
LECTURE 5: COMPLEX LOGARITHM AND TRIGONOMETRIC
FUNCTIONS

Let C∗ = C \ {0}. Recall that exp : C → C∗ is surjective (onto), that is, given

w ∈ C∗ with w = ρ(cos φ + i sin φ), ρ = |w|, φ = Arg w we have ez = w where

z = ln ρ + iφ (ln stands for the real log) Since exponential is not injective (one one)

it does not make sense to talk about the inverse of this function. However, we also

know that exp : H → C∗ is bijective. So, what is the inverse of this function? Well,

that is the logarithm. We start with a general definition

Definition 1. For z ∈ C∗ we define log z = ln |z|+ i argz.

Here ln |z| stands for the real logarithm of |z|. Since argz = Argz + 2kπ, k ∈ Z
it follows that log z is not well defined as a function (it is multivalued), which is

something we find difficult to handle. It is time for another definition.

Definition 2. For z ∈ C∗ the principal value of the logarithm is defined as Log z =

ln |z|+ i Argz.

Thus the connection between the two definitions is Log z + 2kπ = log z for some

k ∈ Z. Also note that Log : C∗ → H is well defined (now it is single valued).

Remark: We have the following observations to make,

(1) If z 6= 0 then eLog z = eln |z|+i Argz = z (What about Log (ez)?).

(2) Suppose x is a positive real number then Log x = ln x + i Argx = ln x (for

positive real numbers we do not get anything new).

(3) Log i = ln |i|+ iπ
2

= iπ
2
, Log (−1) = ln | − 1|+ iπ = iπ,

Log (−i) = ln | − i|+ i−π
2

= − iπ
2
, Log (−e) = 1 + iπ (check!))

(4) The function Log z is not continuous on the negative real axis R− = {z =

x + iy : x < 0, y = 0} (Unlike real logarithm, it is defined there, but useless).

To see this consider the point z = −α, α > 0. Consider the sequences

{an = αei(π− 1
n

)} and {bn = αei(−π+ 1
n

)}. Then limn→∞ an = limn→∞ bn = z

but limn→∞ Log an = limn→∞ ln α+i(π− 1
n
) = ln α+iπ and limn→∞ Log bn =

ln α− iπ.

(5) z → Log z is analytic on the set C∗ \ R−. Let z = reiθ 6= 0 and θ ∈ (−π, π).

Then Log z = ln r + iθ = u(r, θ)+ iv(r, θ) with u(r, θ) = ln r and v(r, θ) = θ.
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Then ur = 1
r
vθ = 1

r
and vr = −1

r
uθ. Thus the CR equations are satisfied.

Since ur, uθ, vr, vθ are continuous the result follows from a previous theorem

regarding converse of CR equations.

(6) The identity Log (z1z2) = Logz1 + Log z2 is not always valid. However, the

above identity is true iff Arg z1 + Arg z2 ∈ (−π, π] (why?).

In calculus, interesting examples of differentiable functions, apart from polynomi-

als and exponential, are given by trigonometric functions. The situation is similar

for functions of complex variables.

If x ∈ R then using Taylor series for sine and cosine we get

eix =
∞∑

n=0

(ix)n

n!
=

∞∑
n=0

(−1)n x2n

(2n)!
+ i

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
= cos x + i sin x.

Taking clue from the above, we now define

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
, sin z =

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
.

It is easy to see by ratio test that the radius of convergence of these two power series

is ∞. It now follows easily that eiz = cos z + i sin z (Euler’s formula) and hence

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
.

Using the above formulae the following theorem follows easily.

Theorem 3. For any z ∈ C

(1) sin(−z) = − sin z, cos(−z) = cos z, sin(z+2kπ) = sin z, cos(z+2kπ) = cos z,

sin2 z + cos2 z = 1.

(2) d
dz

(sin z) = cos z, d
dz

(cos z) = − sin z.

(3) sin z = sin(x + iy) = sin x cosh y + i cos x sinh y, and cos z = cos(x + iy) =

cos x cosh y − i sin x sinh y where sinh x = ex−e−x

2
, cosh x = ex+e−x

2
.

There is an important difference between real and complex sine functions. Unlike

the real sine function the complex sine function is unbounded. To see this notice

that | sin z|2 = | sin(x + iy)|2 = sin2 x cosh2 y + cos2 x sinh2 y = sin2 x + sinh2 y.

As limy→∞ sinh y = ∞ (check this!) it follows that for each fixed x0 ∈ R,

limy→∞ | sin(x0 + iy)| = ∞. Similar is the case for cos z.

Now using sine and cosine we can define tan z, sec z, cosec z as in the real case. We

can also define complex analogue of the hyperbolic functions sinh z = (ez − e−z)/2
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and cosh z = (ez + e−z)/2. The following theorem follows just by applying the

definitions

Theorem 4. (1) sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2, sin 2z = 2 sin z cos z,

sin(z + π) = − sin z, sin(z + 2π) = sin z.

(2) cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2, cos 2z = cos2 z − sin2 z.


