
LECTURE 7: CAUCHY’S THEOREM

The analogue of the fundamental theorem of calculus proved in the last lecture

says in particular that if a continuous function f has an antiderivative F in a

domain D, then
∫

C
f(z)dz = 0 for any given closed contour lying entirely on D.

Now, two questions arises: 1) Under what conditions on f we can guarantee the

existence of F such that F ′ = f? 2) Under what assumptions on f, we can get∫
c
f(z)dz = 0 for a closed contour?

Cauchy’s theorem answers the questions raised above. To state Cauchy’s theorem

we need some new concepts.

Definition 1. (Simply connected domain)

A domain D is called simply connected if every simple closed contour (within it)

encloses points of D only.

A domain D is called multiply connected if it is not simply connected.

Figure 1

Example 2. Here are some examples:

(1) The sets C, D, and RHP = {z : Re z > 0} are simply connected domains

(they have no holes).

(2) The sets C∗, D \ {0}, and the annulus A(a, b) = {z ∈ C : a < |z| < b} are

not simply connected domains.

Definition 3. A curve (contour) is called simple if it does not cross itself (if initial

point and the final point are same they are not considered as non simple)

A curve is called a simple closed curve if the curve is simple and its initial point

and final point are same.
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Figure 2

Example 4. For z0 ∈ C and r > 0 the curve γ(z0, r) given by the function γ(t) =

z0+reit, t ∈ [0, 2π) is a prototype of a simple closed curve (which is the circle around

z0 with radius r).

Theorem 5. If a function f is analytic on a simply connected domain D and C is

a simple closed contour lying in D then
∫

C
f(z)dz = 0.

We will prove the theorem under an extra hypothesis that f ′ is a continuous

function.

Proof. Let f(z) = f(x + iy) = u(x, y) + iv(x, y) and γ(t) = x(t) + iy(t), a ≤ t ≤ b

is the curve C. Then

∫ b

a

f(γ(t))γ′(t)dt =

∫ b

a

[u(x(t), y(t)) + iv(x(t), y(t))][x′(t) + iy′(t)]dt

=

∫ b

a

(ux′ − vy′)dt + i

∫ b

a

(vx′ + uy′)dt

=

∫

C

udx− vdy + i

∫

C

vdx + udy

=

∫ ∫

R

(−vx − uy)dxdy + i

∫ ∫

R

(ux − vy)dxdy,

(by Green’s theorem)

= 0 (by CR equations).

¤

At this point we pause a bit and take a stock of the method of evaluation of

integrals:

(1) We can straightway use the parametrization of the curve and apply the

definition, as we did for the evaluation of the fundamental integral. But this

method can turn out to be tedious.
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(2) We can recognize the integrand as a continuous derivative of another function

and apply the analogue of the fundamental theorem.

(3) If all the conditions are met we can use Cauchy’s theorem.

Example 6. Let γ(t) = eit, −π < i ≤ π, and C denotes the circle of radius one

with center at zero.

(1) It follows from Cauchy’s theorem that
∫

C
f(z)dz = 0, if f(z) = ezn

,

cos z, or sin z.

(2)
∫

C
f(z)dz = 0 if f(z) = 1

z2 , or cosec2z from the fundamental theorem as
d
dz

(−1
z
) = 1

z2 and d
dz

(− cot z) = cosec2z. Note that here Cauchy’s theorem

cannot be applied as the integrands are not analytic at zero.

(3)
∫

C
eiz2

z2+4
dz = 0 by Cauchy’s theorem. Note that the integrand is not analytic

at z = ±2 but that does not bother us as these points are not enclosed by C.

(4) If f(z) = (Im z)2 then
∫

C
f(z)dz = 0 (check this). As f is not analytic

anywhere in C Cauchy’s theorem can not be applied to prove this.

Important consequences: We have the following important consequences of

Cauchy’s theorem.

(1) (Independence of path) Let D be a simply connected domain and f be an

analytic function defined on D. Let z1, z2 be two points in D and γ1 and γ2

be two simple curves joining z1 and z2 such that the curves lie entirely in D.

Then
∫

γ1
f(z)dz =

∫
γ2

f(z)dz. To see this consider the curve γ(t) = γ1(2t),

0 ≤ t ≤ 1/2 and γ(t) = η(t) = γ2(2(1 − t)) for 1/2 ≤ t ≤ 1 (we have just

reversed the direction of γ2 and joined it with γ1). Then γ is a simple closed

curve and by Cauchy’s theorem
∫

γ
f(z)dz =

∫
γ1

f(z)dz+
∫

η
f(z)dz = 0 which

implies
∫

γ1
f(z)dz = − ∫

η
f(z)dz. But as − ∫

η
f(z)dz =

∫
γ2

f(z)dz we get the

result.

(2) (Existence of antiderivative:) If f is an analytic function on a simply con-

nected domain D then there exists a function F, which is analytic on D such

that F ′ = f.

Proof. (*) Fix a point z0 ∈ D and define

F (z) =

∫ z

z0

f(w)dw.

The integral is considered as a contour integral over any curve lying in D

and joining z with z0. By the first part the integral does not depend on the

curve we choose and hence the function F is well defined. We will show that
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F ′ = f. If z + h ∈ D then

F (z + h)− F (z) =

∫ z+h

z0

f(w)dw −
∫ z

z0

f(w)dw =

∫ z+h

z

f(w)dw,

where the curve joining z and z + h can be considered as a straight line

l(t) = z + th, t ∈ [0, 1]. Thus we get

Figure 3

|F (z + h)− F (z)

h
− f(z)| = 1

h
|
∫ z+h

z

(f(w)− f(z))dw|,

(here we have used the fact that
∫

l
dw = h). Since f is continuous at z, given

ε > 0 there exist a δ > 0 such that |f(z + h)− f(z)| < ε if |h| < δ. Thus for

|h| < δ we get from ML inequality that

1

h
|
∫ z+h

z

(f(w)− f(z))dw| ≤ ε|h|
|h| ,

that is, limh→0
F (z+h)−F (z)

h
= f(z).

¤

Cauchy’s theorem for multiply connected domain: See the discussion in Page

719 of Advanced Engineering Mathematics-E. Kreyszig


