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We define g(z) = e*e*™#27%. Then ¢ is analytic on C and ¢'(z) = 0 for all z € C.
It follows from CR equations that ¢g(z) = « for some a € C. Since g(0) = o = e* 722
we get that e®*e1t#27% = ¢*17%2 By choosing z = z; the result follows.

For the last part we have,
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| = cosf +isind.

We have the following observations to make.

(1) Since e*e* =1 it follows that e* # 0 for all z € C.

(2) e* = "™ = e"(cosy + isiny) and e* = e* = e”e V.

(3) e = e*(cos(2nm + y) + isin(2nm + y)) = e*(cosy + isiny) = e*. Thus
complex exponential is a periodic function with period 27 and hence it is
not injective, unlike the real exponential.

(4) It follows now easily that e* = 1 <= z = 2nmi for some n € Z and hence

¥l = €72 <= 2z, = 21 + 2nmi, for some n € Z.

Surjectivity of Exponential: We know that complex exponential is not an injec-
tive function however it is surjective from C to C\{0}. If w € C\ {0} then using polar

coordinates we can write w = |w|e? where § € (—x, 7. If we define z = log |w| + i

log |w|+i6

then e* = ¢ = eloglwlei® — 4 In fact, by our previous observation, it follows
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that eloglwl+i0+2nmi) — o) (not surprising as exponential is not injective). Thus we
have that eloswl+iATgw — 4,

It follows from the above discussion that if we restrict the domain of the expo-
nential then it becomes injective. In fact, it H = {z =z + iy : —7 <y < 7} then
z — €* is a bijective function from H to C\ {0}.

We can also understand now image of certain subsets of H under the exponential.
For example, for a fixed yg € (—m, 7| if A = {z+iy, : * € R} (which is a line parallel
to the real axis) then its image under exponential is {e"e™" : x € R} which is a one
sidded ray with angle yo. If for a fixed o € R, B = {z¢ + iy : y € (—m, 7|} (which
is part of a line parallel to the imaginary axis) then its image under exponential is

{e*e® : y € (—m, 7]} which is a circle about origin with radius e®.



