LECTURE 7: CAUCHY'S THEOREM

The analogue of the fundamental theorem of calculus proved in the last lecture says in particular that if a continuous function f has an antiderivative F in a domain D, then $\int_C f(z)dz = 0$ for any given closed contour lying entirely on D.

Now, two questions arises: 1) Under what conditions on f we can guarantee the existence of F such that F' = f? 2) Under what assumptions on f, we can get $\int_{C} f(z)dz = 0$ for a closed contour?

Cauchy's theorem answers the questions raised above. To state Cauchy's theorem we need some new concepts.

Definition 1. (Simply connected domain)

A domain D is called <u>simply connected</u> if every simple closed contour (within it) encloses points of D only.

A domain D is called multiply connected if it is not simply connected.

FIGURE 1

Example 2. Here are some examples:

- (1) The sets \mathbb{C} , \mathbb{D} , and $RHP = \{z : Re \ z > 0\}$ are simply connected domains (they have no holes).
- (2) The sets \mathbb{C}^* , $\mathbb{D} \setminus \{0\}$, and the annulus $A(a,b) = \{z \in \mathbb{C} : a < |z| < b\}$ are not simply connected domains.

Definition 3. A curve (contour) is called <u>simple</u> if it does not cross itself (if initial point and the final point are same they are not considered as non simple)

A curve is called a <u>simple closed curve</u> if the curve is simple and its initial point and final point are same.

FIGURE 2

Example 4. For $z_0 \in \mathbb{C}$ and r > 0 the curve $\gamma(z_0, r)$ given by the function $\gamma(t) = z_0 + re^{it}$, $t \in [0, 2\pi)$ is a prototype of a simple closed curve (which is the circle around z_0 with radius r).

Theorem 5. If a function f is analytic on a simply connected domain D and C is a simple closed contour lying in D then $\int_C f(z)dz = 0$.

We will prove the theorem under an extra hypothesis that f' is a continuous function.

Proof. Let f(z) = f(x + iy) = u(x, y) + iv(x, y) and $\gamma(t) = x(t) + iy(t)$, $a \le t \le b$ is the curve C. Then

$$\begin{split} \int_{a}^{b} f(\gamma(t))\gamma'(t)dt &= \int_{a}^{b} [u(x(t), y(t)) + iv(x(t), y(t))][x'(t) + iy'(t)]dt \\ &= \int_{a}^{b} (ux' - vy')dt + i\int_{a}^{b} (vx' + uy')dt \\ &= \int_{C} udx - vdy + i\int_{C} vdx + udy \\ &= \int_{R} \int_{R} (-v_x - u_y)dxdy + i\int_{R} (u_x - v_y)dxdy, \\ &\quad \text{(by Green's theorem)} \\ &= 0 \qquad \text{(by CR equations).} \end{split}$$

At this point we pause a bit and take a stock of the method of evaluation of integrals:

(1) We can straightway use the parametrization of the curve and apply the definition, as we did for the evaluation of the *fundamental integral*. But this method can turn out to be tedious.

- (2) We can recognize the integrand as a continuous derivative of another function and apply the analogue of the fundamental theorem.
- (3) If all the conditions are met we can use Cauchy's theorem.

Example 6. Let $\gamma(t) = e^{it}$, $-\pi < i \leq \pi$, and C denotes the circle of radius one with center at zero.

- (1) It follows from Cauchy's theorem that $\int_C f(z)dz = 0$, if $f(z) = e^{z^n}$, $\cos z$, or $\sin z$.
- (2) $\int_C f(z)dz = 0$ if $f(z) = \frac{1}{z^2}$, or $cosec^2 z$ from the fundamental theorem as $\frac{d}{dz}(-\frac{1}{z}) = \frac{1}{z^2}$ and $\frac{d}{dz}(-\cot z) = cosec^2 z$. Note that here Cauchy's theorem cannot be applied as the integrands are not analytic at zero.
- (3) $\int_C \frac{e^{iz^2}}{z^2+4} dz = 0$ by Cauchy's theorem. Note that the integrand is not analytic at $z = \pm 2$ but that does not bother us as these points are not enclosed by C.
- (4) If $f(z) = (Im z)^2$ then $\int_C f(z)dz = 0$ (check this). As f is not analytic anywhere in \mathbb{C} Cauchy's theorem can not be applied to prove this.

Important consequences: We have the following important consequences of Cauchy's theorem.

- (1) (Independence of path) Let D be a simply connected domain and f be an analytic function defined on D. Let z_1, z_2 be two points in D and γ_1 and γ_2 be two simple curves joining z_1 and z_2 such that the curves lie entirely in D. Then $\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz$. To see this consider the curve $\gamma(t) = \gamma_1(2t)$, $0 \le t \le 1/2$ and $\gamma(t) = \eta(t) = \gamma_2(2(1-t))$ for $1/2 \le t \le 1$ (we have just reversed the direction of γ_2 and joined it with γ_1). Then γ is a simple closed curve and by Cauchy's theorem $\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\eta} f(z)dz = 0$ which implies $\int_{\gamma_1} f(z)dz = -\int_{\eta} f(z)dz$. But as $-\int_{\eta} f(z)dz = \int_{\gamma_2} f(z)dz$ we get the result.
- (2) (Existence of antiderivative:) If f is an analytic function on a simply connected domain D then there exists a function F, which is analytic on D such that F' = f.

Proof. (*) Fix a point $z_0 \in D$ and define

$$F(z) = \int_{z_0}^z f(w) dw.$$

The integral is considered as a contour integral over any curve lying in Dand joining z with z_0 . By the first part the integral does not depend on the curve we choose and hence the function F is well defined. We will show that F' = f. If $z + h \in D$ then

$$F(z+h) - F(z) = \int_{z_0}^{z+h} f(w)dw - \int_{z_0}^{z} f(w)dw = \int_{z}^{z+h} f(w)dw,$$

where the curve joining z and z + h can be considered as a straight line $l(t) = z + th, t \in [0, 1]$. Thus we get

FIGURE 3

$$\left|\frac{F(z+h) - F(z)}{h} - f(z)\right| = \frac{1}{h} \left|\int_{z}^{z+h} (f(w) - f(z))dw\right|,$$

(here we have used the fact that $\int_l dw = h$). Since f is continuous at z, given $\epsilon > 0$ there exist a $\delta > 0$ such that $|f(z+h) - f(z)| < \epsilon$ if $|h| < \delta$. Thus for $|h| < \delta$ we get from ML inequality that

$$\frac{1}{h} \left| \int_{z}^{z+h} (f(w) - f(z)) dw \right| \le \frac{\epsilon |h|}{|h|},$$

that is, $\lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z).$

Cauchy's theorem for multiply connected domain: See the discussion in Page 719 of Advanced Engineering Mathematics-E. Kreyszig